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Abstract. Let L1 = —A + V be a Schrodinger operator and let Lo = (—A)2 + V?
be a Schrodinger type operator on R™ (n > 5), where V' # 0 is a nonnegative potential
belonging to certain reverse Holder class Bs for s > n/2. The Hardy type space H£2 is

defined in terms of the maximal function with respect to the semigroup {eﬂw?} and it
is identical to the Hardy space Hé , established by Dziubaiiski and Zienkiewicz. In this

article, we prove the LP-boundedness of the commutator Ry, = bRf — R(bf) generated by

the Riesz transform R = V2£;1/2, where b € BMOy(p), which is larger than the space

BMO(R™). Moreover, we prove that R; is bounded from the Hardy space Héz([R”) into
weak L1 . (R™).

weak

Keywords: commutator; Hardy space; reverse Holder inequality; Riesz transform;
Schrédinger operator; Schrodinger type operator
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1. INTRODUCTION
The Schrodinger type operator is denoted by
Lr=(—A)F+VE onR", n> 2k,

where k£ > 1 is a positive integer and V' (x) belongs to the reverse Holder class By
for s > n/2. When k =1, £, is exactly the Schrodinger operator. In this paper, we
focus on the operator Lo, which has been studied in [19], [18], [3], [12], [11] and [14].

The research has been supported by the National Natural Science Foundation of China
(No. 10901018, 11471018), the Fundamental Research Funds for the Central Universities
(No. FRF-TP-14-005C1), Program for New Century Excellent Talents in University and
the Beijing Natural Science Foundation under Grant (No. 1142005).
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Let T be a bounded operator on LP(R"™) for some p with p € (1, 00). In this paper,
we consider the commutator operator

Tp(f)(z) =Tf) () = b(z)T f(z), =eR",

where b belongs to a function space, which needs not be the classical BMO space.
See [4], [8] for the investigation of the commutator operator T}, on Euclidean spaces
R™ and [2], [5] on spaces of homogeneous type.

In recent years, many scholars have investigated the singular integral operators
related to Schrodinger operators £1 and their commutators, see, for example, [17],
[9], [7], [12], [1], [10], [16], [13], [15] and their references. Especially, when b € BMO,
Guo, Li and Peng [7] investigated the boundedness of the commutators of the Riesz
transform Vﬁl_l/ 2, Furthermore, Bongioanni, Harboure and Salinas investigated the
same problem when b belongs to a larger space than the BMO in [1]. In this paper
we denote the Riesz transform associated with the Schrédinger type operator Lo by
R = V3L, /2 A natural problem is to study the boundedness of the commutator
Ry, where b € BMOg(p). The aim of our paper is to investigate this problem.

A nonnegative locally L*-integrable function V (1 < s < c0) is said to belong to
By if there exists a constant C' > 0 such that the reverse Holder inequality

a1 (i v dx)”s <ok [ var)

holds for every ball B in R™. Obviously, B, C Bs,, if so > s1. But it is important
that the By class has the property of “self improvement”, that is, if V € By, then
V € Bsye for some € > 0.

We assume the potential V' € By, for gy > n/2 throughout the paper. We intro-
duce the auxiliary function o(x, V) = o(z) defined by

1 1
)= ——— =supsr: — Viy)dy<1ly, xeR”.
Q( ) m(x, V) T>Ig { 2 /B(x,r) (y) Y }

It is known that 0 < p(x) < oo for any = € R™ (from Lemma 2.2 in Section 2).

In order to study the endpoint estimates of the commutator R}, we recall some
basic facts for the Hardy spaces associated with the Schrodinger type operator.

The Schrodinger operator £; = —A + V generates a (Cp) semigroup {e~**1};0.
The maximal function with respect to the semigroup {e **1},5¢ is given by

M*1f(x) = sup [e "5 f(z).
>0

The Hardy space Hél (R™) associated with the Schrédinger operator £ is defined as
follows in terms of the maximal function mentioned above (cf. [6]).
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Definition 1.1. A function f € L'(R") is said to be in H} (R™) if the semigroup
maximal function M*! f belongs to L'(R™). The norm of such a function is defined
by

£y, = M5 £l o

Correspondingly, the Schrodinger type operator Lo = (—A)? + V2 also generates
a (Cp) semigroup {e~**2},5¢ (cf. [12]). The maximal function with respect to the
semigroup {e %2}, is given by

M*2 f(x) = sup e~ *£2 f(z)).
>0

The Hardy space H},_(R") associated with the Schrédinger operator Ly is defined as
follows.

Definition 1.2. A function f € L'(R") is said to be in H}_(R™) if the semigroup
maximal function M*2 f belongs to L'(R™). The norm of such a function is defined
by

£y, = M52 f| o

Theorem 1.1 in [3] implies that H}_(R™) = H} (R™) with equivalent norms.

