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Abstract. We show that the index defined via a trace for Fredholm elements in a Banach
algebra has the property that an index zero Fredholm element can be decomposed as the
sum of an invertible element and an element in the socle. We identify the set of index
zero Fredholm elements as an upper semiregularity with the Jacobson property. The Weyl
spectrum is then characterized in terms of the index.
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1. Introduction

In [4] we defined, via a trace, an index for Fredholm elements relative to the

socle in a semisimple Banach algebra. We then succeeded in developing a fairly

complete theory for this trace index. One important result that evaded us was the

decomposition result for index zero Fredholm elements, stating that if the index of

a Fredholm element a is zero, then a = x + y with x invertible and y an element of

the socle.

This result is one of the fundamental results in Fredholm theory and holds for

the usual index for Fredholm operators and also for the index defined by Kraljević,

Suljagić and Veselić in [6] for Fredholm elements in a Banach algebra. We also

provided in [4] an alternative, simple proof of their result, but were not able to prove

it for the trace index. The aim of this short note is to fill this gap. The main

tool used in the proof is the Sinclair version of Jacobson’s density theorem (see [1],

Corollary 4.2.6).
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2. Preliminaries and notation

Throughout this paper we will consider A to be a complex Banach algebra with

identity 1. We denote by A−1 the group of invertible elements in A and by σ(a,A)

or simply σ(a) the spectrum of a ∈ A. By an ideal in A we mean a two sided ideal

in A. An ideal I in A is said to be inessential [1], page 106, if for every element a

in I its spectrum is either a finite set or a sequence converging to zero.

The radical of A will be denoted by RadA and A is said to be semisimple if

RadA = {0}. The set kh(I) is defined by kh(I) := {x ∈ A ; x + I ∈ Rad A/I}.

An element a 6= 0 in a semisimple Banach algebra A is called rank one if there exists

a linear functional fa on A such that axa = fa(x)a for all x ∈ A. For properties of

these elements we refer to [10].

A minimal idempotent in A is a nonzero idempotent p such that pAp is a division

algebra. Minimal idempotents are examples of rank one elements ([3], Proposi-

tion 31.3), and conversely if a is a rank one element, then p = fa(1)
−1a is a minimal

idempotent. The set of finite rank elements of A, denoted by F(A), is the set of

all a ∈ A of the form a =
n∑

i=1

ai with each ai a rank one element. In the case of

a semiprime Banach algebra F coincides with the socle of A (denoted by SocA),

which is defined to be the sum of the minimal ideals in A. By [10], Lemma 2.7, F(A)

is an ideal in A.

Let I be an ideal in a Banach algebra A. A function τ : I → C is called a trace

on I if

(TN) τ(p) = 1 for every rank one idempotent p ∈ I,

(TA) τ(a+ b) = τ(a) + τ(b) for all a, b ∈ I,

(TH) τ(αa) = ατ(a) for all α ∈ C and a ∈ I,

(TC) τ(ba) = τ(ab) for all a ∈ I and b ∈ A.

We shall refer to an ideal on which a trace is defined as a trace ideal.

Definition 2.1. Let I be an ideal in a Banach algebra A. We call an element

a ∈ A a Fredholm element relative to I if there exists an element a0 ∈ A such that

(i) aa0 − 1 ∈ I;

(ii) a0a− 1 ∈ I.

The set of all Fredholm elements relative to I is denoted by Φ(A, I).

Clearly, a ∈ Φ(A, I) if and only if ā = a + I is invertible in the quotient algebra

A/I. Also, A−1 ⊂ Φ(A, I) and Φ(A, I) is a multiplicative semi-group.

The following definition of an index function with the aid of a trace was suggested

by Grobler in [4]. We refer the reader to [4], Example 3.2, which motivated this

definition in the case of Fredholm operators on a Banach space.
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Definition 2.2. Let τ be a trace on the ideal I in A. We define the index

function ι : Φ(A, I) → C by

ι(a) := τ(aa0 − a0a) = τ([a, a0]) for all a ∈ Φ(A, I)

where a0 ∈ A satisfies aa0 − 1 ∈ I and a0a− 1 ∈ I.

That this function has all the required properties of an index was shown in [4].

Let a ∈ A. An idempotent p is called a left Barnes idempotent for a ∈ A if

aA = (1− p)A, and a right Barnes idempotent for a ∈ A if Aa = A(1− p). Also, for

a ∈ A we define the right and left annihilators, respectively, as the sets

Nr(a) := {x ∈ A ; ax = 0} and Nl(a) := {x ∈ A ; xa = 0}.

