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Abstract. The Cauchy problem for the system of linear generalized ordinary differential
equations in the J.Kurzweil sense dx(t) = dA0(t) · x(t) + df0(t), x(t0) = c0 (t ∈ I) with
a unique solution x0 is considered. Necessary and sufficient conditions are obtained for
a sequence of the Cauchy problems dx(t) = dAk(t) · x(t)+ dfk(t), x(tk) = ck (k = 1, 2, . . .)
to have a unique solution xk for any sufficiently large k such that xk(t)→ x0(t) uniformly
on I . Presented results are analogous to the sufficient conditions due to Z.Opial for linear
ordinary differential systems. Moreover, efficient sufficient conditions for the problem of
well-posedness are given.

Keywords: linear system of generalized ordinary differential equations in the Kurzweil
sense; Cauchy problem; well-posedness; Opial type necessary condition; Opial type sufficient
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1. Statement of the problem and basic notation

Let A0 ∈ BVloc(I;R
n×n), f0 ∈ BVloc(I;R

n) and t0 ∈ I, where I ⊂ R is an

arbitrary interval non-degenerated to a point. Let x0 be a unique solution of the

Cauchy problem

dx(t) = dA0(t) · x(t) + df0(t) for t ∈ I,(1.1)

x(t0) = c0,(1.2)

where c0 ∈ R
n is a constant vector.
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Along with the Cauchy problem (1.1), (1.2), we consider the sequence of Cauchy

problems

dx(t) = dAk(t) · x(t) + dfk(t),(1.1k)

x(tk) = ck(1.2k)

(k = 1, 2, . . .), where Ak ∈ BVloc(I;R
n×n), fk ∈ BVloc(I;R

n), tk ∈ I and ck ∈ R
n

(k = 1, 2, . . .).

In the paper we establish necessary and sufficient and efficient sufficient condi-

tions for the Cauchy problem (1.1k), (1.2k) to have a unique solution xk for every

sufficiently large k such that

lim
k→∞

xk(t) = x0(t) uniformly on I.(1.3)

The obtained necessary and sufficient criterion has the Opial type form considered

in [20] for the case of ordinary differential equations and it differs from analogous ones

given in [6], [3], [8], [23] for linear generalized differential systems. The Opial type

sufficient condition for the well-posedness is obtained in [19] for linear generalized

differential equations in the Banach space.

Some well-posedness problems for the linear and nonlinear boundary value prob-

lems for generalized differential equations are studied in [9], [4], [10], [17], [16], [15],

[19], [23] (see also the references therein).

Analogous questions for the Cauchy problem and linear and nonlinear boundary

value problems for systems of ordinary differential equations are studied in [7], [13],

[12], [14], [18], [20] (see also references therein).

The idea of the theory of generalized ordinary differential equations belongs to

Kurzweil (see [17], [16], [15]). In [17] he investigated the well-posedness question

for the Cauchy problem for linear ordinary differential systems and constructed an

example of a sequence of problems whose sequence of solutions (absolutely contin-

uous) converges to the discontinuity function (it is evident that the convergence is

not uniform). Kurzweil constructed some types of integral and differential equations

(so-called generalized ordinary differential equations) such that the above mentioned

discontinuous “limit” function is a solution of some generalized equation. Moreover,

from the theorem on the well-posedness (in the pointwise sense) of the Cauchy prob-

lem for generalized differential equations the above convergence process follows as

a particular case.

To a considerable extent, the interest in the theory of generalized ordinary differ-

ential equations has also been stimulated by the fact that this theory enables one to

investigate linear ordinary differential, impulsive and difference equations from a uni-

fied point of view; in particular, these equations of various types can be rewritten in
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form (1.1). Moreover, the convergence conditions for difference schemes correspond-

ing to systems of ordinary differential and impulsive equations can be obtained from

the results on the well-posedness (in the uniform sense) of the corresponding prob-

lems for systems of generalized ordinary differential equations (see [5], [2], [1], [11],

[21], [22] and the references therein).

In the paper, the use will be made of the following notation and definitions.

⊲ R = ]−∞,∞[ ; [a, b] and ]a, b[ are, respectively, closed and open intervals.

⊲ I is an arbitrary, non-degenerated to a point, finite or infinite interval from R, and

ξ ∈ I is a fixed point.

⊲ R
n×m is the space of all real (n×m)-matrices X = (xij)

n,m
i,j=1 with the norm

‖X‖ = max
j=1,...,m

n
∑

i=1

|xij |.

