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OUTPUT SYNCHRONIZATION OF MULTI-AGENT
PORT-HAMILTONIAN SYSTEMS WITH LINK DYNAMICS

Bing Wang, Xinghu Wang and Honghua Wang

In this paper, the output synchronization control is considered for multi-agent port-Hamilto-
nian systems with link dynamics. By using Hamiltonian energy function and Casimir function
comprehensively, the design method is proposed to overcome the difficulties taken by link
dynamics. The Hamiltonian function is used to handle the dynamic of agent, while the Casimir
function is constructed to deal with the dynamic of link. Thus the Lyapunov function is
generated by modifying the Hamiltonian function of forced Hamiltonian systems. Then, the
proposed approach is applied in multi-machine power systems, which are interconnected in
microgrid with power frequencies as link dynamics. Finally, the simulation result demonstrates
the effectiveness of the gotten method.

Keywords: multi-agent system, port-Hamiltonian system, Casimir function, link dynam-
ics, multi-machine power system

Classification: 93C02, 94C15

1. INTRODUCTION

In recent years, multi-agent systems have become an attractive topic and gain increasing
research interest, partly due to its broad applications, including sensor networks, mobile
robots, and smart grids. One of the central problems for multi-agent systems is to make
the outputs of all agents converge to a common output trajectory, which is usually called
as output consensus or synchronization. This problem has been studied extensively
and abundant results have been obtained by efforts of many researchers from various
viewpoints, including passivity, potential functions, and optimization [1, 5, 6, 13, 15, 17].
Particularly, nonlinear multi-agent systems attract more and more research attention in
the control society, but many problems remain to be done yet [3, 9, 21].

It is known that port-Hamiltonian systems are generalization of conventional Hamil-
tonian systems in the classical mechanics, which provide a framework with nice structure
and clear physical meaning for nonlinear control systems. This class of systems has been
well investigated in a series of paper [2, 12, 19, 23, 24]. The first important property
of port-Hamiltonian systems is that the interconnection of port-Hamiltonian systems
usually yields a port-Hamiltonian system. Therefore, it is easy to treat more complex
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systems consisting of these port-Hamiltonian systems [11]. The second important prop-
erty of port-Hamiltonian systems is energy-based, which can be designed with the help
of passivity and Casimir methods [19]. Different from passivity, the Casimir function,
one of the structure properties of a class of physical systems, can be used to modify the
Hamiltonian function [12]. In fact, the energy-shaping plus damping injection technique
was proposed for interconnected port-Hamiltonian systems in [14]. Additionally, the
impedance control was designed for a class of port-Hamiltonian systems with flow-input
based on Casimir functions, with an illustrative mass-spring example in [16].

Although port-Hamiltonian systems are good at the modeling and analysis of nonlin-
ear systems, most of the previous research still focused on single port-Hamiltonian sys-
tem, and very few works studied the control problems of multi-agent port-Hamiltonian
systems. For example, in [8], the output consensus problem of a class of multi-agent
port-Hamiltonian system was investigated for weakly connected unbalanced graph in
the fixed topology, then the result was expanded to the case of switching topologies, but
the link weights were still fixed. Moreover, even in those initiating works, the link of the
communication topologies were usually static without any dynamics, and the dynamic
communication link got less attention. In fact, Hamiltonian systems provide an effective
way to study both dynamics in the nodes and links. The first try could be found in
[20], where the author proposed a geometric framework for the description of physical
network dynamics as port-Hamiltonian systems on graphs, related to the internal flows.
A formation problem for a network of point masses subject to Coulomb friction was ana-
lyzed in [7], where discontinuous and continuous controllers were proposed and compared
for this multi-agent port-Hamiltonian system. Additionally, power generation systems
are important practical example of port-Hamiltonian systems. With Hamiltonian func-
tion method, many significant achievements have been obtain for single-machine and
multi-machine systems [22, 24]. Nevertheless, without discussing network graphs, these
multi-machine systems are not regarded as multi-agent systems.

