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A characterization of complex L1-preduals

via a complex barycentric mapping

Petr Petráček, Jiř́ı Spurný

Abstract. We provide a complex version of a theorem due to Bednar and Lacey
characterizing real L1-preduals. Hence we prove a characterization of complex
L1-preduals via a complex barycentric mapping.
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1. Introduction

A complex (or real) Banach space X is called an L1-predual if its dual space X∗

is isometric to a complex (or real) space L1(X,S, µ) for a measure space (X,S, µ).
This important class of complex Banach spaces was studied e.g. in [6], [16], [9],
[17], [4] and recently in [15]. The second author’s contribution to this subject can
be found in [13], [11], [12] and [10].

An interesting characterization of real L1-preduals was given by Bednar and
Lacey in [2] (see also [8, p. 188]). To state their result we need to introduce a
notion of a barycentric mapping.

Let F denote either the field of real or complex numbers. Let K be a com-
pact topological space (all topological spaces will be considered as Hausdorff).
We denote by C(K, F) the space of all F-valued continuous functions on K. By
M(K, F) we denote the space of all F-valued Radon measures on K with the
weak* topology given by the duality (C(K, F))∗ = M(K, F). By a positive Radon
measure on K we mean a finite complete inner regular measure defined at least
on all Borel subsets of K. An F-valued measure µ is Radon if its variation |µ| is
Radon. By M1(K) we denote the set of all Radon probability measures on K.
An F-valued function on K is universally measurable if it is µ-measurable with
respect to every µ ∈ M1(K). If ϕ : K → L is a continuous mapping of a compact
space K to a compact space L and µ ∈ M(K, F), then ϕµ denotes the image
measure in M(L, F).
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40 Petráček P., Spurný J.

Definition 1.1. Let K be a compact space. Following [8, Definition 2, p. 188],
we call a mapping ρ : K → M(K, R), k ∈ K 7→ ρk ∈ M(K, R), a barycentric

mapping if it satisfies the following three conditions.

(a) For f ∈ C(K, R), let fρ(k) =
∫

K
f(t) dρk(t), k ∈ K. Then fρ is universally

measurable for each f ∈ C(K, R).
(b) We have ‖ρk‖ ≤ 1 for every k ∈ K.
(c) If ν1, ν2 ∈ M(K, R) are such that ν1(f) = ν2(f) for every f ∈ C(K, R)

satisfying f = fρ, then ν1(fρ) = ν2(fρ) for every f ∈ C(K, R).

If ρ is a barycentric mapping on a compact space K, we denote

Aρ = {f ∈ C(K, R) : f = fρ}.

(The term barycentric mapping does not appear in the original article [2] where
the term affine mapping is used instead.)

The characterization of real L1-preduals given in [2] as Theorems 3.5 and 3.7
(see also [8, Theorem 6, p. 188, and Theorem 8, p. 216]) then reads as follows:

Theorem 1.2. (a) Let K be a compact space and let ρ : K 7→ M(K, R) be

a barycentric mapping. Then the Banach space Aρ is a real L1-predual.

(b) Suppose X is a real L1-predual. Then there exists a compact space K

and a barycentric mapping ρ : K 7→ M(K, R) such that X is isometric

to Aρ.

The aim of our paper is to provide a complex version of Theorem 1.2. The proof
of the complex variant of Theorem 1.2(a) does not require any new ingredient
from its real version. However, for the sake of completeness we present it in
Section 3. The proof of the complex variant of assertion (b) in Theorem 1.2 is
more complicated and covers the rest of the paper.

2. Results

We start with the crucial definition of a complex barycentric mapping which
we use throughout the rest of the paper.

Definition 2.1. Let K be a compact space. A mapping ρ : K 7→ M(K, C),
k ∈ K 7→ ρk ∈ M(K, C), is called a complex barycentric mapping if it satisfies
the following conditions.

(a) For f ∈ C(K, C), let fρ(k) =
∫

K
f(t) dρk(t), k ∈ K. Then fρ is universally

measurable for each f ∈ C(K, C).
(b) We have ‖ρk‖ ≤ 1 for every k ∈ K.
(c) If ν1, ν2 ∈ M(K, C) are such that ν1(f) = ν2(f) for every f ∈ C(K, C)

satisfying f = fρ, then ν1(fρ) = ν2(fρ) for every f ∈ C(K, C).