⊲ On×m is the zero (n×m)-matrix.

⊲ R
n = R

n×1 is the space of all column n-vectors x = (xi)
n
i=1; on is the zero n-vector.

⊲ R
n×n is the space of all real quadratic (n× n)-matrices X = (xij)

n
i,j=1.

⊲ In is the identity (n × n)-matrix; diag(λ1, . . . , λn) is the diagonal matrix with

diagonal elements λ1, . . . , λn; δij is the Kronecker symbol, i.e. δii = 1 and δij = 0

for i 6= j (i, j = 1, . . .).

⊲ If X ∈ R
n×n, then X−1 and det(X) are, respectively, the matrix inverse to X

and the determinant of X ; diagX = diag(x11, . . . , xnn) is the diagonal matrix

corresponding to X .

⊲ A matrix-function is said to be continuous, integrable, nondecreasing, etc., if such

is each of its component.

⊲
b
∨

a

(X) is the sum of total variations of the components xij (i = 1, . . . , n; j =

1, . . . ,m) of the matrix-function X : [a, b] → R
n×m,

a
∨

b

(X) = −
b
∨

a

(X).

⊲
∨

I

(X) = lim
a→α+,b→β−

b
∨

a

(X), where α = inf I and β = sup I.

⊲ V (X)(t) = (V (xij)(t))
n,m
i,j=1 , where V (xij)(t) =

t
∨

t0

(xij) for t ∈ I (i = 1, . . . , n;

j = 1, . . . ,m).

⊲ X(t−) and X(t+) are, respectively, the left and the right limits of X at the point t

(X(α−) = X(α) if α ∈ I and X(β+) = X(β) if β ∈ I).

⊲ d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).

⊲ BV(I;Rn×m) is the normed space of all bounded variation matrix-functions X :

I → R
n×m (i.e. such that

∨

I

(X) < ∞) with the norm ‖X‖s = sup{‖X(t)‖ : t ∈ I}.
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⊲ BVloc(I;R
n×m) is the set of all X : I → R

n×m for which the restriction to [a, b]

belongs to BV([a, b];Rn×m) for every closed interval [a, b] from I.

⊲ sc, sj : BVloc(I,R) → BVloc(I,R) (j = 1, 2) are the operators defined, respec-

tively, by sc(x)(t) = x(t)− s1(x)(t) − s2(x)(t) for t ∈ I; s1(x)(ξ) = s2(x)(ξ) = 0,

s1(x)(t) − s1(x)(s) =
∑

s<τ6t

d1x(τ)

and

s2(x)(t) − s2(x)(s) =
∑

s6τ<t

d2x(τ) if s < t.

⊲ If g : I → R is a nondecreasing function, x : I → R and s < t, s, t ∈ I, then

∫ t

s

x(τ) dg(τ) =

∫

]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ6t

x(τ)d1g(τ) +
∑

s6τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue-Stieltjes integral over the open interval

]s, t[ with respect to the measure µ(sc(g)) corresponding to the function sc(g). We

assume

∫ t

s

x(t) dg(t) = 0 if s = t, and

∫ t

s

x(t) dg(t) = −

∫ s

t

x(t) dg(t) if t > s.

Thus the integral considered is the Kurzweil-Stielties one (see [17], [16], [21], [22]).

⊲ If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then

∫ t

s

x(τ) dg(τ) =

∫ t

s

x(τ) dg1(τ) −

∫ t

s

x(τ) dg2(τ) for s 6 t.

⊲ If G = (gik)
l,n
i,k=1 ∈ BV(I;Rl×n), X = (xkj)

n,m
k,j=1 ∈ BV(I;Rn×m) and Y, Z ∈

BV(I;Rn×n), and Z(t) is nonsingular for t ∈ I, then

Sc(G)(t) = (sc(gik)(t))
l,n
i,k=1, Sj(G)(t) = (sj(gik)(t))

l,n
i,k=1 for t ∈ I (j = 1, 2),

∫ t

s

dG(τ) ·X(τ) =

( n
∑

k=1

∫ t

s

xkj(τ) dgik(τ)