Definition 1.3. Let 1 < ¢ < oo. A measurable function a is called a (1, g) ,-atom
associated to the ball B(z,r) if r < p(z) and the following conditions hold:

(1) suppa C B(z,r) for some x € R™ and r > 0,
(2) llallzaqany < Bz, 7)Mo,
(3) when r < o(2)/4, [4. a(z)dz = 0.

The space H}:l (R™) admits the following atomic decompositions.

Proposition 1.1. Let f € L'(R™). Then f € H} (R™) if and only if f can be

written as f = Y \ja;, where a; are (1, ¢),-atoms and ) |\;| < co. Moreover,
J J

1y, ~nt{ = 1},

J

where the infimum is taken over all atomic decompositions of f into H}:l—atoms.

Moreover, the function b in this paper belongs to the new BMO space BMOy/(p),
which is defined as follows (cf. Definition 1.4). It follows from [1] that the classical
BMO space is a subspace of BMOg(p).
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Definition 1.4. The class BMOgy(p) consists of the locally integrable functions
b which satisfy

1

r 0
1.2 —_— b(y) —bpldy < C(1+ —/= ) ,
( ) |B(J,‘,’I“)| B(x,r)| ( ) B| ( )

o(z)
for all z € R™ and r > 0, where 6 > 0 and b = (1/|B]) [ b(y) dy.

A norm for b € BMOgy(p), denoted by [b]g, is given by the infimum of the constants
satisfying (1.2), after identifying functions that differ upon a constant. If we let
6 = 0 in (1.2), then BMOg(p) is exactly the John-Nirenberg space BMO. Denote
BMO(0) = U BMOy(o).

0>0

Theorem 1.1. Let V € By, with qo > n/2, b € BMOu(0) and py such that
1/po =2/q0 — 2/n.
(i) If 1 < p < po, then
IRofllp < Coll 1l

for all f € LP.
(ii) If pj < p < oo with p{, = po/(po — 1), then

IRy fllp < Coll fllp,

for all f € LP, where
Rif(2) = b(z)R" f(z) — R* (bf) (), = € R™.
Moreover, Cy, < C[blg whenever b € BMOy(p).

Theorem 1.2. Suppose V € B, for some gy > n/2. Let b € BMOu(p). Then,
for any A > 0,

n ble n
o € R [Ry(N@] > M < O gy oy, [ € HE (RY),
where the constant C' > 0 is independent of f. Namely, the commutator R is
bounded from H}, (R™) into Ly, (R™).

weak

This paper is organized as follows. In this section, we set some notations and state
our main results. In Section 2, we collect some lemmas which we need. In Section 3,
we give the estimates of the kernels of R and R*. In Section 4, we prove the main
results of this paper.
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Throughout this paper, unless otherwise indicated, we will use C' to denote a pos-
itive constant, which is not necessarily the same at each occurrence and even can be
different in the same line, and which depends at most on the dimension n and the
constant in (1.1). By A ~ B we mean that there exists some constant C' > 0 such
that 1/C < A/B < C.

2. SOME LEMMAS

In this section, we collect some known results about the auxiliary function o(z),
which have been proved in [17].

Lemma 2.1. V € By, qo > n/2, is a doubling measure, i.e., there exists a con-
stant C > 0 such that

[ vowse[ v
B(z,2r) B(z,r)

Especially, there exist constants p > 1 and C' such that

/ V(y)dy < Ot / V(y) dy.
B(z,tr) B(z,r)

holds for every ball B(x,r) and t > 1.

Lemma 2.2. There exist constants C, kg > 0 such that

T — Y|\ o T — o/(ko+1)
é(l—i—lg(xjyl) k g%gc(l_‘_'g(xjm)k - '

In particular, o(y) ~ o(z) if |z —y| < Co(z).

Lemma 2.3.

V(y)dy C /
< V(y)dy.
/B(x,R) |z —y["=2 = R"2 /@ R (@)

Moreover, if V € B,,, then there exists C' > 0 such that

V(y)dy C /
< V(y)dy.
/B(x,R) lz —y["=t ~ R*" g R (@)
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Lemma 2.4. (1) For 0 <r < R < o0,

1 r\2-n/e0 1
Vig)dy < 0% 1 / V(y)dy
rn=2 /B(gc,r) @) <R) R"2 | p(s.R) )

and
1

rn72

/ V(y)dy ~ 1 ifand only if r ~ o(z);
B(z,r)

(2) There exist C > 0 and k{, > 0 such that

We also need the following propositions (cf. [6]).

Proposition 2.1. There exists a sequence of points {xj}7° , in R™ such that the
family of critical balls Qy = B(zk, o(zk)), k > 1, satisfies

(i) Uk =R",
k
(ii) there exists N such that for every k € N, [{j: 4Q; N4Qx # 0}| < N.

Proposition 2.2 ([1], Proposition 3). Let§ >0 and1 < s < co. If b € BMOy(p),
then there exists a constant C' > 0 such that

<ﬁ /B - bB|S>1/S < Cllo(1+ ﬁ))e

for all B = B(x,r), with x € R™ and r > 0, where ' = (ko 4+ 1)0 and ko is the
constant appearing in Lemma 2.2.