If ρ is a complex barycentric mapping on K, we set

Aρ = {f ∈ C(K, C) : f = fρ}.

Now we can formulate the complex version of Theorem 1.2.
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Theorem 2.2. (a) Let K be a compact space and let ρ : K 7→ M(K, C) be

a complex barycentric mapping. Then the Banach space Aρ is a complex

L1-predual.

(b) Suppose X is a complex L1-predual. Then there exists a compact space

K and a complex barycentric mapping ρ : K 7→ M(K, C) such that X is

isometric to Aρ.

3. Proof of Theorem 2.2(a)

Proof of Theorem 2.2(a) follows that of Theorem 1.2(a) as presented in [8,
p. 188]. We thus need the following theorem (see [8, p. 162]).

Theorem 3.1. Suppose 1 ≤ p < ∞ and p 6= 2, let (T, Σ, µ) be a measure space

and let M be a subspace of Lp(µ, C). Then the following conditions on M are

equivalent.

(i) The space M is the range of a contractive projection on Lp(µ, C).
(ii) There is a measure space (Ω, Θ, λ) such that M is isometrically isomorphic

to Lp(λ, C).

Now we can prove assertion (a) of Theorem 2.2(a).

Proof of Theorem 2.2(a): Let ρ be a complex barycentric mapping and Aρ be
defined as above. We construct a contractive projection P on M(K, C) such that
the dual (Aρ)

∗ is isometric to the range Rng P of P . Since M(K, C) is isometric
to a space L1(λ, C) for a suitable measure space (Ω, Θ, λ) (see [8, Theorem 3,
p. 135]), the proof will follow from Theorem 3.1.

Let µ ∈ M(K, C) be given. The mapping f 7→
∫

K
fρ dµ is a continuous linear

functional on C(K, C) and thus there exists a uniquely defined Pµ ∈ M(K, C)
such that

∫

K

f dPµ =

∫

K

fρ dµ, f ∈ C(K, C).

Then the mapping P : µ 7→ Pµ is a linear mapping on M(K, C) with ‖P‖ ≤ 1.
We show that P is a projection. Let µ ∈ M(K, C) be given. If f ∈ Aρ, then

Pµ(f) = µ(fρ) = µ(f).

By (c) of Definition 2.1, Pµ(fρ) = µ(fρ) for each f ∈ C(K, C). Hence

(Pµ)(f) = µ(fρ) = (Pµ)(fρ) = (P (Pµ))(f), f ∈ C(K, C).

Hence PPµ = Pµ and P is a projection.
Now we claim that the restriction mapping

R : Rng P → (Aρ)
∗

is an isometric surjective isomorphism. To this end, let x∗ ∈ (Aρ)
∗ be given. By

the Hahn-Banach theorem there exists a measure ν ∈ M(K, C) extending x∗.
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Then R(Pν) = x∗, because, for f ∈ Aρ, we have

Pν(f) = ν(fρ) = ν(f) = x∗(f).

Hence R is surjective.
Let now µ ∈ Rng P be given. Obviously, ‖Rµ‖ ≤ ‖µ‖. To prove the converse

inequality, let ν ∈ M(K, C) be a Hahn-Banach extension of x∗ = Rµ = µ|Aρ
.

Then

(µ − Pν)(f) = µ(f) − ν(fρ) = µ(f) − ν(f) = 0, f ∈ Aρ.

Thus µ−Pν ∈ (Aρ)
⊥, which by virtue of (c) in Definition 2.1 gives (µ−Pν)(fρ) =

0 for every f ∈ C(K, C). Hence

(µ − Pν)(f) = (Pµ − PPν)(f) = (µ − Pν)(fρ) = 0, f ∈ C(K, C),

which yields µ = Pν. Thus

‖µ‖ = ‖µ − Pν + Pν‖ = ‖Pν‖ ≤ ‖ν‖ = ‖x∗‖ = ‖Rµ‖.

This concludes the proof. �

4. Proof of Theorem 2.2(b)

We start this section with the following definitions. If X is a Banach space, its
dual unit ball BX∗ will always be considered with the weak* topology.