)l,m

i,j=1

for s, t ∈ I,

B(G,X)(t) = G(t)X(t) −G(ξ)X(ξ)−

∫ t

ξ

dG(τ) ·X(τ) for t ∈ I,

I(Y, Z)(t) =

∫ t

ξ

d(Y (τ) + B(Y, Z)(τ)) · Z−1(τ) for t ∈ I.
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⊲ If X ∈ BVloc(I;R
n×n), det(In + (−1)jdjX(t)) 6= 0 for t ∈ I (j = 1, 2), and

Y ∈ BVloc(I;R
n×m), then

A(X,Y )(ξ) = On×m,(1.4)

A(X,Y )(t) −A(X,Y )(s) = Y (t)− Y (s)

+
∑

s<τ6t

d1X(τ) · (In − d1X(τ))−1d1Y (τ)

−
∑

s6τ<t

d2X(τ) · (In + d2X(τ))−1d2Y (τ) if s < t.

⊲ We say that a matrix-functionX ∈ BV([a, b],Rn×n) satisfies the Lappo-Danilevskĭı

condition if the matrices Sc(X)(t), S1(X)(t) and S2(X)(t) are pairwise permutable

and

∫ t

s

Sc(X)(τ) dSc(X)(τ) =

∫ t

s

dSc(X)(τ) · Sc(X)(τ) for s, t ∈ [a, b].

For f, g ∈ BV([a, b];R) and t ∈ [a, b], the use will be made of the following formulas:

∫ b

a

f(t) dg(t) =

∫ b

a

f(t) dg(t−) + f(b)d1g(b) =

∫ b

a

f(t) dg(t+) + f(a)d2g(a),(1.5)

∫ b

a

f(t) dg(t) +

∫ b

a

f(t) dg(t) = f(b)g(b)− f(a)g(a) +
∑

a<t6b

d1f(t) · d1g(t)(1.6)

−
∑

a6t<b

d2f(t) · d2g(t) (integration-by-parts formula),

∫ b

a

h(t) d(f(t)g(t)) =

∫ b

a

h(t)f(t) dg(t) +

∫ b

a

h(t)g(t) df(t)(1.7)

−
∑

a<t6b

h(t)d1f(t) · d1g(t) +
∑

a6t<b

h(t)d2f(t) · d2g(t)

(general integration-by-parts formula),
∫ b

a

f(t) ds1(g)(t) =
∑

a<t6b

f(t)d1g(t),

∫ b

a

f(t) ds2(g)(t) =
∑

a6t<b

f(t)d2g(t),(1.8)

∫ b

a

f(t) d

(
∫ t

a

g(s) dh(s)

)

=

∫ b

a

f(t)g(t) dh(t),(1.9)

dj

(
∫ t

a

f(s) dg(s)

)

= f(t)djg(t) for j = 1, 2.(1.10)

187



⊲ If Y (Y (a) = In, a ∈ I) is the fundamental matrix of system (1.1), then (see

e.g. [22], Proposition I.2.15)

Y −1(t) = I +A(a)− Y −1(t)A(t) +

∫ t

a

dY −1(τ) ·A(τ) for t ∈ I,(1.11)

djX
−1(t) = −X−1(t)djA(t) · (In + (−1)jdjA(t))

−1 for t ∈ I (j = 1, 2).(1.12)

The proofs of formulas (1.5), (1.6), (1.8) and (1.9) can be found e.g. in [22]. As to

formula (1.7), it can be easily shown using the integration-by-parts formula (1.6).

If t ∈ I, then we denote It = I \ {t}. Moreover, we use the notation

‖x‖kj = sup{‖x(t)‖ : t ∈ Ikj} for x ∈ BVloc(I;R
n) (j = 1, 2; k = 0, 1, . . .),

where Ikj = {t ∈ I : (−1)j(t− tk) > 0} (j = 1, 2; k = 0, 1, . . .).

We will assume that Ak = (akil)
n
i,l=1 and fk = (fkil)

n
i,l=1 (k = 0, 1, . . .), and,

without loss of generality, either tk < t0 (k = 1, 2, . . .), or tk = t0 (k = 1, 2, . . .), or

tk > t0 (k = 1, 2, . . .).

Along with systems (1.1) and (1.1k) (k = 1, 2, . . .), we consider the corresponding

homogeneous systems

(1.10) dx(t) = dA0(t) · x(t)

and

(1.1k0) dx(t) = dAk(t) · x(t).