The objective of this paper is to investigate the output synchronization problem
of multi-agent port-Hamiltonian systems. Considering there exists link dynamics in
addition to the node dynamics in the multi-agent system, we propose a design method
to overcome the difficulties by using Hamiltonian energy function and Casimir function.
At first, the link dynamics are modeled and integrated into the port-Hamiltonian system.
So the augmented system consists of the dynamics of both agents and links. Next, the
Casimir function is constructed to shape the Hamiltonian energy function, which reduces
the augmented system and embeds the link dynamics into the system. Then, the output
synchronization can be achieved and the Lyapunov function can be generated with the
modified Hamiltonian function. Furthermore, the design method is applied to the multi-
machine systems in a microgrid, where the power frequency is decided by the angular
velocity and regarded as the link dynamics. When the active power generated by each
machine influences it, the power frequency as the link dynamics reacts on every machine.
This illustrative example with simulation demonstrates the effectiveness of the design
method proposed in this paper.

The main contribution of this paper includes the following three aspects. Firstly, we
introduce the link dynamics into the field of multi-agent port-Hamiltonian systems and
investigate the output synchronization problem of this class of systems. Different from
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[20], where the whole physical network was modeled as port-Hamiltonian system and the
link dynamics were expressed in port-Hamiltonian model, we propose our system with
each agent represented as one port-Hamiltonian system and the dynamic links connecting
these agents with the topological graph. Secondly, the proposed design method based on
the Hamiltonian energy function and Casimir function overcomes the obstacles of multi-
agent port-Hamiltonian systems with link dynamics: the Hamilton function is used to
design the control of the agents, while the Casimir function is constructed to deal with
the dynamics of the links. Thirdly, the proposed approach can be implemented in multi-
machine power systems, considering that the machines in some microgrids satisfy the
multi-agent port-Hamiltonian structure and the link dynamics are power frequencies
flowing between machines.

The paper is organized as follows: Section 2 reviews some basic knowledge and for-
mulates the output synchronization problem of multi-agent port-Hamiltonian systems.
Section 3 introduces the link dynamics into multi-agent port-Hamiltonian systems and
designs the control law by combining Hamiltonian energy function with Casimir func-
tion. Section 4 provides the practical example of multi-machine power systems in a
microgrid to confirm the effectiveness of design approach. Finally, Section 5 gives the
conclusion.

2. PRELIMINARIES AND PROBLEM DESCRIPTION

In this section, we first review some concepts and basic knowledge on graph theory
[4] and describe the output synchronization problem of multi-agent port-Hamiltonian
systems.

2.1. Graph theory

A weighted graph consists of a vertex (node) set V = {v1, v2, . . . , vN}, an edge (link) set
E ⊂ V × V, and a weighted adjacency matrix AN = [aij ] ∈ RN×N . An edge (i, j) in a
weighted directed graph denotes that vehicle j can obtain information from vehicle i, but
not necessarily vice versa. In contrast, the pairs of nodes in a weighted undirected graph
are unordered, where an edge (i, j) denotes that vehicles i and j can obtain information
from one another. The weighted adjacency matrix AN of a weighted directed graph is
defined such that aij is a positive weight if (j, i) ∈ ε, while aij = 0 if (j, i) /∈ ε. The
weighted adjacency matrix AN of a weighted undirected graph is defined analogously
except that aij = aji, ∀i 6= j, since (j, i) ∈ ε implies (i, j) ∈ ε.

A directed path is a sequence of edges in a directed graph of the form (i1, i2),
(i2, i3), . . ., where ij ∈ V. An undirected path in an undirected graph is defined analo-
gously. A directed graph has a directed spanning tree if there exists at least one node
having a directed path to all of the other nodes. An undirected graph is connected if
there is an undirected path between every pair of distinct nodes.