Definition 4.1. Let X be a complex Banach space. A set B ⊂ BX∗ is called
homogeneous if αB = B for each α ∈ T (T is the unit circle in the complex plane).
A function f : B → C on a homogeneous set B ⊂ BX∗ is called homogeneous (see
e.g. [3, p. 53] or [8, p. 240]) if

f(αx∗) = αf(x∗), (α, x∗) ∈ T × B.

If f is a bounded Borel function defined on a homogeneous set B ⊂ BX∗ , we set

(hom f)(x∗) =

∫

T

α−1f(αx∗) dα, x∗ ∈ B,

where dα denotes the unit Haar measure on T.

The following lemma presents several useful observations about homogeneous
functions. For its extended version along with a proof see [10, Lemma 2.2].

Lemma 4.2. Let B ⊂ BX∗ be a homogeneous set and f be a bounded complex

Borel function on B. Then the following hold.

(a) The function hom f is homogeneous on B.

(b) The function f is homogeneous if and only if hom f = f .

(c) If f is continuous on B, then hom f is continuous on B.
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Definition 4.3. The mapping hom: C(BX∗ , C) → C(BX∗ , C) induces by virtue
of Lemma 4.2(c) a mapping (denoted likewise) hom: M(BX∗ , C) → M(BX∗ , C)
defined as

(homµ)(f) = µ(hom f), f ∈ C(BX∗ , C), µ ∈ M(BX∗ , C).

We recall that, given a Banach space X and x∗ ∈ BX∗ , the set M1

x∗(BX∗)
denotes the set of all probability measures representing x∗ (see [14, Definition 2.26]
or [8, Definition 1, p. 189]). For any µ ∈ M1(BX∗) there exists a unique point
x∗ ∈ BX∗ (the barycenter of µ) such that µ ∈ M1

x∗(BX∗). Further, M1

max
(BX∗) is

the set of all probability measures on BX∗ which are maximal with respect to the
Choquet ordering, see [14, Definition 3.57] or [8, p. 192]. A function f : BX∗ → F is
strongly affine if it is universally measurable and µ(f) = f(x∗) for each x∗ ∈ BX∗

and µ ∈ M1

x∗(BX∗). It is not difficult to show that any strongly affine (real or
complex) function is bounded (see [7, Satz 2.1]).

Lemma 4.4. Let f : BX∗ → C be bounded. Then f is strongly affine if and only

if both Re f and Im f are strongly affine.

Proof: Assume that f is strongly affine, x∗ ∈ BX∗ and µ ∈ M1

x∗(BX∗). Since
f is µ-measurable, it is easy to observe that both Re f and Im f are also µ-
measurable. Further

(Re f)(x∗) + i(Im f)(x∗) = f(x∗) = µ(f) = µ(Re f) + iµ(Im f),

and thus

(Re f)(x∗) = µ(Re f) and (Im f)(x∗) = µ(Im f).

Conversely, if both Re f and Im f are strongly affine, and x∗ ∈ BX∗ along with
µ ∈ M1

x∗(BX∗) are given, then f is µ-measurable. (This easily follows from the
fact that any open set in C is a countable union of rectangles.) Then

µ(f) = µ(Re f) + iµ(Im f) = (Re f)(x∗) + i(Im f)(x∗) = f(x∗).

Hence f is strongly affine. �

The following theorem is due to Effros (see [3, Theorem 4.3] or [8, Theorem 5,
p. 243]).

Theorem 4.5. Let X be a complex Banach space. Then the following assertions

are equivalent.

(a) X is a complex L1-predual.

(b) If µ1, µ2 ∈ M1

x∗(BX∗) and µ1, µ2 ∈ M1

max
(BX∗) for some x∗ ∈ BX∗ ,

then homµ1 = homµ2.

The preceding theorem enables us to define the following mapping.
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Definition 4.6. Let X be a complex L1-predual. For any bounded universally
measurable function f on BX∗ we define

Tf(x∗) = (homµ)(f), µ ∈ M1

x∗(BX∗) ∩M1

max
(BX∗), x∗ ∈ BX∗ .

The following lemma describes a simple, yet useful, property of the mapping T .

Lemma 4.7. Let X be a complex Banach space and f : BX∗ → C be a bounded

affine homogeneous function. Then there exists an element x∗∗ ∈ X∗∗ such that

f(x∗) = x∗∗(x∗), x∗ ∈ BX∗ . If f is moreover continuous, the element x∗∗ is

from X .

