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The Rothberger property on Cp(Ψ(A), 2)

Daniel Bernal-Santos

Abstract. A space X is said to have the Rothberger property (or simply X is
Rothberger) if for every sequence 〈 Un : n ∈ ω 〉 of open covers of X, there exists
Un ∈ Un for each n ∈ ω such that X =

⋃
n∈ω

Un. For any n ∈ ω, necessary
and sufficient conditions are obtained for Cp(Ψ(A), 2)n to have the Rothberger
property when A is a Mrówka mad family and, assuming CH (the Continuum
Hypothesis), we prove the existence of a maximal almost disjoint family A for

which the space Cp(Ψ(A), 2)n is Rothberger for all n ∈ ω.
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1. Introduction

There are two classical combinatorial strengthenings of Lindelöfness, namely
the Menger and Rothberger properties.

Definition 1.1 ([7]). A space X is said to have the Rothberger property (or simply
X is Rothberger) if for every sequence 〈 Un : n ∈ ω 〉 of open covers of X , there
exists Un ∈ Un for each n ∈ ω such that X =

⋃
n∈ω Un.

Definition 1.2 ([4]). A space X is said to have the Menger property (or simply
X is Menger) if for every sequence 〈 Un : n ∈ ω 〉 of open covers of X , there exists
a sequence 〈Fn : n ∈ ω 〉 of finite sets such that

⋃
n∈ω Fn is a cover of X and

Fn ⊂ Un for each n ∈ ω.

These two properties were introduced in studies of strong measure zero and
σ-compact metric spaces, respectively. Obviously every Rothberger space has the
Menger property.

The author and Á. Tamariz-Mascarúa prove the following in [3, Theorem 8.7].

Theorem 1.3 (CH). There is a mad family A such that Cp(Ψ(A), 2) is Menger.

This paper is motivated by Problem 8.8 in [3] which asks the following:

Problem 1.4 ([3]). Let A be the mad family from Theorem 1.3. Is Cp(Ψ(A), 2)n

Menger for every n ≥ 2?

In this article, we will give a characterization for Cp(Ψ(A), 2)n to have the
Rothberger property for any n ∈ ω. Finally, we answer positively Problem 1.4.
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2. Notation and preliminaries

For spaces X and Y , Cp(X, Y ) is the subspace of Y X consisting of the con-
tinuous functions from X to Y (i.e., C(X, Y ) with the topology of the pointwise
convergence). As usual, ω is the discrete space of all non-negative integers and,
for each n ∈ ω, n denotes the subspace of ω consisting of all integers strictly less
than n. For any space X and every n-valued continuous function f : X → n,
supp(f) denotes the set {x ∈ X : f(x) 6= 0}. The following three basic properties
about Rothberger spaces will be useful.

Proposition 2.1 ([5]).

(a) Every closed subspace of a Rothberger space is Rothberger.

(b) The continuous image of a Rothberger space is Rothberger.

(c) The countable union of Rothberger spaces is Rothberger.

3. The Rothberger property on Cp(Ψ(A), 2)

An almost disjoint family of subsets of ω is an infinite collection A of subsets of
ω such that each element in A is infinite, and if A, B ∈ A are different, |A∩B| < ω.
An almost disjoint family A is maximal if it is not a proper subfamily of another
almost disjoint family.

For a maximal almost disjoint family (mad) A on ω, Ψ(A) is the space whose
underlying set is ω ∪A and its topology is given by the following: All points of ω
are isolated, and a neighborhood base at A ∈ A consists of all sets {A} ∪ A \ F
where F is a finite subset of ω.

Definition 3.1. A mad family A is Mrówka if the Stone-Čech compactification
βΨ(A) of Ψ(A) coincides with the one-point compactification of Ψ(A).

For a mad family A, n ∈ ω and j ∈ n, we define the subspace

nσj
m(A) = {f ∈ Cp(Ψ(A), n) : ∀i ∈ n (i 6= j → |f−1(i) ∩A| ≤ m)}

of Cp(Ψ(A), n). It is not hard to see that this subspace is closed.

If A is a Mrówka mad family, then

Cp(Ψ(A), n) =
⋃

m∈ω,j∈n

nσj
m(A).

For every m ∈ ω and i, j ∈ n, nσi
m(A) is homeomorphic to nσj

m(A). We are going
to write nσm(A) instead of nσ0

m(A). Thus, by Proposition 2.1(a) and 2.1(c):

Lemma 3.2. Let A be a Mrówka mad family. Then Cp(Ψ(A), n) is Rothberger

if and only if nσm(A) is Rothberger for each m ∈ ω.

For each n ∈ ω, we define

Q(n) = {g ∈ nω : |supp(g)| < ω}.
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With this terminology we introduce the following property, which is a generaliza-
tion when a mad family concentrates on [ω]<ω (see [6], the original definition is
equivalent to the case ⋆2

m(A)). For a mad family A and m, n ∈ ω, we define

⋆n
m(A): For each open subset U of nω containing Q(n), there exists a countable

subset B ⊂ A such that {g ∈ nω : ∃ ĝ ∈ Cp(Ψ(A), n)( ĝ ↾ ω = g ∧
supp(ĝ) ∩ A ∈ [A \ B]m)} ⊂ U .