A Laplacian matrix Lw = [lij ] ∈ RN×N associated with AN can be defined as

lii =
N∑

j=1,j 6=i

aij , lij = −aij , i 6= j. (1)
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For an undirected graph, Lw is symmetric positive semidefinite. However, Lw for a
directed graph does not have this property. In both the undirected and directed cases,
0 is an eigenvalue of Lw with the associated eigenvector 1N , where 1N is a p× 1 column
vector of all ones. In the case of undirected graphs, 0 is a simple eigenvalue of Lw and all
of the other eigenvalues are positive if and only if the undirected graph is connected. In
the case of directed graphs, 0 is a simple eigenvalue of Lw and all of the other eigenvalues
have positive real parts if and only if the directed graph has a directed spanning tree.

2.2. System and problem description

In the following, the formulation of output synchronization problem of multi-agent port-
Hamiltonian systems is given.

Consider the multi-agent port-Hamiltonian (MAPH) system as follows:{
ẋi = (Ji −Ri)∇Hi(xi) +Giui
yi = GTi ∇Hi(xi) i = 1, 2, . . . , N (2)

where xi ∈ Rn is the state, yi ∈ Rm is the output and ui ∈ Rm is the control input
of the ith agent. Ji = −JTi is a skew-symmetric matrix, Ri = RTi ≥ 0 is a positive
semi-definite matrix and Gi ∈ Rn×m. Hi(xi) : Rn → R is called the Hamiltonian energy
function, which is bounded from below; ∇Hi(xi) = ∂Hi(xi)

∂xi
.

The definition of output synchronization is proposed as follows:

Definition 2.1. Consider the MAPH system (2). The agents are said to output syn-
chronization if

lim
t→∞

‖yi(t)− yj(t)‖ = 0, ∀i, j = 1, . . . , N (3)

where ‖ · ‖ denotes the Euclidean norm.

3. CONTROL OF MAPH SYSTEM WITH LINK DYNAMICS

In this section, the link dynamics are introduced into the MAPH system and its control
problem is researched. In order to be compared with the system without link dynamics,
we give its corresponding result of output synchronization first.

3.1. Case of the system without link dynamics

In absence of link dynamics, the output synchronization problem of MAPH system (2) is
solvable by designing the control law based on the communication among agents, which
is shown as the following theorem.

Theorem 3.1. Consider the MAPH system (2). If the communication topology has a
directed spanning tree, then under the control law

ui = −
N∑
j=1

aij(yi − yj), ∀i = 1, . . . , N (4)

the equilibrium point of nonlinear system (2) is globally stable and the agents are output
synchronization.
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P r o o f . Consider the Hamiltonian energy function H(x) =
∑N
i=1Hi(xi), i = 1, . . . , N .

Along the trajectories of (2), the derivative of H is

Ḣ =
N∑
i=1

∇THi(Ji −Ri)∇Hi +
N∑
i=1

∇THiGiui.

Taking the control law (4) into (2), the closed-loop system in the vector form is

Ḣ = ∇TH(J −R)∇H +∇THGu
= ∇TH(J −R)∇H +∇THG[−(Lw ⊗ Im)y]
= −∇THR∇H − yT (Lw ⊗ Im)y ≤ 0.

Thus the solution is globally stable and all output signals are bounded. Consider the
set E = {xi|Ḣ = 0} = {xi|∇THR∇H = 0, yT (Lw ⊗ Im)y = 0}. We have Ē = {(yi −
yj)T (yi − yj) ≡ 0} ⊇ E. By using LaSalle’s Invariance Principle, all bounded solutions
of systems converge to E as t→∞ and the agents can reach output synchronization. �

3.2. Control of the system with link dynamics

In this part, there are two problems to be researched. The first one is to investigate
whether the similar result to Theorem 3.1 can be gotten after introducing link dynamics
into the system (2). The second one is to search the way to obtain the Lyapunov function
from the Hamiltonian function for the MAPH system with link dynamics.

In most of previous research about multi-agent systems, the links in the graph are
static. In this paper, the link dynamics will be introduced into the MAPH systems.
Now, a practical example is provided to motivate the formulation of link dynamics.

Fig. 1. Mass-spring system.