Proof: Given a function f as in the premise, it is easy to check that a mapping
x∗∗ : X∗ → C defined as

x∗∗(x∗) =

{

f(x∗), x∗ ∈ BX∗ ,

f
(

x∗

‖x∗‖

)

, x∗ ∈ X∗ \ BX∗ ,

is a linear form on X∗. Since it is bounded on BX∗ , it is an element of X∗∗.
If f is moreover continuous, x∗∗, as a weak∗ continuous function on BX∗ , is an

element of X (see [5, Corollary 3.94]). �

The following class of functions plays an important role in our proof. (We
refer the reader to [18] for a more detailed study of descriptive classes of sets on
topological spaces.)

Definition 4.8. Let K be a topological space. We call a set H ⊂ K resolvable

(or an H-set) if for every nonempty A ⊂ K there exists a relatively open set
U ⊂ A such that U ⊂ H or U ⊂ A \ H . We refer the reader to [18] for more
information on resolvable sets.

Let Σ2(Hs(K)) denote the family of all countable unions of resolvable sets in K.
If f : K → L is a function with values in a topological space L, f is Σ2(Hs(K))-
measurable if f−1(U) ∈ Σ2(Hs(K)) for every open U ⊂ L.

The following lemma collects some important properties of Σ2(Hs(K))-mea-
surable functions which we will use later on.

Lemma 4.9. Let K be a compact topological space and f : K → C.

(a) The function f is Σ2(Hs(K))-measurable if and only if both Re f and

Im f are Σ2(Hs(K))-measurable.

(b) If f is Σ2(Hs(K))-measurable, it is universally measurable.

(c) The family of all Σ2(Hs(K))-measurable mappings from K to C is a com-

plex vector space closed with respect to uniform convergence.

(d) If f : K → R is semicontinuous, it is Σ2(Hs(K))-measurable.

Proof: (a) If f is Σ2(Hs(K))-measurable, both its real and imaginary part are
clearly Σ2(Hs(K))-measurable. Conversely, let its real and imaginary part be
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Σ2(Hs(K))-measurable and let U ⊂ C be an open set. We can cover U by a count-
able family of open rectangles, i.e., sets of the form V1×V2, where V1, V2 are open
sets in R. Since

f−1(V1 × V2) = {x ∈ K : Re f ∈ V1} ∩ {x ∈ K : Im f ∈ V2},

and resolvable sets form an algebra, f is Σ2(Hs(K))-measurable.
(b) This follows from [14, Proposition A.118].
(c) The assertion follows by a standard argument.
(d) The proof follows from [14, Proposition A.122 and Theorem A.121]. �

Definition 4.10. Let X be a complex Banach space and let β ∈ T. We define
an affine homeomorphism σβ on BX∗ as

σβ : x∗ 7→ βx∗, x∗ ∈ BX∗ .

Lemma 4.11. Let X be a complex Banach space and let β ∈ T. Then the

following assertions hold.

(a) If x∗ ∈ BX∗ and µ ∈ M1

x∗(BX∗), then σβµ ∈ M1

βx∗(BX∗).

(b) If µ ∈ M1

max
(BX∗), then σβµ ∈ M1

max
(BX∗).

Proof: (a) If f : BX∗ → C is a continuous affine function, then f ◦ σβ is also
affine and continuous. Thus

(σβµ)(f) = µ(f ◦ σβ) = (f ◦ σβ)(x∗) = f(βx∗).

(b) Let f be a convex continuous function on BX∗ and let f∗ denote its upper

envelope (see [8, p. 191] or [14, Definition 3.17]). We aim to show that

(4.1) (f ◦ σβ)∗ = f∗ ◦ σβ .

To this end we consider an arbitrary point x∗ ∈ BX∗ . By [8, Lemma 1, p. 191]
(see also [14, Lemma 3.21]), there exists a measure ν ∈ M1

x∗(BX∗) such that

ν(f ◦ σβ) = (f ◦ σβ)∗(x∗).

This, in combination with (a) gives us

(f ◦ σβ)∗(x∗) = ν(f ◦ σβ) = (σβν)(f) ≤ f∗(βx∗).

To show the other inequality find a positive measure ν ∈ M1

βx∗(BX∗) such that

ν(f) = f∗(βx∗).