The following generalized version of Theorem 4.2 in [6] holds:

Lemma 3.3. Let A be a mad family and let n, m ∈ ω. If nσm(A) is Lindelöf,

then the property ⋆n
k (A) is satisfied for all k ≤ m.

Proof: Suppose that the property ⋆n
k (A) is false for some k ≤ m. So, we may

fix an open set U in nω, a pairwise disjoint family {yα : α ∈ ω1} ⊂ [A]k and
{gα : α ∈ ω1} ⊂ Cp(Ψ(A), n) such that

(i) Q(n) ⊂ U , and
(ii) for each α ∈ ω1, supp(gα) ∩ A = yα and gα ↾ ω /∈ U .

Since {yα : α ∈ ω1} are pairwise disjoint, any complete accumulation point of
{gα : α ∈ ω1} must be in nσ0. Moreover, since U contains Q(n), there is an open
subset V in nσm(A) containing nσ0 such that f ↾ ω ∈ U for each f ∈ V . Indeed,
we can fix a set F consisting of finite functions such that U = {g ∈ nω : ∃ s ∈
F(s ⊂ g)}, then V = {f ∈ nσm(A) : ∃ s ∈ F(s ⊂ f)} is the required open set.

Thus, the open set V contains any complete accumulation point of {gα : α ∈
ω1} and, by (ii), gα /∈ V for each α ∈ ω1. This means that the uncountable
set {gα : α ∈ ω1} has no complete accumulation points in nσm(A), which is
a contradiction. �

We need the following terminology for proof of the next lemma. For each n ∈ ω
and each t ∈ ωn we define

nσt(A) = {f ∈ Cp(Ψ(A), n) : ∀i ∈ n (i 6= 0 → |f−1(i) ∩ A| ≤ t(i))}.

The order � will denote the lexicographic order on ωn. Observe that if m ∈ ω
and t ∈ ωn is the constant function m, then nσm(A) = nσt(A).

Lemma 3.4. Let A be a mad family, n ∈ ω, t0 ∈ ωn and p =
∑n−1

i=1
t0(i). If

⋆n
p (A) is satisfied and nσt(A) is Rothberger for every t ≺ t0, then nσt0(A) is

Rothberger.

Proof: We adapt, for our purposes, the respective part of the proof of Lemma 8.2
from [3]. The proof depends on two claims.

Claim 1. If V is an open subset of nσt0(A) containing nσt(A) for each t ≺ t0,
then there is a countable subset B ⊂ A such that for any f ∈ nσt0(A) \ V , there
is 1 ≤ i < n with f−1(i) ∩ B 6= ∅.
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Indeed, since nσ0(A) is a countable subset of nσt0(A), we can choose a sequence
of finite functions sk ⊂ Ψ(A) × n such that nσ0(A) ∩ [sk] 6= ∅ and nσ0(A) ⊂⋃

k∈ω [sk] ⊂ V , where [sk] = {f ∈ nσt0(A) : sk ⊂ f} for each k ∈ ω. Note that

s−1

k (i) ⊂ ω for each 1 ≤ i < n and, thus, sk ↾ A is the constant zero function for
each k ∈ ω. We define the open subset U of nω to be

⋃
k∈ω{f ∈ nω : sk ↾ ω ⊂ f}

and note that Q(n) ⊂ U . Let B′ be a countable subset of A given by ⋆n
p (A). Let

B = B′ ∪
⋃

k∈ω(s−1

k (0)∩A) and let us show that B is the required set in Claim 1.
Let f ∈ nσt0(A) \ V and x = supp(f) ∩ A. Since V contains nσt(A) for each
t ≺ t0, |x| = p. Now, we proceed by contradiction supposing that x ∩ B = ∅.
Then supp(f) ∩ A ∈ [A \ B]p. By the choice of B, f ↾ ω ∈ U and consequently,
there is k ∈ ω such that sk ↾ ω ⊂ f ↾ ω and, since x∩s−1

k (0) = ∅ and sk ↾ A is the
constant zero, sk ⊂ f . Thus f ∈ V , which is impossible, and Claim 1 is proved.

Claim 2. If V is an open subset of nσt0(A) containing nσt(A) for each t ≺ t0, then
there is a countable set Y ⊂ Cp(Ψ(A), n) such that nσt0 (A) \ V ⊂

⋃
h∈Y,t≺t0

(h +
nσt(A)), where h + nσt(A) = {h + g : g ∈ nσt(A)} and addition is taken mod n.

Let B be the countable subset of A given by Claim 1. Fix 1 ≤ j < n and let rj(i)

be 1 if i = j and 0 otherwise. Define Y =
⋃n−1

j=1
{f ∈ nσrj

(A) : f−1(j) ∩ A ⊂ B}.
It is not difficult to show that Y is countable.