This is well-known mass-spring system in Figure 1 [16], whose equation is given as

mq̈ = kr (5)
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where q ∈ R is the mass position, r ∈ R is the spring length, f ∈ R is the external
force, the inertia m > 0, and the spring coefficient k > 0. The system is written in
port-Hamiltonian form as follows:[

q̇
ṗ

]
=
[

0 1
−1 0

]
∂H0(x)
∂x

+
[
0
1

]
kr (6)

where p ∈ R is the momentum mq̇, and the Hamiltonian function H0(t) = p2

2m .
In the system, the spring is dynamic link between the masses. The model (6) only

describes the dynamic of the agent (the mass), but the link dynamic is ignore. One
nature idea is to add the dynamic of the link (the spring) into the model. Since the
system consists of a kinematic energy storing element and a potential energy storing
element, the system is rewritten in the following port-Hamiltonian system.q̇ṗ

ṙ

 =

 0 1 0
−1 0 1
0 −1 0

 ∂H̄0(x)
∂x

+

0
0
1

 v (7)

where the control input v ∈ Rm is the velocity of the spring and the Hamiltonian func-
tion H̄0(t) = p2

2m + kr2

2 .

Remark 3.2. In Theorem 3.1, the links of MAPH system are static. However, in the
above example, the link (spring) is dynamic. So Theorem 3.1 does not apply to the
mass-spring system. The case with link dynamics represents a few practical systems
and needs getting attention. Firstly as shown in the example, the dynamics of links
should be described and augmented to the dynamic equations of plant system. Then,
we will shape the Hamiltonian energy function by using the Casimir function to obtain
the Lyapunov function for the MAPH system with link dynamics.

With the help of mass-spring system, the link dynamics are introduced into our re-
search work. Now, we start to discuss the case of the MAPH system with link dynamics.
The control law is still taken as:

ui = −
N∑
j=1

aij(yi − yj), ∀i = 1, . . . , N.

So the closed-loop system is
ẋi = (Ji −Ri)∂Hi∂xi

−Gi
∑N
j=1 aij(yi − yj)

= (Ji − R̃i)∂Hi∂xi
+Giūi

yi = GTi
∂Hi
∂xi

ūi =
∑N
j=1 aijyj

(8)

where R̃i = Ri +AiGiG
T
i , Ai =

∑N
j=1 aij .



Output synchronization of MAPH systems with link dynamics 95

Corresponding to ūi =
∑N
j=1 aijyj , the forced equilibrium x̄i are solutions of

(Ji −Ri)
∂Hi

∂xi
+Giūi = 0. (9)

In this way, we make the first assumption.

Assumption 1. AiGiGTi does not change the forced equilibrium x̄i.

That is, the equilibrium of the system (8) is also at x̄i. This assumption can be
satisfied by a few practical systems, such as multi-machine power systems [22, 24].

Considering the link dynamics, we define the augment system as follow: for i =
1, 2, . . . , N , {

ξ̇i = usi = yi
ysi = ∂Hei

∂ξi
= −ūi

(10)

with state ξi ∈ Rm and the energy of augment system

Hei(ξi) = −ξTi
N∑
j=1

aijyj (11)

which is assumed to be bounded from below.
By interconnecting the original system (2) and the augment system (10) with ysi =

−ui and usi = yi, the obtained equations are

ẋi = (Ji − R̃i)
∂Hi

∂xi
−Gi

∂Hei

∂ξi
(12)

ξ̇i = GTi
∂Hi

∂xi
. (13)

For the following design, we make the following assumption.

Assumption 2. The matrix (Ji − R̃i) is invertible.

