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A continuum X such that C(X)

is not continuously homogeneous

Alejandro Illanes

Abstract. A metric continuum X is said to be continuously homogeneous pro-
vided that for every two points p, q ∈ X there exists a continuous surjective
function f : X → X such that f(p) = q. Answering a question by W.J. Chara-
tonik and Z. Garncarek, in this paper we show a continuum X such that the
hyperspace of subcontinua of X, C(X), is not continuously homogeneous.
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1. Introduction

A compactum is a compact metric space with more than one point. A conti-

nuum is a connected compactum. A mapping is a continuous function. A conti-
nuum X is said to be continuously homogeneous if for every two points p, q ∈ X ,
there exists a surjective mapping f : X → X such that f(p) = q.

For the continuum X , we consider its hyperspaces:

2X = {A ⊂ X : A is closed and nonempty}, and

C(X) = {A ∈ 2X : A is connected}.

The hyperspace 2X is endowed with the Hausdorff metric H [5, Definition 2.1].

In [2] W.J. Charatonik and Z. Garncarek studied conditions for a hyperspace
being continuously homogeneous. They showed that the hyperspace 2X is con-
tinuously homogeneous for an arbitrary continuum X , and the hyperspace C(X)
is such if either X is locally connected or X contains an open subset with un-
countably many components. They also asked [2, Question 2] the question: Is the
hyperspace C(X) continuously homogeneous for every continuum X?

In this paper we answer the question by Charatonik and Garncarek in the
negative by showing a continuum Z such C(Z) is not continuously homogeneous.
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2. The example

Given a connected subset S of a continuum X we denote by C(S) the set
of subcontinua of X that are contained in S. A compactum X is connected im

kleinen at a point p ∈ X provided that for each open subset U of X such that
p ∈ U , there exists a subcontinuum M of X such that p belongs to the interior of
M and M ⊂ U . The set of points p in X such that X is not connected im kleinen
at p is denoted by N(X). We will use the following well known lemma [4, p. 28].

Lemma 1 ([4, p. 28]). Let f : X → Y be a surjective mapping between compacta.

Then N(Y ) ⊂ f(N(X)).

The following lemma can be easily proven by using Theorems 2 and 3 of [4].

Lemma 2. Let X be a compactification of the ray [0,∞) with remainder R and

S = X − R. Then:

(a) N(C(X)) ⊂ C(R),
(b) if C(R) ⊂ clC(X)(C(S)), then N(C(X)) = C(R) − {R}.

In order to construct the continuum Z, we use ideas in the paper [1]. We
construct a sequence of continua Z1, Z2, . . . in the Hilbert cube Q = [−1, 1]∞

in such a way that the complexity of the set of points of non connectedness im
kleinen of Zn+1 is bigger than the one of Zn. In this way, we obtain that there is
not a mapping from C(Zn) onto C(Zn+1). Each Zn+1 is a compactification of the
ray [0,∞) with remainder Zn and Zn is a retract of Zn+1. The continua Zn can
also be defined in the Euclidean plane but the description is more complicated.

We start by defining Z1 = {(0, t, 0, 0, . . .) ∈ Q : t ∈ [−1, 1]} and Z2 = Z1 ∪ S1,
where S1 = {(t, sin(1

t
), 0, 0, . . .) ∈ Q : t ∈ (0, 1]}.

Define g1 : [0,∞) → [0, 1]2 by g1(t) = ( 1
1+t

, sin(1 + t)).

Inductively, suppose that n ≥ 2, Zn ⊂ [−1, 1]n × {0} × {0} × . . . has been
constructed, Zn = Zn−1 ∪ Sn−1, Zn−1 ∩ Sn−1 = ∅, Zn is a compactification
of [0,∞) with remainder Zn−1, hn−1 : [0,∞) → Sn−1 is a homeomorphism,
hn−1 = gn−1 × {0} × {0} × . . ., where gn−1 : [0,∞) → [−1, 1]n is an embedding.
Define k : [0,∞) → [0,∞) by

k(t) =

{

(2m + 1)(t − 2m), if t ∈ [2m, 2m + 1] for some m ≥ 0,

(2m + 1)(2 + 2m − t) if t ∈ [2m + 1, 2m + 2] for some m ≥ 0.

Define gn : [0,∞) → [−1, 1]n+1 by gn(t) = (gn−1(k(t)), 1
t+1 ) and define hn :

[0,∞) → Q by

hn = gn × {0} × {0} × . . . .