In general, a Barnes idempotent belonging to a given element a ∈ A is not unique

(see for instance the remark preceding [4], Corollary 3.15).

Definition 2.3 ([6], Definition 1.2). A nonempty subset R of A is called a reg-

ularity if

(1) a ∈ A and n ∈ N then a ∈ R ⇐⇒ an ∈ R;

(2) a, b, c, d are commuting elements of A and ac+bd = 1, then ab ∈ R ⇐⇒ a ∈ R

and b ∈ R.

A subset R ⊂ A is a regularity if it satisfies the condition

(P1) ab ∈ R ⇐⇒ a ∈ R and b ∈ R for all commuting elements a, b ∈ A.

For examples and unexplained notions on regularities we refer the reader to [5], [7].

The notion of a regularity can be weakened in the following way:

Definition 2.4 ([9], Definition 10). A nonempty subset R ⊂ A is called an upper

semiregularity if

(1) a ∈ A and n ∈ N then a ∈ R =⇒ an ∈ R,

(2) a, b, c, d are commuting elements of A and ac+ bd = 1, then a ∈ R and b ∈ R

implies ab ∈ R,

(3) R contains a neighbourhood of the identity element 1.

A semigroup R ⊂ A satisfies conditions 1 and 2 of Definition 2.4 and so any

semigroup containing a neighbourhood of 1 is an upper semiregularity.

Every regularity (semiregularity) R ⊂ A defines for every a ∈ A a spectrum

σR(a) ⊂ C by

σR(a) := {λ ∈ C ; a− λ /∈ R}.
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σR(a) is called the spectrum of a corresponding to R. Properties of semiregularities

can be found in [9] or [8], Section 23.

Finally, we will say that a regularity (semiregularity) R in A has the Jacobson

property if for every a, b ∈ A and nonzero λ ∈ C we have λ − ab ∈ R if and only if

λ−ba ∈ R. We can say equivalently that the spectrum σR has the Jacobson property

if σR(ab) \ {0} = σR(ba) \ {0} for all a, b ∈ A.

3. Main results

Let A be a semisimple Banach algebra and let I be a trace ideal in A satis-

fying SocA ⊂ I ⊂ kh SocA. We denote by Φ0(A, I) ⊂ Φ(A, I) the set of Fred-

holm elements of index zero. As stated in the introduction our main result is that

Φ0(A, I) = A−1+SocA, that is, every Fredholm element of index zero can be written

as the sum of an invertible element and an element in the socle of A.

We recall that two elements a and b in A are called similar if there exists an element

u ∈ A−1 such that a = u−1bu. As a first result we prove a condition enabling one to

find a decomposition for a Fredholm element. Both in this proof and the next one,

the reader will find similarities with the proof of [4], Theorem 3.19,

Theorem 3.1. Let A be a semisimple Banach algebra and let I be a trace ideal

in A satisfying SocA ⊂ I ⊂ khSocA. Let a ∈ Φ(A, I) and let p and q be left and

right Barnes idempotents for a, respectively. If p and q are similar, then a = x + y

with x ∈ A−1 and y ∈ SocA.

P r o o f. Let a ∈ Φ(A, I). Since p and q are Barnes idempotents for a, there

exists an element a0 ∈ A such that aa0 = 1− p and a0a = 1− q ([4], Theorem 3.11).

If p and q are similar, there exists an element u ∈ A−1 such that up = qu. Put

ū = up = qu and v = pu−1 = u−1q. Then vū = p and ūv = q. It follows from [4],

Proposition 3.10, that ū ∈ Nl(a)∩Nr(a) and that v ∈ Nl(a0)∩Nr(a0). We therefore

get

(a+ v)(a0 + ū) = 1− p+ p = 1 and (a0 + ū)(a+ v) = 1− q + q = 1.

Thus, a = (a+v)−v with a+v ∈ A−1 and v = pu−1 ∈ SocA, since SocA is an ideal

and p ∈ SocA. This completes the proof. �

Corollary 3.2. If a ∈ Φ(A, I) is such that it has similar associated Barnes

idempotents, then a ∈ Φ0(A, I).