Lemma 2.5 ([1], Lemma 1). Let b € BMOgy(0), B = B(zo,7) and s > 1. Then
there exists a constant C > 0 such that

1 1/s
(et Lo b ot) - <

for all k € N, with ' as in Proposition 2.2.
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Given o > 0, we define the following maximal functions for g € L} (R"™) and
zeR™

1
My ag(z) = sup —/Ig|7
ceBeB,.. | Bl JB

1

M? Tr)= sup —/ —9gB|,
0.09(2) A Blg 95|

where B, o = {B(y,7): y € R", and r < ap(y)}.

Lemma 2.6 ([1], Lemma 2). For 1 < p < oo, there exist 8 and ~ such that if

{Qr}%2, is a sequence of balls as in Proposition 2.1, then there exists a constant
C > 0 such that

[ tasgr <o [l + e (g [ 191))

for all g € Li (R™).

loc

3. ESTIMATES FOR THE KERNELS OF R AND R*

In this section, we give some estimates for the kernels of R and R*. These two
operators have been investigated in [19], [18], [12], [3]. We denote by K and K* the
kernels of R and R*, respectively.

Lemma 3.1. Suppose V € By, qo > n/2. Assume that (—A)*u + (V(z)? +
AMu = 0 in B(zg,2R) for some zg € R™. If n/2 < qgo < 2n/(4 — j), there exists a k,
such that

1/t
</ |Vju|tdx> < CRM©)=201 4 Rm(xo,V)}F  sup |ul,
B(zo,R) B(z0,2R)
where j = 1,2 and 1/t =2/qo — (4 — j)/n.

Proof. We prove this lemma by a method similar to the one used in the proof of
Lemma 7 in [18]. Let ¢ € C§°(B(x, R)) such that ¢ = 1 on B(z9,3R/4),0 < ¢ < 1.
Also, ¢ satisfies |[V/¢| < CR™I. Denote by I'g(x,y, \) the fundamental solution of
(—A)? 4+ \. Following Theorem 5 in [12], we have

C

(3.1) | V'To(z,y, ) |< [ = g

where [ = 1,2, 3.
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Note that

/R To(z, 3, A) (—A)2 (u) (y) dy
_ / To(z, 1, M) ( = VA@)u(y)e(y) + 4AVu(y) - Vo(y)
+ 2A(u(y) Ap(y)) — 4V2u(y) - Ve(y) — 4Vu(y) - V(Ap(y))

— u(y)A%p(y)) dy.

Then by integration by parts and (3.1) we get, for z € B(zo, R/2),

. V2 () |u(y)lley)] ¢
Viu(z)| < C 2 qy + . u(y)|dy
| ()] B(zo.B) |a: _ yln—4+J Rntj B(zO,R)| ]

cc s ([ UL, L),

B(zo,R) (z0,R) 1T — Y|4 R

Then by the theorem on fractional integration, (1.1) and Lemma 2.4, we have

) l/t 2/q
B(z0,R/2) B(zo,R) B(wo,R)

1
< ORI sup  |u(z)| <m / V(r)dx + 1)
B(wo,R) R B(wo,R)

< CRQ”/q%(l + Rm(xo, V))ké sup |u(x)|,
B(:Co,R)

where 1/t =2/qo — (4 — j)/n. O

Lemma 3.2. If V € By, for qo > n/2, then we have:
(i) For every N, there exists a positive constant Cy such that
(3.2)

Cn(1+ |z — 2l/o(x)) " ( / Vi 1 )
n_2 n—g du+ 2 |
|z — 2| B(z,|z—z|/4) lu — 2| |z — 2|

Moreover, the last inequality also holds with o(x) replaced by o(z):

(ii) For every N and 0 < § < min{1,2 —n/qo}, there exists a positive constant Cy
such that

K" (2, 2)] <

Cnle — PP (1 + |z — 2|/ @) ™~

|(E _ Z|n72+5

2 1
X(/ VI g 2>7
B(z,|z—z|) lu — 2] |z — 2|

whenever |z —y| < |z — z|/16.

(33) |’C*($,Z) _K*(yvzﬂ <
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(iii) When qo > n, the term involving V can be dropped from inequalities (3.2)
and (3.3).

Proof. (i) The proof can be found in the proof of Lemma 9 in [12].

(ii) Fix x, z € R™ such that |z — z| < g(z) and let R = |x — 2|/8, 1/t = 1/q0 —3/n
and § =4 —2n/qo.