Then, we can set

Ki = −(Ji − R̃i)−1Gi. (14)

So the equation (12) and (13) can be rewritten as[
ẋi
ξ̇i

]
= (J̄i − R̄i)

[
∂H̄i
∂xi
∂H̄i
∂ξi

]
(15)

where H̄i = Hi(xi) +Hei(ξi), and the structure matrices
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J̄i
4
=
[

Ji JiKi

−(JiKi)T Jsi

]
, R̄i

4
=
[

R̃i R̃iKi

(R̃iKi)T Rsi

]
where Jsi

4
= KT

i JiKi, Rsi
4
= KT

i R̃iKi with Jsi = −JTsi, Rsi = RTsi.
From the augmented system (15), we can immediately deduce that the MAPH system

with link dynamics (2) is globally stable and the outputs of agents are synchronous.
However, the result does not make a distinct progress than the result in Theorem 3.1,
except for adding the link dynamics to the system. Next, we will search the condition
under which the Hamiltonian function can qualify as the Lyapunov function. Then,
the Lyapunov function of the system (15) is constructed from its Hamiltonian function
H̄i by using the Casimir function, which plays an important role in the control by
interconnection and energy shaping methodology.

Note that there is no relation between the state of the controller and the state of the
controlled system. Then, it is not clear how the controller energy has to be selected in
order to solve the control problem. A possible solution can be to constrain the state of the
closed-loop system (15) on a certain submanifold. So by properly selecting the Casimir
function of the system (10) to shape the closed-loop energy H̄i(xi, ξi), the augmented
system (15) can be mapped into the submanifold.

Note that Ki is a constant matrix, where Kiαβ satisfies

∂Kiαβ

xiγ
=
∂Kiγβ

xiα
= 0, α, γ ∈ n̄ 4= {1, . . . , n}, β ∈ m̄ 4

= {1, . . . ,m}. (16)

Then from Poincare’s lemma, it is known that there exist smooth Ciβ : Rn → R, such
that

Kiαβ =
∂Ciβ
∂xiα

, α ∈ n̄, β ∈ m̄. (17)

Hence, it immediately follows that the function

Fiβ = ξiβ − Ciβ (xi), β ∈ m̄ (18)

which are constant along the trajectories of (15). Therefore, we can write

dFiβ
dt

=
[
−
∂TCiβ
∂xi

, eTiβ

]
(J̄i − R̄i)

[
∂H̄i
∂xi
∂H̄i
∂ξi

]
. (19)

Since the expression (19) is equal to zero, we can get the Casimir function

ξi = Ci(xi) + ci (20)

where the constant ci (i = 1, . . . , N) depends on the initial condition of ξi. Based on the
Casimir function, the system (15) can be reduced by replacing ξi with xi and the link
dynamics are embedded into the system. Now the Hamiltonian function can be written
as

Hri(xi)
4
= H̄i(xi, Ci(xi) + ci) = Hi(xi) +Hei(Ci(xi) + ci) (21)
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while the dynamics of agents and links are restricted to a submanifold given by

ẋi = (Ji − R̃i)
∂Hri

∂xi
. (22)

Note that by (17)

∂Hri

∂xi
=
∂Hi

∂xi
− ∂Ci
∂xi

N∑
j=1

aijyj =
∂Hi

∂xi
−Ki

N∑
j=1

aijyj . (23)

Hence, premultiplying by (Ji − R̃i) and using (14), we have

(Ji − R̃i)
∂Hri

∂xi
= (Ji − R̃i)

∂Hi

∂xi
+Gi

N∑
j=1

aijyj . (24)

Therefore, by (9) and Assumption 1, the unique forced equilibrium x̄i corresponding to
ūi is an extremum of Hri for ∂Hri

∂xi
= 0. Furthermore, the Hamiltonian energy function

is defined by Hr(x) =
∑N
i=1Hri(xi), we have its derivative

d
dt
Hr =

N∑
i=1

∂THri

∂xi
(Ji − R̃i)

∂Hri

∂xi
= −

N∑
i=1

∂THri

∂xi
R̃i
∂Hri

∂xi
≤ 0. (25)

Now let us summarize the developments above in the following main theorem.

Theorem 3.3. Consider the MAPH system with link dynamics (2) with Assumption
1 and Assumption 2, and the communication topology of G has a directed spanning
tree. Under the control law (4), the link dynamics are presented in port-Hamiltonian
form (10) and the augmented system is described as (15). Then the closed-loop system
with link dynamics is globally stable and the outputs of agents are synchronous. More-
over, since Ki satisfies the condition (16), there exists locally smooth function Ci(xi)
(i = 1, . . . , N) in the form of (20), the system (15) can be alternatively represented by
(22), and Hamiltonian function Hri (21) has extremum at x̄i, which is an equilibrium.
Furthermore, if we can show that Hri not only has extremum at x̄i but even a minimum,
then Hri qualifies as a Lyapunov function for the system (2).