2. Formulation of the main results

Definition 2.1. We say that a sequence (Ak, fk; tk) (k = 1, 2, . . .) belongs to the

set S(A0, f0; t0) if for every c0 ∈ R
n and a sequence ck ∈ R

n (k = 1, 2, . . .) such that

lim
k→∞

ck = c0,(2.1)

problem (1.1k), (1.2k) has a unique solution xk for any sufficiently large k and con-

dition (1.3) holds.

We also consider the case when

(2.1j) lim
k→∞

ckj = c0j if j ∈ {1, 2} is such that (−1)j(tk − t0) > 0 (k = 0, 1, . . .),
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where

ckj = ck + (−1)j(djAk(tk)ck + djfk(tk)) (j = 1, 2; k = 0, 1, . . .).(2.2)

Note that if

lim
k→∞

djAk(tk) = djA0(t0)

for some j ∈ {1, 2}, then condition (2.1j) follows from (2.1).

Theorem 2.1. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn) and tk ∈ I (k = 0, 1, . . .)

be such that

det(In + (−1)jdjA0(t)) 6= 0 for t ∈ I, (−1)j(t− t0) < 0, and also(2.3)

for t = t0 if j ∈ {1, 2} is such that (−1)j(tk − t0) > 0 for every k ∈ {1, 2, . . .},

and

lim
k→∞

tk = t0.(2.4)

Then

((Ak, fk; tk))
∞
k=1 ∈ S(A0, f0; t0)(2.5)

if and only if there exists a sequence of matrix-functions Hk ∈ BV(I;Rn×n)

(k = 0, 1, . . .) such that

inf{|det(H0(t))| : t ∈ I} > 0,(2.6)

and the conditions

lim
k→∞

Hk(t) = H0(t),(2.7)

lim
k→∞

{

‖I(Hk, Ak)(τ)|
t
tk

− I(H0, A0)(τ)|
t
t0
‖

(

1 +

∣

∣

∣

∣

t
∨

tk

(I(Hk, Ak))

∣

∣

∣

∣

)}

= 0(2.8)

and

lim
k→∞

{

‖B(Hk, fk)(τ)|
t
tk

− B(H0, f0)(τ)|
t
t0
‖

(

1 +

∣

∣

∣

∣

t
∨

tk

(I(Hk, Ak))

∣

∣

∣

∣

)}

= 0(2.9)

hold uniformly on I.
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Theorem 2.2. Let Ak ∈ BV(I;Rn×n), fk ∈ BV(I;Rn), ck ∈ R
n and tk ∈ I

(k = 0, 1, . . .) be such that conditions (2.1), (2.1j), (2.3) and (2.4) hold, and the

conditions

lim
k→∞

sup
t∈I,t6=tk

{

‖Akj(t)−A0j(t)‖

(

1 +

∣

∣

∣

∣

t
∨

tk

(Ak)

∣

∣

∣

∣

)}

= 0(2.10)

and

lim
k→∞

sup
t∈I,t6=tk

{

‖fkj(t)− f0j(t)‖

(

1 +

∣

∣

∣

∣

t
∨

tk

(Ak)

∣

∣

∣

∣

)}

= 0(2.11)

are fulfilled for some j ∈ {1, 2}, where ckj (k = 0, 1, . . .) are defined by (2.2),

Akj(t) ≡ (−1)j(Ak(t)−Ak(tk))− djAk(tk) (j = 1, 2; k = 0, 1, . . .)

and

fkj(t) ≡ (−1)j(fk(t)− fk(tk))− djfk(tk) (j = 1, 2; k = 0, 1, . . .).

Then the Cauchy problem (1.1k), (1.2k) has a unique solution xk for any sufficiently

large k and

lim
k→∞

sup
t∈I,t6=tk

{‖xk(t)− x0(t)‖} = 0.(2.12)

R em a r k 2.1. In Theorem 2.2, it is evident that the sequence xk (k = 1, 2, . . .)

converges to x0 uniformly on the set {t ∈ I, t 6 t0} if tk > t0 (k = 1, 2, . . .), and

on the set {t ∈ I, t > t0} if tk < t0 (k = 1, 2, . . .). Moreover, in Theorem 2.2,

if conditions (2.10) and (2.11) hold uniformly on the set I instead of the sets Itk
(k = 1, 2, . . .), then these conditions are equivalent, respectively, to the conditions

lim
k→∞

{

‖(Ak(t)−Ak(tk))− (A0(t)−A0(t0))‖

(

1 +

∣

∣

∣

∣

t
∨

tk

(Ak)