Clearly, hn is an embedding. Let Sn = Im hn and Zn+1 = Zn∪Sn. Then Zn+1

is a compactification of [0,∞) with remainder Zn and the natural projection
rn : Zn+1 → Zn, defined on Sn by (gn−1(k(t)), 1

t+1 , 0, . . .) 7−→ (gn−1(k(t)), 0, . . .),
is a retraction.
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Claim 1. For each n ∈ N, C(Zn) ⊂ clC(Zn+1)(C(Sn)).

We prove Claim 1. Clearly, C(Z1) ⊂ clC(Z2)(C(S1)). Take n ≥ 2 and take
a subarc J of Sn−1, let L be a subinterval of [0,∞) such that hn−1(L) = J .
Let M ∈ N be such that L ⊂ [0, 2M + 1]. Then for each m > M , there exists
a subinterval Jm of [2m, 2m + 1] such that k(Jm) = L. Thus, the sequence
{hn(Jm)}∞

m=M+1 is a sequence in Sn such that limhn(Jm) = J . We have shown
that C(Sn−1) ⊂ clC(Zn+1)(C(Sn)) for every n ≥ 2.

Notice that C(Z2) ⊂ clC(Z2)(C(S1)) ⊂ clC(Z3)(C(S2)), so

C(Z2) ⊂ clC(Z3)(C(S2)).

Since Z3 = Z2 ∪ S2 is a compactification of the ray [0,∞) with remainder
Z2, C(Z3) = C(Z2) ∪ C(S2) ∪ {A ∈ C(Z3) : Z2 ⊂ A}. It is easy to prove that
C(S2) ∪ {A ∈ C(Z3) : Z2 ⊂ A} ⊂ clC(Z3)(C(S2)). Since C(Z2) ⊂ clC(Z3)(C(S2)),
we conclude that C(Z3) ⊂ clC(Z3)(C(S2)). By the fact we prove two paragraphs
above, clC(Z3)(C(S2)) ⊂ clC(Z4)(C(S3)). Hence, C(Z3) ⊂ clC(Z4)(C(S3)).

With a similar procedure as the one in the previous paragraph, Claim 1 can
be proved for each n ≥ 4.

The following claim is a consequence of Claim 1 and Lemma 2.

Claim 2. For each n ∈ N, N(C(Zn+1)) = C(Zn) − {Zn}.

Given a subset A of Q and n ∈ N let A(n) = {( 1
2n

+ a

8n
, 0) ∈ Q×[−1, 1] : a ∈ A}.

Now, we construct the continuum Z as a subspace of the space Q × [−1, 1].
For each n ≥ 2, let Xn = Zn(n). Then Xn is a compactification of the ray [0,∞)
with remainder Zn−1(n) and Xn − Zn−1(n) = Sn−1(n). Let pn be the end point
of the ray Sn−1(n). Choose an arc Ln ⊂ Q × [0, 1] with end points pn and pn+1

such that Ln − {pn, pn+1} ⊂ Q × (0, 1], limLn = {θ}, where θ = (0, 0, . . .), and
Ln ∩ (

⋃

{Lm : m ≥ 2 and m 6= n}) ⊂ {pn, pn+1}. Let σn : Zn → Xn be the
homeomorphism given by σn(z) = ( 1

2n
+ z

8n
, 0).

Finally, define Z = {θ} ∪ (
⋃

{Xn : n ≥ 2}) ∪ (
⋃

{Ln : n ≥ 2}). Then Z is
a continuum.

The following claim follows from Theorems 2 and 3 of [4].

Claim 3. N(C(Z)) =
⋃

{N(C(Xn)) : n ≥ 2}.

We are going to show that C(Z) is not continuously homogeneous. Suppose the
contrary. Then there exists a continuous surjective mapping f : C(Z) → C(Z)
such that f({θ}) = {p2}. Let U = C(L2 ∪ X2). Since L2 ∪ X2 contains p2 in its
interior, U is a neighborhood of {p2} in C(Z). Since lim(Xn ∪ Ln) = {θ}, there
exists M ≥ 3 such that

f(C({θ} ∪ (
⋃

{Xn : n > M}) ∪ (
⋃

{Ln : n > M}))) ⊂ U .

Let Y = (
⋃

{Xn : n ∈ {2, . . . , M}}) ∪ (
⋃

{Ln : n ∈ {2, . . . , M}}). Notice that
N(C(Y )) =

⋃

{N(C(Xn)) : n ∈ {2, . . . , M}}.
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By Claim 3 and Lemma 1,

N(C(XM+1)) ⊂ N(C(Z)) ⊂ f(N(C(Z))) =
⋃

{f(N(C(Xn))) : n ≥ 2}.