Remark 3.4. Pay attention to the expression (11). Compared with the previous work
[12] for the single port-Hamiltonian system, the energy function of augment system is
−ζT ū, where ζ is the state of augment system corresponding to ξi and ū is a constant
non-zero input, which is developed to

∑
j∈Ni aijyj in MAPH system. So our work

expands the result of single port-Hamiltonian system to the case of MAPH system.
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Remark 3.5. For the MAPH system with dynamic links, we can find it is composed
of two parts: agents and links. Firstly, the port-Hamiltonian system describes the
dynamics of agents and Hamiltonian function represents the energy of agent. Secondly,
the dynamics of links are integrated into the system by augmenting design. Next, the
augmented system is reduced through the construction and solution of Casimir function.
So the dynamics of links are embedded into the port-Hamiltonian system. In the above
procedure, we design the controller of agents based on Hamiltonian function and deal
with the dynamics of links by using Casimir function. Therefore, this method is suitable
for the MAPH system with link dynamics.

Infinite  bus
Transmission circuitGenerator

Fig. 2. Simple-machine power system.

4. APPLICATION TO MULTI-MACHINE POWER SYSTEMS

In this section, we apply our results to multi-machine problems in power systems. We
start with the single-machine case and then give results for the multi-machine case.

4.1. Model of single-machine systems

Consider the transient stability of an equivalent generator supplying to an infinite bus
through two transmission circuits as shown in Figure 2. For single-machine power sys-
tems [18], the system model can be written as follows:{

δ̇ = ω − ω0 = ∆ω
∆ω̇ = ω0

T (Pm − PM sin δ)− D
T ∆ω + ω0

T u
(26)

where δ is rotor angle; ω is the angular velocity of rotor, ∆ω is its deviation and ω0 is
synchronous speed; Pm is constant mechanical input power; PM is the maximum value
of electric output power; T is inertia constant; D is damping coefficient; u is a control
variable corresponding to adjustable input power.

When ω0 = 1, construct the Hamiltonian function

H(δ,∆ω) =
1
2
T∆ω2 + Pm(π − δ)− PM cos δ

where δs is the equilibrium point of rotor angle. It is rewritten in the matrix form as
follows: [

δ̇
∆ω̇

]
=

[
0 1

T

− 1
T − D

T 2

]
∇H +

[
0
1
T

]
u

y =
[
0 1

T

]
∇H = ∆ω.
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It is known that the output of a generator in power systems is the angular velocity
deviation ∆ω. In a microgrid, each machine can be regarded as one agent and each
link dynamics can describe the time-varying transmission energy in the network. As we
know, the energy frequency is changing and determined by the active power of the whole
network. In other words, each machine generates its active power, which influences its
deviation ∆ω and the frequency of the link f due to the relation ∆ω = 2π∆f . When
each machine produces its active power for the requirement of constant frequency, the
frequencies in the network may change due to uncertain factors. On the other hands,
the active power of machines will be changed accordingly in order to synchronize all
the frequencies. Thus, the frequencies can be described by the link dynamics in multi-
machine power systems.

4.2. Multi-machine systems in microgrid

A microgrid is a small-scale power grid that can not only operate independently but also
be in conjunction with the main electrical grid as back-up power to bolster the main grid
during periods of heavy demand. Often, microgrids can involve multiple energy sources
as a way of incorporating renewable power. Commonly, the microgrid is composed of
its own power resources, loads and links.

1

45

32

1

34

25

Fig. 3. Microgrid connected graph and the corresponding topological

structure.