By the functional calculus, we have

1 0o
|’C*($,Z) _K*(yaz)l < _/ A71/2|V3F($,2,A) _Vgr(yaza/\”d)‘
TJo

We need to estimate |V2D'(x,z,\) — V2I'(y, 2z, \)| in advance. It follows from the
Morrey embedding theorem and Lemma 3.1 that

|V2D(x, 2, \) — V2T(y, 2, )|
1/t
< Clz —y/ /1 </ |V V2D (u, 2, \)|* du)
B(z,R)

< Clz —y|"*'RYI72{1 + Rm(z,V)}¥o  sup  |V2D(u,z, \)|.
u€B(z,2R)

Since I'(u, 2, A) = I'(z,u, \), we have V2I'(u, 2,\) = V2I'(2,u, \). Hence, by the
proof of Lemma 3.1 and Theorem 4 in [12],

sup |V§I‘(u,z,)\)|

w€B(x,2R)
< sup [VED(z,u, )]
u€B(x,2R)
< sup { Cn
weB@2r) | (L+ A2z —ul)N{1+ |z —ulm(z, V)}V

1 / V2(€) 1 }}
S Q. - d +
{ |z = ul"™* Jpe o)) 1€ — 2772 |z — uln2

Ox 1 v3(e)
< T T T sy e

1
Rn—2 ’

where we use the fact that 6R < |z — u| < 10R and |§ — z| ~ |z —£].
According to Lemma 2.2,

Cn
var M| <
uEg&I?QR)| 2L(u, 2, M) (1+>\1/232)N{1+Rm(% V)Y

1 V2(€) 1 }
- d .
. {R"4 /B(z,5R) € — z|n—2 o Rn—2
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Then we have
|V§F(x, Z, )‘) - ViF(y, 2 )‘)|
1/t
< Clz — y|17"/t (/ |VyV§F(u, z, N[ du)
B(z,R)

< Cla —y|'~*RY2{1 4 Rm(z, V) }Fo

(L MR {1+ Rm(e, VI AR Jpom €22 7 B2

< C‘NH]%_(”CL'—Z/VS 1 / V2(£) d£—|— 1
QA NZRONL + Rm(x, VIV L R Jpsr) € - 22 Rn=2 [

For k > 2,

/OO )\_1/2{1 + )\1/2R2}_k d) < %
0 TR

Then we obtain

K*(z,2) — K*(y, 2)| < AV2{1 4 AV2R2 R A
|
0
. =0 oy|0 1 2 1
, OnvR™°Jz yIN{ _4/ Lﬁ)_zd&r _2}
{1+ Rm(x,V)} R Jpsmy 1€ — 2| R"

Ol — yP° [ Ve 1
< .
S R (14 Bm(@ VP Upsm 16— © T RS

which concludes the proof of the lemma. O

Furthermore, we immediately have:

Lemma 3.3. If V € By, for gy > n/2, then we have:

(i) For every N, there exists a positive constant Cy such that
(3.4)

m@m<cwuw—wmm“</ P s )
) ~ B( .

|z — 2|2 slo—z|/a) U — 2|72 |z — z|?

Moreover, the last inequality also holds with o(x) replaced by o(z).
(ii) For every N and 0 < 0 < min{1,2 —n/qo}, there exists a positive constant Cy
such that

Cnlz =yl (14 |z — 2| /o(x))
|(E _ Z|n72+5

V2 1
“(J P )
B(z,|lz—2z|) |u_Z| |$—Z|

whenever |z — y| < |z — z|/16.

(3-5) K(z,y) = K(z,2)] <
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(iii) When qo > n, the term involving V can be dropped from inequalities (3.4)
and (3.5).

4. THE PROOF OF OUR MAIN RESULTS

Before we prove our main results, we need to give some necessary lemmas. The
method we adopted is similar to the one in [1].

Lemma 4.1. Let V(x) € By, for go > n/2,1/po = 2/q0—2/n, and b € BMOg(p).
Then, for any p{, < s < 00, there exists a constant C > 0 such that

1 . -
e /Q IR; f| < C[b]aynelngf(y)

for all f € Li (R™) and every ball Q = B(xo, o(x¢)). Additionally, if gqo > n, the
above estimate also holds for R instead of R*.

Proof. Let f € LP(R™) and Q = B(xo, o(xo)). First, we consider
(4.1) Ryf = (b=bo)R"f —R*(f(b—bq))

and therefore, we need to deal with the average on ) for each term. By Hoélder’s
inequality with s > p{, and Lemma 2.5,

ﬁ/@Kb—bQ)R*fl < (ﬁ/ |(b_bQ)|8/>1/S/(ﬁ/Q|R*f|5)1/g
< Clblo (|Q|/ |R*f|s>1/s

If we write f = f1 + f2 with f1 = f,,,, then by using the fact that R* is bounded
on L*(R™) with pj < s, we have

1 o 1/s 1 1/s .
<@/Q|R f1|> <C(|Q|/ |f|> < C inf M.1()

Now, for z € @ and using (3.2) in Lemma 3.2, we have

R o] = \ / K* (2,2)f(2) dz| < C(I(2) + To(a)),
|xo—2z|>20(x0)
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where

|f(2)]
I _ d
1(37) /z02|>29(950) |x - z|”(1 + |x - z|/g(x))N ’
and
(=) V()
I _ ——— —dudz.
2(1') /zoz>29(960) |J) _ Z|n—2 (1 + |J) _ Z|/Q($))N /B(z,|xz|/4) |U — Z|”—2 udz