∣

∣

∣

∣

)}

= 0(2.13)

and

lim
k→∞

{

‖(fk(t)− fk(tk))− (f0(t)− f0(t0))‖

(

1 +

∣

∣

∣

∣

t
∨

tk

(Ak)

∣

∣

∣

∣

)

}

= 0(2.14)

uniformly on I, since (2.10) and (2.11) imply that

lim
k→∞

djAk(t) = djA0(t) and lim
k→∞

djfk(t) = djf0(t)

uniformly on I for every j ∈ {1, 2}. In addition, by (2.2), conditions (2.1j) (j = 1, 2)

immediately follow from the last equalities. Thus, in this case, condition (1.3) holds.
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Theorem 2.3. Let A∗
0, Ak ∈ BV(I;Rn×n); f∗

0 , fk ∈ BV(I;Rn); c∗0, ck ∈ R
n and

t0, tk ∈ I (k = 1, 2, . . .) be such that condition (2.4) holds,

det(In + (−1)jdjA
∗
0(t)) 6= 0 for t ∈ I, (−1)j(t− t0) < 0, and also(2.15)

for t = t0 if j ∈ {1, 2} is such that (−1)j(tk − t0) > 0 for every k ∈ {1, 2, . . .},

the Cauchy problem

dx(t) = dA∗
0(t) · x(t) + df∗

0 (t),(2.16)

x(t0) = c∗0(2.17)

has a unique solution x∗
0 and there exist sequences Hk ∈ BV(I;Rn×n) (k = 1, 2, . . .)

and hk ∈ BV(I;Rn) (k = 1, 2, . . .) such that the conditions

inf{|det(Hk(t)| : t ∈ Itk} > 0 for every sufficiently large k,(2.18)

lim
k→∞

c∗k = c∗0, lim
k→∞

c∗kj = c∗0j ,(2.19)

lim
k→∞

sup
t∈I,t6=tk

{

‖A∗
kj(t)−A∗

0j(t)‖

(

1 +

∣

∣

∣

∣

t
∨

tk

(A∗
k)

∣

∣

∣

∣

)}

= 0(2.20)

and

lim
k→∞

sup
t∈I,t6=tk

{

‖f∗
kj(t)− f∗

0j‖

(

1 +

∣

∣

∣

∣

t
∨

tk

(A∗
k)

∣

∣

∣

∣

)}

= 0(2.21)

hold for some j ∈ {1, 2}, where

A∗
kj(t) = (−1)j(A∗

k(t)−A∗
k(tk))− djA

∗
k(tk)

and

f∗
kj(t) = (−1)j(f∗

k (t)− f∗
k (tk))− djf

∗
k (tk) for t ∈ I (j = 1, 2; k = 0, 1, . . .),

A∗
k(t) = I(Hk, Ak)(t)

and

f∗
k (t) = hk(t)− hk(tk) + B(Hk, fk)(t)− B(Hk, fk)(tk)

−

∫ t

tk

dA∗
k(s) · hk(s) for t ∈ I (k = 1, 2, . . .);

c∗k = Hk(tk)ck + hk(tk) (k = 1, 2, . . .),

c∗kj = c∗k + (−1)j(djA
∗
k(tk)c

∗
k + djf

∗
k (tk)) (j = 1, 2; k = 0, 1, . . .).
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Then problem (1.1k), (1.2k) has a unique solution xk for any sufficiently large k and

lim
k→∞

sup
t∈I,t6=tk

{‖Hk(t)xk(t) + hk(t)− x∗
0(t)‖} = 0.(2.22)

R em a r k 2.2. In Theorem 2.3, the vector-function x∗
k(t) = Hk(t)xk(t) + hk(t)

for every sufficiently large k is a solution of the problem

dx(t) = dA∗
k(t) · x(t) + df∗

k (t),(2.16k)

x(tk) = c∗k.(2.17k)

Below we consider, mainly, the well-posedness question on the whole interval I. For

the last case, in view of Remark 2.1 conditions (2.20) and (2.21) have, respectively,

the form

lim
k→∞

{

‖(A∗
k(t)−A∗

k(tk))− (A∗
0(t)−A∗

0(t0))‖

(

1 +

∣

∣

∣

∣

t
∨

tk

(A∗
k)

∣

∣

∣

∣

)}

= 0(2.23)

and

lim
k→∞

{

‖(f∗
k (t)− f∗

k (tk))− (f∗
0 (t)− f∗

0 (t0))‖

(

1 +

∣

∣

∣

∣

t
∨

tk

(A∗
k)

∣

∣

∣

∣

)}

= 0(2.24)

uniformly on I.