In this example, the microgrid consists of five generators and some loads, whose
connection graph and the corresponding topological structure are shown in Figure 3.
Suppose the microgrid works in islanding mode and the loads are fixed constants. By
modifying the model of single-machine (26), the model of multi-machines [10, 18] in
Figure 3 is

{
δ̇i = ∆ωi

∆ω̇i = 1
Ti

[Pmi − PMi

∑
j∈Ni sin(δi − δj)]− Di

Ti
∆ωi + 1

Ti
ui

(27)

where i = 1, . . . , 5 and Ni denotes the set of neighbors linking to the ith machine.
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The model in MAPH form is

[
δ̇i

∆ω̇i

]
=

[
0 1

Ti

− 1
Ti
−Di
T 2
i

]
∇Hi +

[
0
1
Ti

]
ui

yi =
[
0 1

Ti

]
∇Hi = ∆ωi

ui = −
∑
j∈Ni aij(yi − yj)

(28)

with Hi(δi,∆ωi) = 1
2Ti∆ω

2
i + Pmi(π − δi)− PMi

∑
j∈Ni cos(δi − δj) and

∇Hi =

[
−Pmi + PMi

∑
j∈Ni sin(δi − δj)

Ti∆ωi

]

Since the input is ui = −
∑
j∈Ni aijyi+

∑
j∈Ni aijyj , the model (28) can be rewritten

as 

[
δ̇i

∆ω̇i

]
=

[
0 1

Ti

− 1
Ti
−Di+Ai

T 2
i

]
∇Hi +

[
0
1
Ti

]
ūi

yi =
[
0 1

Ti

]
∇Hi = ∆ωi

ūi =
∑
j∈Ni aijyj

(29)

with Ai =
∑
j∈Ni aij . For the system (29), we check whether it satisfies the assumption

conditions. First, the equilibrium point is x̄i = (δei,∆ωei) and ∆ωei = 0, so Assumption
1 is satisfied. Second, it is obvious that (Ji − R̃i) is invertible. Therefore, the multi-
machine power system can be applied with the proposed method.

For the link dynamics, we design the augment system as follow: for i = 1, . . . , 5,{
ξ̇i = usi = yi

ysi = ∂Hei
∂ξi

= −ui
(30)

where

Hei = −ξi
∑
j∈Ni

aij∆ωj (31)

which is Hamiltonian function, bounded from below. So the augmented system is ex-
pressed as the following matrix form [12, 18]: δ̇i

∆ω̇i
ξ̇i

 =

 0 1
Ti

0
− 1
Ti
−Di+Ai

T 2
i

− 1
Ti

0 1
Ti

0



∂H̄i
∂δi
∂H̄i
∂∆ωi
∂H̄i
∂ξi

 (32)

where H̄i(xi, ξi) = Hi(xi) +Hei(ξi) and xi = [δi,∆ωi]T .
Next, the Casimir function is constructed for the link dynamics in the grid, which

are connected by the frequency (or angular velocity).
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Fi(xi, ξi) = ξi − Ci(xi)

which are constant along the trajectories of (32). Therefore, we can obtain

dFi
dt

= ξ̇i −
∂Ci
∂δi

δ̇i −
∂Ci
∂∆ωi

∆ω̇i

=
(

1− ∂Ci
∂δi

)
∆ωi −

∂Ci
∂∆ωi

∆ω̇i = 0.

Therefore, the Casimir function is designed as Fi = ξi − δi = ci, where constant ci
depends on the initial condition of source system (28). Here it can be chosen as ci = −δei
from ξi = δei + ci = 0.

Then, taking the Casimir function into the Hamiltonian functionHri(xi) = H̄i(xi, (δi−
δei)), we have

Hri(xi) =
1
2
Ti∆ω2

i + Pmi(π − δi)− PMi

∑
j∈Ni

cos(δi − δj)− (δi − δei)
∑
j∈Ni

aij∆ωj (33)

with [
∂Hri
∂δi
∂Hri
∂∆ωi

]
=
[
−Pmi + PMi

∑
j∈Ni sin(δi − δj)−

∑
j∈Ni aij∆ωj

Ti∆ωi

]
.