To deal with I (z), noting that o(x) ~ o(zo) and |z — z| ~ |zo — 2|, we split into
annuli to obtain

£ (2)]
I (z) =
e /|xoz>29(xo) |z — 2" (1+ |z — z|/g(a:))N
27Nk

e ()] dz
;(2%(%0)) |0 — 2| <2* (o)
<Cinf M .
inf f(y)

For Ir(x), we assume n/2 < go < n because of (iii) in Lemma 3.2. Then, since = € Q,

V2
L(x) = / /()] _ / %dudz
|zo—z|>20(x0) |£L' — Z|”72(1 —+ |£L‘ — Z|/Q(:L‘)) B(z,|lz—z|/4) |u - Z|
2
<o 1) ./ Vi o,
|zo—2z|>20(x0) |J,‘Q — Z|"_2(1 + |J)Q — Z|/Q($)) B(z,4|zo—2|) |U' - Zl
9—Nk V2(u)
<C 7/ |f(2)] ——dudz
;21 (ng(xo))n—Q |wo—2|<2F+1po(z0) B(z,2k+3|z9—2]) |U' - Zln_Q
27Nk 5
<CY s | T2V X (a0 2 ata0):
kz;l (2% (20 )2 (02| <2+1 o(z0) B(z0,2%0(x0))

Let pj < s < d. First, using Holder’s inequality and the boundedness of the fractional
integral Zp: L* — L9%/2 with 1/s' = 2/qo — 2/n, we have

/ |F1Z2(V2X B(xo.2 (o))
|zo—z|>2%+1p(z0)

< HfXB(Io,2kQ(I0))||S|‘IQ(V2XB(I0,2kQ(I0)))”S'
< C”fXB(xO,Z’“g(xo))HSHVQXB(IO,T‘Q(IO))qu/Q'
For V € B, we get

2 1/q072
HV XB(?CO,Q’“.Q(:EO))”qo/Z = |:(/ qu) :|
B(IO:Q’“Q(IO))

1

9 2
< C(—=—————) |B(zo, 2% o(z 2/‘10(/ V)
(Bozramey) Bl Fewoe(f -
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1 2
= O (28 () ) 2/ 0 (/ V)
(2’“9(330))2"( (o)) B(20,2*o(z0))

2
< O(2" o(ap)) 22w (2’% / v)
B(zo,0(z0))

< C272kn+2n/q0+2knug(x0)72n+2n/qoQ(xO)Z(n72)

— Czkn(2u72+2/qo) Q(xO)Qn/qofél,

where in the second last inequality we have used Lemma 2.1 and the definition of p.

Therefore,
( CZ Qk x — 2kn(2u_2+2/(10)Q(xO)Qn/qo_4||fXB(x0,2’€g(xo))||s
k>1 0)
_ CQ(xO)Q—n+2n/QO—4 Z 9= Nk-+kn(2p—2+2/q0) HfXB(zo,zkg(zo)) ||S
k>1
_ C(Q(l‘o)fn+2n/q072 Z 9= Nk+kn(21—2+2/q0) ||fXB(x0,2kg(xo))Hs-
k>1

Noting that

1£ X B 2o 2% oo ls < C(2"0(0))™* yirelg M. f(y)

= C(2")"*(o(x0))"/* Inf Msf(y)

and using the fact that n/s’ = 2n/qp + 2, we have

(43)  Ialr) < Coplao)"/*=r2n/10=2 37 g NhthnCho2e2/0001/2) inf M, ()
Y
k>1

< Cinf My ,
Jnf )

where we choose N large enough such that the above series converges.

To deal with the second term of (4.1), we also split f = f1+ f2. Choose pj, < § < s
and denote v = §s/(s — 5). Using the boundedness of R* on L%(R™) (cf. [12]) and
using Holder’s inequality, we get

el ) i o)

<C inf M, ,
[Ble inf M. [f(y)
where in the last inequality we have used Proposition 2.2.
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For the remaining part we have to deal with

; £ (2)(b = bo)]
Li(x) = dz
(@) /;co—z|>29(:co) |z — 2|7 (1 + |x—z|/g(x))N

and

ho - /| 1/(2)(b = bo)] /( VW s

wo—2>20(z0) |x — 2|"2(1 + |& — z|/g(x))N Bz |o—z/4) [U = 2" 72

We start by observing that for 1 < § < s, v = 3s/(s — §), and using Lemma 2.5,
we obtain

(44)  [1F (0 = b@)XB (o, 2" 0(x0) 5 < 1F X B(r0,2% o)) 511 (b = bQ) X Bz 2+ 2(0)) [l