Using (a) we obtain

f∗(βx∗) = ν(f) = (σ−1

β ν)(f ◦ σβ) = (σβ−1ν)(f ◦ σβ)

≤ (f ◦ σβ)∗(β−1(σβ(x∗))) = (f ◦ σβ)∗(x∗)
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and (4.1) holds true.
By (4.1) and [8, Theorem 2, p. 193] (see also [14, Theorem 3.58 and Corol-

lary 3.59]), we have the following equalities for the measure µ

σβµ(f∗) = µ(f∗ ◦ σβ) = µ((f ◦ σβ)∗) = µ(f ◦ σβ) = σβµ(f).

Again by [8, Theorem 2, p. 193] or [14, Theorem 3.58 and Corollary 3.59] we get
that σβµ is maximal. This finishes the proof. �

Lemma 4.12. Let X be a complex L1-predual. The function Tf is homogeneous

and strongly affine for any function f ∈ C(BX∗ , C).

Proof: First we show that Tf is affine. Let x∗
1
, x∗

2
∈ BX∗ and λ ∈ [0, 1] be given.

Let µi ∈ M1

x∗

i
(BX∗) ∩ M1

max
(BX∗), i = 1, 2. It follows from [8, Theorem 2(4),

p. 193] that maximal measures form a cone in M(BX∗ , R). Hence the measure
µ = λµ1 +(1−λ)µ2 is maximal. It obviously represents the point λx∗

1
+(1−λ)x∗

2
.

Thus

Tf(λx∗
1

+ (1 − λ)x∗
2
) = (homµ)(f) = µ(hom f) = (λµ1 + (1 − λ)µ2)(hom f)

= λµ1(hom f) + (1 − λ)µ2(hom f)

= λ(homµ1)(f) + (1 − λ)(homµ2)(f)

= λTf(x∗
1
) + (1 − λ)Tf(x∗

2
),

and Tf is affine.
Furthermore, Tf is homogeneous. Let x∗ ∈ BX∗ and β ∈ T be given. If

µ ∈ M1

x∗(BX∗) ∩M1

max
(BX∗), by Lemma 4.11 we have

σβµ ∈ M1

βx∗(BX∗) ∩M1

max
(BX∗).

Hence

Tf(βx∗) = (homσβµ)(f) = (σβµ)(hom f) = µ((hom f) ◦ σβ)

= βµ(hom f) = βTf(x∗).

Finally, we show that Tf is strongly affine. To this end it is enough to prove
that Tf is Σ2(Hs(BX∗))-measurable. Indeed, assuming that this is the case, both
Re Tf and ImTf are Σ2(Hs(BX∗))-measurable affine functions by Lemma 4.9(a).
Thus both Re Tf and ImTf are fragmented functions by [14, Theorem A.121].
It follows from [14, Theorem 4.21] that both these functions are strongly affine.
Thus by Lemma 4.4, Tf is strongly affine.

To show that Tf is Σ2(Hs(K))-measurable it is enough by Lemma 4.9(c) to
construct a sequence of Σ2(Hs(K))-measurable functions converging uniformly
to Tf . Let ε > 0 be given. We write hom f = a+ib, where a, b are real continuous
functions on BX∗ . By [1, Proposition I.1.1] (see also [14, Proposition 3.11]), for
ε > 0 there exist convex continuous functions a1, a2, b1, b2 on BX∗ such that

‖a− (a1 − a2)‖ + ‖b − (b1 − b2)‖ < ε.
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Let x∗ ∈ BX∗ be fixed. By [1, Proposition I.3.5] (see also [14, Lemma 3.22]) there
exist measures µj , νj ∈ M1

x∗(BX∗) ∩M1

max
(BX∗), j = 1, 2, such that

µ1(a1) = a∗
1
(x∗), ν1(b1) = b∗

1
(x∗), µ2(a2) = a∗

2
(x∗), ν2(b2) = b∗

2
(x∗).

Furthermore,

µj(a) + iµj(b) = µj(a + ib) = µj(hom f) = (homµj)(f)

= Tf(x∗) = (hom νj)(f) = νj(hom f)

= νj(a) + iνj(b), j = 1, 2.

This gives us

(4.2) µ1(a) = µ2(a) = ν1(a) = ν2(a) and µ1(b) = µ2(b) = ν1(b) = ν2(b).