Since
⋃

{f(C(Xn)) : n > M} ⊂ C(L2 ∪ X2) and C(L2 ∪ X2) ∩ C(XM+1) = ∅,
we have that

N(C(XM+1)) ⊂
⋃

{f(N(C(Xn))) : n ∈ {2, . . . , M}}.

Since {pM+1} = BdZ(XM+1), we have that the function t : Z → XM+1 defined
by

t(z) =

{

z, if z ∈ XM+1,

pM+1, if z /∈ XM+1,

is a retraction. Then the mapping T : C(Z) → C(XM+1) given by T (A) = t(A)
(the image of A under t) is a retraction. Then the inclusion N(C(XM+1)) ⊂
⋃

{f(N(C(Xn))) : n ∈ {2, . . . , M}} implies that

N(C(XM+1)) ⊂
⋃

{T (f(N(C(Xn)))) : n ∈ {2, . . . , M}}.

Consider the homeomorphism σ−1
M+1 : C(XM+1) → C(ZM+1) that sends each

A ∈ C(XM+1) to σ−1
M+1(A) (the image of A under σ−1

M+1). Then

σ−1
M+1(N(C(XM+1))) = N(C(ZM+1)) = C(ZM ) − {ZM}.

Since rM : ZM+1 → ZM is a retraction, the mapping r : C(ZM+1) → C(ZM )
given by r(A) = rM (A) (the image of A under rM ) is a retraction.

Thus, the function g = σ−1
M+1◦T ◦f : C(Z) → C(ZM+1) is a surjective mapping

such that

N(C(ZM+1)) = σ−1
M+1(N(C(XM+1))) ⊂ g(

⋃

{N(C(Xn)) : n ∈ {2, . . . , M}}).

Hence, C(ZM ) − {ZM} ⊂ g(
⋃

{N(C(Xn)) : n ∈ {2, . . . , M}}). Thus,

C(ZM ) − {ZM} ⊂ r(g(
⋃

{N(C(Xn)) : n ∈ {2, . . . , M}}))

= r(g(
⋃

{σn(N(C(Zn))) : n ∈ {2, . . . , M}}))

= r(g(
⋃

{σn(C(Zn−1) − {Zn−1}) : n ∈ {2, . . . , M}}))

⊂ r(g(
⋃

{σn(C(Zn−1)) : n ∈ {2, . . . , M}})) ⊂ C(ZM ).

Since, r(g(
⋃

{σn(C(Zn−1)) : n ∈ {2, . . . , M}})) is compact, we obtain that

C(ZM ) = r(g(
⋃

{σn(C(Zn−1)) : n ∈ {2, . . . , M}})).
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Consider the compactum W = C(Z1) ⊕ . . . ⊕ C(ZM−1), which is a disjoint
union of the spaces C(Z1), . . . , C(ZM−1) with the sum topology. Since the
subsets σ2(C(Z1)), . . . , σM (C(ZM−1)) of Z are compact and pairwise disjoint,
⋃

{σn(C(Zn−1)) : n ∈ {2, . . . , M}} is homeomorphic to W .
We have shown that C(ZM ) is the image under a continuous function ϕ of the

compactum W .
By Lemma 1, N(C(ZM )) ⊂ ϕ(N(W )). By Claim 2, this implies that

C(ZM−1) − {ZM−1} ⊂ ϕ(∅ ⊕ (C(Z1) − {Z1}) ⊕ . . . ⊕ (C(ZM−2) − {ZM−2}))

= ϕ((C(Z1) − {Z1}) ⊕ . . . ⊕ (C(ZM−2) − {ZM−2}))

⊂ ϕ(C(Z1) ⊕ . . . ⊕ C(ZM−2)).

By the compactness of ϕ(C(Z1) ⊕ . . . ⊕ C(ZM−2)), we have that

C(ZM−1) ⊂ ϕ(C(Z1) ⊕ . . . ⊕ C(ZM−2)).

Since the retraction rM−1 : ZM → ZM−1 induces a retraction RM−1 : C(ZM )
→ C(ZM−1), we obtain that

C(ZM−1) = RM−1(ϕ(C(Z1) ⊕ . . . ⊕ C(ZM−2))).

This shows that C(ZM−1) is the image under a continuous function ϕ1 of the
compactum C(Z1) ⊕ . . . ⊕ C(ZM−2).

Repeating this argument, we conclude that C(Z2) is a continuous image of the
continuum C(Z1). This is a contradiction since C(Z1) is locally connected and
C(Z2) is not locally connected. Therefore, C(Z) is not continuously homogeneous.
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Circuito Exterior, Cd. Universitaria, México, 04510, D.F.
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