Corollary 2.1. Let Ak ∈ BV(I;Rn×n), fk ∈ BV(I;Rn), ck ∈ R
n and tk ∈ I

(k = 0, 1, . . .) be such that conditions (2.3), (2.4), (2.6) and

lim
k→∞

(ck − ϕk(tk)) = c0(2.25)

hold, and conditions (2.7), (2.8) and

lim
k→∞

{
∥

∥

∥

∥

B(Hk, fk − ϕk)(τ)|
t
tk

− B(H0, f0)(τ)|
t
t0

(2.26)

+

∫ t

tk

dI(Hk, Ak)(τ) · ϕk(τ)

∥

∥

∥

∥

(

1 +

∣

∣

∣

∣

t
∨

tk

(I(Hk, Ak))

∣

∣

∣

∣

)}

= 0

are fulfilled uniformly on I, where Hk ∈ BV(I;Rn×n) and ϕk ∈ BV(I;Rn)

(k = 0, 1, . . .). Then problem (1.1k), (1.2k) has a unique solution xk for any

sufficiently large k and

lim
k→∞

(xk(t)− ϕk(t)) = x0(t) uniformly on I.(2.27)
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Below, we give some sufficient conditions guaranteeing inclusion (2.5). To this

end we establish a theorem different from Theorem 2.1 concerning the necessary and

sufficient conditions for inclusion (2.5) as well, and the corresponding propositions.

Theorem 2.1′. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn) and tk ∈ I (k = 0, 1, . . .)

be such that conditions (2.3) and (2.4) hold. Then inclusion (2.5) holds if and only

if there exists a sequence of matrix-functions Hk ∈ BV(I;Rn×n) (k = 0, 1, . . .) such

that conditions (2.6) and

lim
k→∞

sup
∨

I

(Hk + B(Hk, Ak)) < ∞(2.28)

hold, and conditions (2.7),

lim
k→∞

(B(Hk, Ak)(t)− B(Hk, Ak)(tk)) = B(H0, A0)(t) − B(H0, A0)(t0)(2.29)

and

lim
k→∞

(B(Hk, fk)(t)− B(Hk, fk)(tk)) = B(H0, f0)(t)− B(H0, f0)(t0)(2.30)

are fulfilled uniformly on I.

R em a r k 2.3. Due to (2.6), (2.7), there exists a positive number r such that

sup

{∣

∣

∣

∣

t
∨

t0

(I(Hk, Ak)) : t ∈ I

∣

∣

∣

∣

}

6 r
∨

I

(Hk + B(Hk, Ak)) (k = 0, 1, . . .).

Further, in view of Lemma 3.3 (see below), by conditions (2.28) and (2.29) we get

lim
k→∞

(I(Hk, Ak)(t)− I(Hk, Ak)(tk)) = I(H0, A0)(t)− I(H0, A0)(t0)

uniformly on I. Therefore, thanks to this, (2.28) and (2.30), conditions (2.8) and (2.9)

are fulfilled uniformly on I

Theorem 2.2′. Let Ak ∈ BV(I;Rn×n), fk ∈ BV(I;Rn), ck ∈ R
n and tk ∈ I

(k = 0, 1, . . .) be such that conditions (2.1), (2.3), (2.4) and

lim
k→∞

sup
∨

I

(Ak) < ∞(2.31)

hold, and the conditions

lim
k→∞

(Ak(t)−Ak(tk)) = A0(t)−A0(t0)(2.32)
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and

lim
k→∞

(fk(t)− fk(tk)) = f0(t)− f0(t0)(2.33)

are fulfilled uniformly on I. Then the Cauchy problem (1.1k), (1.2k) has a unique

solution xk for any sufficiently large k and condition (1.3) holds.