<
< C(2"olwo))"* inf M, f(y)k2" [Blo

For I (x), using (4.4) with 3 = 1, we have

2Nk

<C / b(z) —bol|f(2)| d=
> T gy M) bl f )

k>1

< O] emef ) D kRN
k>1

< Cltlo inf M.f(y)

To deal with I5(z), we proceed as in the estimate for Io(z) with f(b— bg) instead
of f and § and ¢ instead of s and qo, where 1/§' = 2/¢ — 2/n. Similar to (4.2) and
using also (4.4), we have

Iy(x) < Colag) ™ F2M/a72 3 7 o= NHERER=2221D) (b — bo) X (29 2% oo I

k>1
< Clble inf M, S (y) D kRENFOV R @u=22/TH5) < O], inf M, S ),
k21
where we choose N large enough to ensure that the above series converges. O

Remark 4.1. Similarly, we can conclude that the above lemma also holds if the
critical ball @ is replaced by 2Q).

Lemma 4.2. Let V(x) € By, for qo > n/2, and b € BMOy(0). Then, for any
s> p{, and v > 1, there exists a positive constant C' such that

45) [ @) K2~ bellf ()= < OBl inf Mo )

for all f and z,y € B = B(xo,r). Additionally, if gy > n, the above estimate also
holds for K instead of K*.
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Proof. Denoting Q = B(zo,v0(z0)), noting that o(x) ~ o(zo) and |z — z| ~
|zo — 2|, by (3.3), we need to deal with four terms

Y TICETPY
Q\2B ’

|£L‘0 _ Z|n+6

b= [ FEIE) bl

e |zo — 2| HOEN

_ 2
13:7,6/ Mdz/ LQL)_Qdudz7
o\eB |To—z[" B(zoAlzo—z|) U — 2|™

o= o) [ LIS 0] e OO

Ty — Z|n+6+Ni2 B(zo,4|x0—2]) |u - Z|n72

For I, by splitting into annuli, we have

1jo

L <X 27j(n+6)/
1<

=2 2’

[f1lb = bsl,
B

where jo is the least integer such that 270 > yo(xq)/r.
By Hoélder’s inequality and Lemma 2.5 we obtain for j < jo

/ 1f1b— | < Jlo[2 B| inf M, f(y).
2i B yEB

Then

. 5—3j8 .
I < C[b]eylgngf(y);ﬂ < Clblo inf M. f(y)-

To deal with I, splitting into annuli, using Lemma 2.5 and choosing N > ', we
have

I, < CQ(CL'O)N 0 27j(n+5+N)/ |f||b—bB|
TN+" ,_Z. 2iB
Jj=jo—1
. o(zo) N0 SN —3(6+N—-0")
< J
< Ol inf M. () (F) P
—jo—

. 5— 58 .
< Clblo inf Mof(y) > j277° < Clblo inf Mof(y).

Jj=jo—1
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Now we are in a position to consider the terms I3 and I,. Following (iii) in
Lemma 3.2, we may assume n/2 < ¢o < n. Therefore,

X2i+2 B

Jo
3 < Jr)i T — |12
I<Cry / (@) R b — bp|T(VE, L, )
2/ B

Jj=2

Jo
— Oy Z /2j3(2*](*n75+2))|f||b — bB|I2(Vx22j+zB)'
Jj=2

For pp < § < s, v =3s/(s—3§) and 2/q = 1/§ + 2/n, by using Lemma 2.5 and
7 < jo, we have

(4.6) /QjB(ij)(—n—éw) |f]1b— bB|Ig(VX22J.+QB)
101G = bs)xos sl 1T (V2,0 s

<
S 0j 11/3 . 2
< GBI o inf Mof @ (V2,2

Note that V' € B, for ¢ > go. From our assumption on 35, we get

1 2
2 2
107,00, Ml < ozl v)

< Clolo)) 22"/ gfrg) "~
= Clofao))~H2/1

for all j < jo. Therefore, due to the fact that 2n/q =n/5 +2 < n/s=2+n—2n/q
and 4 — 2n/q > 0, we have

Jo
I; < Clolo inf M f(y)r*~" Y |2/ BI/7277029) (g(g)) >/
Y y
j=2
2—n+n/s Jo

r Y joln/S)g(an+2i=5b)
Jj=2

= Cltlo inf Msf(y)W :

r 4—2n/q Jo . ~ .
= i i9j(n/3—n+2)9—jd
Cltls inf M.f(w)() ;;2 2

r 4-2n/q . Jo .
_ inf M, 9jo(4—2n/q) i9—30
C[b]aynelB f(y)(g(x0)> > J

< Clbl inf M./ (y).