The augmented system (32) is reduced to the following matrix equation.[
δ̇i

∆ω̇i

]
=

[
0 1

Ti

− 1
Ti
−Di+Ai

T 2
i

][
∂Hri
∂δi
∂Hri
∂∆ωi

]
. (34)

Furthermore, in order to prove the stability of it, the Hamiltonian function of multi-
machine system is Hr =

∑N
i=1Hri(xi). It is easy to show that

Ḣr =
N∑
i=1

Ḣri(xi)

=
N∑
i=1

[
∂Hri
∂δi

∂Hri
∂∆ωi

] [ 0 1
Ti

− 1
Ti
−Di+Ai

T 2
i

][
∂Hri
∂δi
∂Hri
∂∆ωi

]

= −
N∑
i=1

(
Di +Ai

)
∆ω2

i ≤ 0.

Based on Theorem 3.3, we can verify that Hamiltonian function Hri has an extremum
at the equilibrium point x̄i = (δei, 0). In order to show Hri can qualifies as Lyapunov
function, it is necessary to confirm that x̄i is a minimum. Consider Hessian matrix of
Hri(xi), a straightforward calculation shows that

HESS(Hri(x̄i)) =
[
PMi

∑
j∈Ni cos(δei − δej) 0

0 Ti

]
.
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Hence, HESS is positive provided
∑
j∈Ni cos(δei−δej) > 0. It means that the equilibrium

of rotor angle δei(i = 1, . . . , N) lies in the range of 0◦ < δei < 90◦. Furthermore, it is
noticed that this condition is sufficient, but not necessary. Hence, more systems than
that satisfying this condition have a minimum in x̄i. Next, we can summarize the above
results in the following theorem.

Theorem 4.1. Consider the microgrid composed of 5 generators as Figure 4. The
dynamic equation is given as model (28), in which the transmission frequencies in grid
are regarded as the link dynamics. By using Theorem 3.3, under the action of controller,
the closed-loop system is globally stable and the outputs of generators can achieve
synchronization. Furthermore, if the equilibrium x̄i = (δei, 0) satisfies 0◦ < δei < 90◦(i =
1, . . . , N), then the Hamiltonian function Hr is qualified as a Lyapunov function for the
multi-machine power systems.

4.3. Simulation Verification

Fig. 4. Dynamic responses of multi-machine system in grid.

In order to confirm the effectiveness of design method, the simulation is done in
Matlab. The result is shown in Figure 4 with the parameters of power generation
systems as follows: the mechanical input power

(Pm1, Pm2, Pm3, Pm4, Pm5) = (2, 1, 0.8, 0.5, 1.2);

the maximum electric output power

(PM1, PM2, PM3, PM4, PM5) = (1.5, 1.1, 0.7, 0.9, 2);
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the inertia constant
(T1, T2, T3, T4, T5) = (3, 2, 1, 4, 3);

the damping coefficient

(D1, D2, D3, D4, D5) = (5, 3, 4, 2, 1).

Take the initial values as {(2, 1), (−1,−1), (0, 3), (−1, 2), (2,−2)}. The weighted Lapla-
cian of graph as Figure 3 is 

5 −2 0 0 −3
−2 8 −2 0 −4
0 −2 5 −2 −1
0 0 −2 5 −3
−3 −4 −1 −3 11


From the simulation, it is shown that the generators in network, starting from different

initial points, can achieve output synchronization. So the controllers are effective for the
multi-machine power systems. This example has proved the design method is feasible
for a class of practical systems.

5. CONCLUSIONS

This paper researched the output synchronization problem of MAPH systems, where
there existed link dynamics in the systems. The dynamics of links were modeled and
augmented into port-Hamiltonian systems. Then, the Casimir function was formulated
to shape the Hamiltonian energy function and reduce the model of MAPH systems.
It was shown that the output synchronization of MAPH systems with link dynamics
was achieved with the modified Hamiltonian function. The practical example of multi-
machine power systems proved the validity of the design method. In the future, the
saturation control problem of the class of systems can be investigated further.
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