Theorem 2.3′. Let A∗
0, Ak ∈ BV(I;Rn×n), f∗

0 , fk ∈ BV(I;Rn), c∗0, ck ∈ R
n

and t0, tk ∈ I (k = 1, 2, . . .) be such that conditions (2.4) and (2.15) hold, the

Cauchy problem (2.16), (2.17) has a unique solution x∗
0 and there exist sequences

Hk ∈ BV(I;Rn×n) (k = 1, 2, . . .) and hk ∈ BV(I;Rn) (k = 1, 2, . . .) such that

conditions (2.18),

lim
k→∞

(Hk(tk)ck + hk(tk)) = c∗0(2.34)

and

lim
k→∞

sup
∨

I

(A∗
k) < ∞(2.35)

hold, and the conditions

lim
k→∞

(A∗
k(t)−A∗

k(tk)) = A∗
0(t)−A∗

0(t0)(2.36)

and

lim
k→∞

(f∗
k (t)− f∗

k (tk)) = f∗
0 (t)− f∗

0 (t0)(2.37)

are fulfilled uniformly on I, where the matrix- and vector-functions A∗
k and f∗

k

(k = 1, 2, . . .) are defined as in Theorem 2.3. Then problem (1.1k), (1.2k) has a unique

solution xk for any sufficiently large k and condition (2.22) holds uniformly on I.

Corollary 2.1′. Let Ak ∈ BV(I;Rn×n), fk ∈ BV(I;Rn), ck ∈ R
n and tk ∈ I

(k = 0, 1, . . .) be such that conditions (2.3), (2.4), (2.6), (2.25) and (2.28) hold, and

conditions (2.7), (2.29) and

(2.38) lim
k→∞

(

B(Hk, fk − ϕk)(τ)|
t
tk

+

∫ t

tk

dB(Hk, Ak)(τ) · ϕk(τ)

)

= B(H0, f0)(τ)|
t
t0

are fulfilled uniformly on I, where Hk ∈ BV(I;Rn×n) and ϕk ∈ BV(I;Rn)

(k = 0, 1, . . .). Then problem (1.1k), (1.2k) has a unique solution xk for any

sufficiently large k and condition (2.27) holds.
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Corollary 2.2. Let Ak ∈ BV(I;Rn×n), fk ∈ BV(I;Rn) and tk ∈ I (k = 0, 1, . . .)

be such that conditions (2.3), (2.4), (2.6) and (2.28) hold, and conditions (2.7),

lim
k→∞

∫ t

tk

Hk(s) dAk(s) =

∫ t

t0

H0(s) dA0(s),(2.39)

lim
k→∞

∫ t

tk

Hk(s) dfk(s) =

∫ t

t0

H0(s) df0(s),(2.40)

lim
k→∞

djAk(t) = djA0(t) (j = 1, 2)(2.41)

and

lim
k→∞

djfk(t) = djf0(t) (j = 1, 2)(2.42)

are fulfilled uniformly on I, where Hk ∈ BVloc(I;R
n×n) (k = 0, 1, . . .). Let, more-

over, either

lim
k→∞

sup
t∈I

{‖djAk(t)‖+ ‖djfk(t)‖} < ∞ (j = 1, 2)(2.43)

or

lim
k→∞

sup
t∈I

{‖djHk(t)‖} < ∞ (j = 1, 2).(2.44)

Then inclusion (2.5) holds.

Corollary 2.3. Let Ak ∈ BV(I;Rn×n), fk ∈ BV(I;Rn) and tk ∈ I (k = 0, 1, . . .)

be such that conditions (2.3), (2.4), (2.6) and (2.28) hold, and conditions (2.7),

(2.32), (2.33),

lim
k→∞

∫ t

tk

dHk(s) ·Ak(s) = A∗(t)−A∗(t0)(2.45)

and

lim
k→∞

∫ t

tk

dHk(s) · fk(s) = f∗(t)− f∗(t0)(2.46)

are fulfilled uniformly on I, where H0(t) = In, Hk ∈ BV(I;Rn×n) (k = 1, 2, . . .),

A∗ ∈ BV(I;Rn×n), f∗ ∈ BV(I;Rn). Let, moreover, problem (2.16), (1.2), where

A∗
0(t) = A0(t)−A∗(t) and f∗

0 (t) = f0(t)− f∗(t), have a unique solution x∗
0. Then

((Ak, fk; tk))
∞
k=1 ∈ S(A0 −A∗, f0 − f∗; t0).
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Corollary 2.4. Let Ak ∈ BV(I;Rn×n), fk ∈ BV(I;Rn) and tk ∈ I (k = 0, 1, . . .)