=2
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Finally, for I, we have

A il NI IWCAUCI
4NV In 2N i BlE2\Wxgi42p

Jj=jo—1

(2]7«) n/s
< Ol inf M. (y Z j2 i 2+‘S+N>WII(V>?2J.+2B)IW27
Jj=jo—1

where in the last inequality we use (4.6) and j > jo.
Moreover,

2
H(VXZQJ+ZB)||¢]/2 g C(er)*2n+2n/q (/ V)
2iB
j 2]7' iy 2
= C( 2n+2n/q( T / V)
(27r) (Q(mo)) i
j 29 \ 2nu 2
— (i) 2nt2n/a (21 </ V>
(2r) (Q(x0)> [

22jnp,
Q(xO)Qnu
(2—2jn+2jn/q+2jnu)(TQn;L—2n+2n/q)
g ¢ Q(x0)2nﬂ+4*2” .

g C(2j)72n+2n/q7072n+2n/q,r2np, )2n74

Q(J?o

Then we have

N r2nu72n+2n/q+9’+n/§

. o(o)
I4 < C[b]e lnf Msf(y) Q(a?o)Q””+4+‘9'—2” Tn_2+N

2]0 +nj/§—2jn+2jn/q+25np

X Z (n—210+N)

Jj=jo—1

r ) 4+2np—2n+0'—N

Z j2I(0"+n/5+2n/q=3n+2—5—N)
o(xo)

Jj=jo—1

<cm%gMJ@(

< o inf M, f(y),

where in the last inequality we choose N large enough so that 4+2nu—2n+6'—N < 0.
For the case of ¢g > n, it is easier than for the case of n/2 < gy < n to complete

the proof. We omit the details. O
Now we are in a position to give the proof of the main results.

Proof of Theorem 1.1. We will prove part (ii), and (i) follows by duality. We
start with a function f € LP(R™) with p{ < p < oo. Due to Lemma 4.1 we have
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R;f € Ll .(R™). By using Lemma 2.6, Lemma 4.1 with pj, < s < p and Remark 4.1,

we have
IRifI < [ 1Mos(Ri PP
<c/| wa+czmm<@|/ WJO
<c[ g, ®ipp+c §1/|Mfw

By the finite overlapping property given by Proposition 2.1 and the boundedness of
M, in LP(R™), the second term is controlled by [b]g || f||5. Thus, we need to consider
the first term.

Our goal is to find a pointwise estimate of M} (R} f). Let z € R” and B =
B(xg, 1), with r < yo(zo) such that z € B. If f = f1 + fo, with f1 = fx2p, then we

write

Ryf=(0b—=0bp)R"f—R*(fi(b—bp)) —R*(f2(b—0bg)).

Therefore, we need to control the mean oscillation on B of each term, let us denote
them O7, Os and Os.
Let s > pj,, applying Holder’s inequality and Proposition 2.2 we get

2 *
asﬁﬁww@mﬂ

A ()

< ChleMR* f

where r/o(z9) < 7.
To estimate Os, let pj < § < s and v = §s/(s — §). Then,

02 < %/B IR*((b—bB)f1)]

C(ﬁ/}g IR*((b— bB)f1)|§)1/§
CG§/|w—@mﬁw
(wJ‘ >MG§LJWYN

ClbloMs f(x).
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For O3 we see that

1 . .
01 < gz [ [ IR (alb =) (1) = R* (b = b)) (2)] duaz

and the integral is clearly bounded by the left-hand side of (4.5). Therefore,
Lemma 4.2 asserts

03 < C[b]eMsf(x)

Therefore, we have proved that
M (RY )| < Colo (MR f + M f).

Since s < p, we conclude the desired result. (I

Proof of Theorem 1.2. For f € HEI(R"), we can write f = 3 Aja;, where

j=—o00

o0
each a; is a (1,¢),-atom and > |Aj| < 2[|f]|zL . Suppose that suppa; C B; =
j=—o0 1

B(xjarj) with r; < Q(xj). Write

o0

Rof(x) = Z Aj(b(x) = bp; )Ra;(x)xsp, (x)

Y NG - b)) Ra(@)xss)e (@)
{j: rj>o(z;)/4}

Y NG - ba)Ra(@)xss)e (@)
{j: rj<o(z;)/4}

_ R< i A (b(x) — bB,-)%‘) (z)

j=—00

Using Holder’s inequality, the (L%, L?)-boundedness of R with 1 < ¢ < pp and
Lemma 2.5,

1/q
106) b5, Ras s, s < ([ 10G0) = by |7 d2) IRyl
8

J

, 1/q
< c( [ )= a dx) e
8B

J

1 , O\
< c(—/ Ib(z) — b, |7 da:) < Clbls,
|Bj| Jss,
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since r; < o(x;). When we consider the term As(x), we note that o(z;) > r; >
o(z;)/4. Similar to the proof of Lemma 9 in [12], by Lemma 3.3 we obtain

|(b(z) — bB;)Ra;(x)x@sB;) ()|t (=m)

< C/ Iaj(y)|dy{/ K (z,y)||b(z) — bB]|d£L’}
Bi |z—z;|>8r;
N , 1/p}
< C/ la; (y)] dy{Z(/ K (z, )| da:)
b k=a \Y2F T iriKlo—a; | <2Fr;
1/?1
x (/ b(x) — b, " dx> }
|lz—z;|<2Fr;
3 CN k —n/p1
<C [ ay)ldyy D] ((2k)N(2 ) )
B; —
1 1/171 1/p
9kR.| b —bp.|Prd 2kB 1
X <|2kBj| 2’€Bj| (z) — bg,| a:) 12" B, | }

<cf |aj<y>|dy{§4((;J;N(zkrj)-n/m>[b]ak(l+ 2 v ]

<cf |aj<y>|dy{§4 bl } < Cll.

where we choose N sufficiently large such that the above series converges.