P r o o f. Let a = x+ y ∈ A−1 + SocA. Then

ι(a) = ι(x + y) = ι(x) = 0.
�
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A result of Zemánek [2], Lemma 2.5, states that if the Barnes idempotents p

and q satisfy ‖p − q‖ < 1, then they are similar. Now ‖p − q‖ < 1 if and only if

‖aa0 − a0a‖ < 1 and so this condition implies by Corollary 3.2 that ι(a) = 0.

For a closed ideal I ⊂ A we call an element a, a Weyl element with respect to I if

a = x+ y ∈ A−1 + I. We denote by W(A, I) the set of Weyl elements with respect

to I. We then know from Theorem 3.1 that all elements in Φ(A, I) with similar

Barnes idempotents are Weyl elements and the proof of the corollary above can be

repeated to get the following corollary.

Corollary 3.3. Let I be a closed trace ideal in a semisimple Banach algebra A

such that SocA ⊂ I ⊂ kh SocA. Then W(A, I) ⊂ Φ0(A, I).

Our aim now is to reverse these inclusions. This brings us to our main theorem.

Theorem 3.4. Let A be a semisimple Banach algebra and let I be a trace ideal

in A with SocA ⊂ I ⊂ kh SocA. If a ∈ Φ(A, I) with ι(a) = 0, then a = x+ y with

x ∈ A−1 and y ∈ SocA, that is, Φ0(A, I) = A−1 + SocA.

P r o o f. Let a ∈ Φ(A, I) with ι(a) = 0. By [4], Corollary 3.13, Theorem 3.14,

ι(a) = τ(p)−τ(q) where τ(p) is equal to the cardinality of a maximal set of orthogonal

minimal idempotents in Nl(a) = Ap and similarly, τ(q) is equal to the cardinality

of a maximal set of orthogonal minimal idempotents in Nr(a) = qA. Let k be

the common cardinality and let {e1, e2, . . . , ek} be a maximal subset of orthogonal

minimal idempotents in Nl(a).

Then Nl(a) =
k∑

i=1

Aei and we can write p = x1e1+x2e2+ . . .+xkek. Likewise, let

{f1, f2, . . . , fk} be a maximal subset of orthogonal minimal idempotents in Nr(a).

Again, Nr(a) =
k∑

i=1

fiA and we can write q = f1y1+ f2y2+ . . .+ fkyk. Since the sets

{x1e1, x2e2, . . . , xkek} and {f1y1, f2y2, . . . , fkyk} are linearly independent, the Sin-

clair version of Jacobson’s density theorem ([1], Corollary 4.2.6), implies that there

exists an element u ∈ A−1 such that uxiei = fiyi for i = 1, . . . , k and consequently,

up = q.

Put ū = up = q and v = p = u−1q. Then ūv = up2 = up = q and vū =

u−1q2 = u−1q = p. In view of [4], Proposition 3.10, we have ū ∈ Nl(a) ∩Nr(a) and

v ∈ Nl(a0) ∩Nr(a0). It follows that

(a+ v)(a0 + ū) = 1− p+ p = 1 and (a0 + ū)(a+ v) = 1− q + q = 1.

Hence, a = (a + v) − v with a + v ∈ A−1 and v = p ∈ SocA. This completes the

proof. �
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Corollary 3.5. Let I be a closed trace ideal in a semisimple Banach algebra A

such that SocA ⊂ I ⊂ kh SocA. Then W(A, I) = Φ0(A, I).

We now link our result to the spectral theory:

Theorem 3.6. Let I be a closed trace ideal in a semisimple Banach algebraA such

that SocA ⊂ I ⊂ khSocA. Then W(A, I) = Φ0(A, I) is an upper semiregularity

with the Jacobson property.

P r o o f. Since Φ0(A, I) is an open semigroup containing 1 (see [4], Proposition 3.5

and Proposition 3.7), it is an upper semiregularity. Let 0 6= λ ∈ C and a, b ∈ A with

λ− ab ∈ Φ0(A, I). By [4], Theorem 3.20, we have

0 = ι(λ − ab) = ι(λ− ba)

and so λ− ba ∈ Φ0(A, I).

The converse follows by symmetry and we are done. �

A characterization of the Weyl spectrum follows immediately for the case we con-

sider.

Corollary 3.7. Let I be a closed trace ideal in a semisimple Banach algebra A

such that SocA ⊂ I ⊂ kh SocA. Then for every a ∈ A

σW (a) = {λ ∈ C ; λ− a is not Fredholm or ι(λ − a) 6= 0}.
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