Thus we get

(4.3)
|Tf(x∗) − [(a∗

1
(x∗) − a∗

2
(x∗)) + i(b∗

1
(x∗) − b∗

2
(x∗))]|

≤ |µ1(a) − (a∗
1
(x∗) − a∗

2
(x∗))| + |µ1(b) − (b∗

1
(x∗) − b∗

2
(x∗))|.

For the first term in (4.3) we have by (4.2) and [8, Lemma 1, p. 191]

ε + a∗
1
(x∗) − a∗

2
(x∗) ≥ ε + µ2(a1) − µ2(a2) = ε + µ2(a1 − a2) ≥ µ2(a)

= µ1(a) ≥ µ1(a1 − a2) − ε = µ1(a1) − µ1(a2) − ε

≥ a∗
1
(x∗) − a∗

2
(x∗) − ε,

i.e., |µj(a) − (a∗
1
(x∗) − a∗

2
(x∗))| ≤ ε, j = 1, 2. Since µ1(b) = νj(b), j = 1, 2, by

(4.2), we similarly obtain

|µ1(b) − (b∗
1
(x∗) − b∗

2
(x∗))| = |ν1(b) − (b∗

1
(x∗) − b∗

2
(x∗))| ≤ ε.

Hence ‖Tf − ((a∗
1
− a∗

2
) + i(b∗

1
− b∗

2
))‖ ≤ 2ε.

Then the functions a∗
1
− a∗

2
and b∗

1
− b∗

2
, being differences of upper semiconti-

nuous functions, are by virtue of Lemma 4.9(d) and Lemma 4.9(c) Σ2(Hs(BX∗))-
measurable. Hence Tf is in the uniform closure of the space of all Σ2(Hs(BX∗))-
measurable functions, and thus it is also Σ2(Hs(BX∗))-measurable by Lem-
ma 4.9(c). This concludes the proof. �

Lemma 4.13. Let X be a complex L1-predual. Let ν1, ν2 ∈ M(BX∗ , C) be such

that ν1(f) = ν2(f) for all f ∈ C(BX∗ , C) with f = Tf . Then

ν1(Tf) = ν2(Tf), f ∈ C(BX∗ , C).

Proof: Let ν1, ν2 be as in the premise. We denote µ = ν1 − ν2 and decompose

it as µ =
∑

3

k=0
ikakµk, where, for k = 0, . . . , 3, µk ∈ M1(BX∗) and ak ≥ 0. Let
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x∗
k ∈ BX∗ be the barycenter of µk, k = 0, . . . , 3. For any x ∈ X (considered as

a function on BX∗) we have Tx = x, and thus

0 = µ(x) =

3
∑

k=0

ikakµk(x) =

3
∑

k=0

ikakx(x∗
k) = x

(

3
∑

k=0

ikakx∗
k

)

.

Thus
∑

3

k=0
ikakx∗

k = 0.
Let f ∈ C(BX∗ , C) be given. By Lemma 4.12, Tf is strongly affine and ho-

mogeneous. Since it is obviously bounded, by Lemma 4.7 there exists x∗∗ ∈ X∗∗

such that x∗∗ = Tf on BX∗ . Thus we obtain

µ(Tf) =

3
∑

k=0

ikakµk(Tf) =

3
∑

k=0

ikakTf(x∗
k)

= x∗∗

(

3
∑

k=0

ikakx∗
k

)

= x∗∗(0) = 0.

The proof is finished. �

Proposition 4.14. Let X be a complex L1-predual. The mapping ρ : BX∗ 7→
M(BX∗ , C) defined as

ρ : x∗ 7→ homµ, x∗ ∈ BX∗ , µ ∈ M1

x∗(BX∗) ∩M1

max
(BX∗),

is a complex barycentric mapping and X is isometric to Aρ.

Proof: We need to verify the properties (a)–(c) from Definition 2.1. The pro-
perty (b) follows directly from the definitions since the mapping µ 7→ homµ does
not increase norm. To see that (a) holds, notice that for any f ∈ C(BX∗ , C)
the function fρ = Tf is strongly affine by Lemma 4.12, and thus universally
measurable. Regarding (c), one only needs to consult Lemma 4.13.

It remains to show that X is isometric to Aρ. Since

Aρ = {f ∈ C(BX∗ , C) : Tf = f} = {x|BX∗
: x ∈ X}

by Lemma 4.12 and 4.7, the proof is finished. �
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