For As, by using the vanishing condition of a; and Lemma 3.3, we get

(b(.l?) — ij)Raj (x)X(BB])C (J,‘)HLl(Rn)
<c [ la) dy{ / K (2,9) - K (z,2,)|[b(z) - bBJ|dx}
B; |t—x;]|>8r;
Cn ly — ;]
<c [ i [ i
B oy 28r, (1 + |2 — yl/o(2))” o —y">"°

2
x </ %dz—f—%)%(m)—bgﬂdx}
B(z,|z—yl) |z — 2| |z -yl

- / ja; (o) dy{ Ty + ).

B

First of all, we need to obtain the following new estimate.

2/qo
|‘V2XB(IJ,2k+3TJ)||q0/2 = (/ Ve dz)
B(z;,2k+3r;)

2
< C(2k+3,rj)2n/%—2n (/ de)
B

(z5,25F37;)
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; 1 2
k+3.. \2n/qo—4
< O(2M5y, )20/ (_(2k+37~j)n—_2/3(m QHMde)

< O (2832004 (1 4 25430z, V) 2o,

where we use assumption (2) from Lemma 2.4.
Note that |z — z;| ~ |z — y|.

I < C/B la;(y)] dy

" i/ To(V2xortp, ) (x) z; —yl°1b—bp,|
k=172

v, la—ay|<2iir, (L4 |2 = 251/ 0(ay)) ¥/ RtV | — a2 — a;|°

dz
e 27(k+3)6(2k+3rj)27n/q'

= (14 28535 / gy )) Y ot

1 1/q
(BT e, P90 80) VP x0m)l
Y —x; j

< CiZ‘(kH)a (CANNEE)
= . N/(ko+1
= (1 + 26437 /()™ o)

1 1/q 0
(BT o, P 0910) IV

(2k+3rj)2fn/q'+2n/qof4

o0
< C 27(k+3)5
; (1 + 2k+3r; [ g(a;)) N/ o 1)

2k+4rj ) (ko+1)6
olz;)

[ble

x k;(l + (1+ 2837 m(x;, V) 20

< 022—(k+3)6[b]gk(2k+3rj)Q—n/q’+2n/qo—4(1 4 2k+37']‘m($]‘, V))Qké—N/(ko-‘rl)-‘r(ko—i-l)O
k=1

<OY_ 2" E D blek < Clols,
k=1

where we use the fact that 1/¢' = 2/qo — 2/n and we choose N > (2k{ + (ko +1)0) x
(ko +1). Second,

o0
- Cn
I, < C’/ a; d g /
? B; | j(y)l yk=1 2k+3rClo—x | <2k+ir; (1 + |J) - xj'/@(xj))N/(kO+1)

2, — yl’[b(a) — b,
=, "e — ;"

dz
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© 9k+3p \—N/(ko+1) 1
<CY (14 2 ) SR — Ib— bp, | dz
kzzl Q(xj) |B(l‘, 2k+3Tj)| |z—z;|<2k+4r; !
[ee] -
2k+3p \—N/(ko+1) 1
<C 2*(“3)5(14— ]) _ |b—bp,|dzx
; Q(xj) |B((E, 2k+4rj)| |z—z;|<2k+4r; !

oo 9k+4y. | (ko+1)8—N/(ko+1)
< 022—(k+3)5[b]9k(1 + @) )
Pt O\

< CZZ_(k+3)5+k(k°+l)9[b]9k‘ < C[b]g,
k=1

where we have also chosen N large enough such that the above series converges.
Therefore, if 7; < o(x;)/4, then

[(b(x) — bB;)Ra;(x)x ;) ()| L1 (rn) < Clble-

Thus, we have

A C Clble < ,
A U< 24, L < > : = .
HxER s Ad(2)] > 4}‘ < —||Ai(z)]|r < | A, i=1,2,3
Note that

1/4'
=5,y < () o) = dw) e

<|B | / — b, |7 dx>1/q/ <Cllo(1+ ng))e/ < C[ble,

where r; < g(z;). By the weak (1,1)-boundedness of R (see Theorem 2 in [12]), we
get

erw | Ay(z) H AH Z (b — b(z;) aj‘ < Z Al

j=—o00 j=—o00

Therefore,

Hz e R™: |[b,R]f(z)| > A} < Ci‘{xeﬂ%” (x)|>é}‘
LY

This completes the proof of Theorem 1.2. O

—

ble
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