Let f ∈ nσt0(A) \ V . By the choice of B, there is 1 ≤ i < n and an element
a ∈ f−1(i) ∩ B. We define a continuous function g : Ψ(A) → n as follows

g(x) =

{
n − i, if x ∈ a ∪ {a};

0, otherwise.

If t1 ∈ ωn is defined as t1(l) = t0(l) if l 6= i and t1(i) = t0(i)−1, we obtain that
f +g ∈ nσt1(A) and t1 ≺ t0. Let h ∈ Cp(Ψ(A), n) be the additive inverse function
of g. Observe that h ∈ Y . Consequently, f = h+(f +g) ∈

⋃
h∈Y,t≺t0

(h+nσt(A)).
This concludes the proof of Claim 2.

Now, we are going to finish the proof of our lemma. Let 〈 Uk : k ∈ ω 〉 be
a sequence of covers of nσt0(A) and {Pt : t � t0} a partition of ω into infinite sets.
Since for each t ≺ t0,

nσt(A) is Rothberger, there is, for each k ∈ Pt, Uk ∈ Uk such
that nσt(A) ⊂

⋃
k∈Pt

Uk = Vt. Then, by Claim 2, there is a countable set Y such

that nσt0(A) \
⋃

t≺t0
Vt ⊂

⋃
h∈Y,t≺t0

(h + nσt(A)). Since nσt(A) is homeomorphic

to h + nσt(A) for each h ∈ Y and Y is countable,
⋃

h∈Y,t≺t0
(h + nσt(A)) is

Rothberger (see Proposition 2.1(c)). Then, there is Uk ∈ Uk for each k ∈ Pt0 such
that

⋃
k∈Pt0

Uk covers nσt0(A) \
⋃

t≺t0
Vt. Therefore, the sequence {Uk : k ∈ ω}

is the required choice. �

Theorem 3.5. Let A be a Mrówka mad family and n ∈ ω. Then, the following

statements are equivalent.

(a) Cp(Ψ(A), 2)n is Lindelöf.

(b) Cp(Ψ(A), 2)n is Menger.

(c) Cp(Ψ(A), 2)n is Rothberger.
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(d) The property ⋆2
n

m (A) is satisfied for all m ∈ ω.

Proof: First observe that Cp(Ψ(A), 2)n is homeomorphic to Cp(Ψ(A), 2n). The
implication (d) → (c) is proved as follows. By Lemma 3.2 it is sufficient to show
that 2

n

σm(A) is Rothberger for each m ∈ ω. Indeed, fix m ∈ ω and tm ∈ ω2
n

to
be the constant function m. Since 2

n

σ0 is countable, this is Rothberger, and if we
suppose that 2

n

σt is Rothberger for each t ≺ t0 for some t0 � tm, by hypothesis
and Lemma 3.4, 2

n

σt0(A) is Rothberger. By induction, 2
n

σtm
(A) = 2

n

σm(A) is
Rothberger.

The implications (c) → (b) and (b) → (a) are clear. Finally, if Cp(Ψ(A), 2n)

is Lindelöf, the closed subspace 2
n

σm(A) of Cp(Ψ(A), 2n) is Lindelöf for each

m ∈ ω and, by Lemma 3.3, ⋆2
n

m (A) is satisfied for each m ∈ ω. This proves that
(a) → (d). �

As was shown in [6], every finite power of Cp(Ψ(A), 2) is Lindelöf, where A is
the family constructed in Theorem 1.3. Theorem 3.5 then gives a positive answer
to Problem 1.4:

Theorem 3.6 (CH). There is a Mrówka mad family A such that Cp(Ψ(A), 2)n

is Rothberger for each n ∈ ω.

A space X is ω-monolithic if nw(cl(A)) ≤ ω for any A ⊂ X with |A| ≤ ω. In [2]
it is proved that if Cp(X, 2) is Lindelöf for a countably compact ω-monolithic X
then it is Rothberger. E.A. Reznichenko showed that assuming MA+¬CH, every
compact zero-dimensional space X with Cp(X, R) Lindelöf is ω-monolithic (see
[1, IV.8.6, IV.8.16]). This leads to the conjecture that, perhaps, strong covering
properties of a suitable Cp(X, Y ) might imply ω-monolithicity of X . One might,
for example, ask whether Reznichenko’s result can be generalized.

Question 3.7. Assume X is a zero-dimensional compact space and that
Cp(X, 2)n is Rothberger for every n ∈ ω. Does this imply that X is ω-monolithic?

The following theorem gives a consistent counterexample.

Theorem 3.8 (CH). There is a Mrówka mad family A such that Cp(βΨ(A), 2)n

is Rothberger for every n ∈ ω.

Proof: It is sufficient to observe that the function

φ2
n

m : 2
n

σm(A) → {g ∈ Cp(βΨ(A), 2n) : ∀i ∈ 2n(i 6= 0 → |g−1(i) ∩A| ≤ m)}

defined by φ2
n

m (f) = f̃ is an onto continuous function where f̃ is the continuous
extension of f : Ψ(A) → 2n to βΨ(A). �
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