be such that conditions (2.3) and (2.4) hold and there exist a natural number m and

matrix-functions Bl ∈ BV(I;Rn×n) (l = 1, . . . ,m− 1) such that

lim
k→∞

sup
∨

I

(Akm) < ∞,(2.47)

and the conditions

lim
k→∞

Hkm−1(t) = In,(2.48)

lim
k→∞

(Akm(t)−Akm(tk)) = A0(t)−A0(t0),(2.49)

lim
k→∞

(fkm(t)− fkm(tk)) = f0(t)− f0(t0)(2.50)

are fulfilled uniformly on I, where

Hk0(t) = In, Hkj+1(t) =
(

In − (Akl(t)−Akl(tk)) + (Bl(t)−Bl(tk))
)

Hkj(t),

Akj+1(t) = Hkj(t) + B(Hkj , Ak)(t)

and

fkj+1(t) = B(Hkj , fk)(t) for t ∈ I (j = 0, . . . ,m− 1).

Then inclusion (2.5) holds.

If m = 1, then Corollary 2.1 coincides with Theorem 2.2′.

Corollary 2.5. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn) and tk ∈ I (k = 0, 1, . . .)

be such that conditions (2.3) and (2.4) hold. Then inclusion (2.5) holds if and only

if there exist matrix-functions Bk ∈ BV(I;Rn×n) (k = 0, 1, . . .) such that

lim
k→∞

sup
∨

I

(Ak −Bk) < ∞(2.51)

and

det(In + (−1)jdjBk(t)) 6= 0 for t ∈ I (j = 1, 2; k = 0, 1, . . .),(2.52)

and the conditions

lim
k→∞

Z−1
k (t) = Z−1

0 (t),(2.53)

lim
k→∞

(B(Z−1
k , Ak)(t)− B(Z−1

k , Ak)(tk)) = B(Z−1
0 , A0)(t)− B(Z−1

0 , A0)(t0)(2.54)

and

lim
k→∞

(B(Z−1
k , fk)(t)− B(Z−1

k , fk)(tk)) = B(Z−1
0 , f0)(t)− B(Z−1

0 , f0)(t0)(2.55)
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are fulfilled uniformly on I, where Zk (Zk(tk) = In) is a fundamental matrix of the

homogeneous system dx(t) = dBk(t) · x(t) for every k ∈ {0, 1 . . .}.

Corollary 2.6. Let Ak ∈ BV(I;Rn×n), fk ∈ BV(I;Rn) and tk ∈ I (k = 0, 1, . . .)

be such that conditions (2.3) and (2.4) hold and there exist matrix-functions

Bk ∈ BV(I;Rn×n) (k = 0, 1, . . .), satisfying the Lappo-Danilevskĭı condition, such

that conditions (2.51) and

det(In + (−1)jdjB0(t)) 6= 0 for t ∈ I (j = 1, 2)(2.56)

hold, and the conditions

lim
k→∞

(Bk(t)−Bk(tk)) = B0(t)−B0(t0),(2.57)

lim
k→∞

∫ t

tk

Z−1
k (τ) dA(Bk, Ak)(τ) =

∫ t

t0

Z−1
0 (τ) dA(B0, A0)(τ)(2.58)

and

lim
k→∞

∫ t

tk

Z−1
k (τ) dA(Bk, fk)(τ) =

∫ t

t0

Z−1
0 (τ) dA(B0, f0)(τ)(2.59)

are fulfilled uniformly on I, where A is the operator defined by (1.4), and Zk

(Zk(tk) = In) is a fundamental matrix of the homogeneous system given in Corol-

lary 2.5 for every k ∈ {0, 1 . . .}. Then inclusion (2.5) holds.

R em a r k 2.4. In Corollaries 2.5 and 2.6, if we assume that the matrix func-

tions Bk (k = 0, 1, . . .) are continuous, then conditions (2.52) and (2.56) are valid

obviously. Moreover, due to the integration-by-parts formula and definitions of op-

erators B and A, each of conditions (2.54) and (2.58) has the form

lim
k→∞

∫ t

tk

Z−1
k (τ) dAk(τ) =

∫ t

t0

Z−1
0 (τ) dA0(τ),(2.60)

and each of conditions (2.55) and (2.59) has the form

lim
k→∞

∫ t

tk

Z−1
k (τ) dfk(τ) =

∫ t

t0

Z−1
0 (τ) df0(τ).(2.61)

R em a r k 2.5. If a matrix-function B ∈ BV(I;Rn×n), satisfying the Lappo-

Danilevskĭı condition, and s ∈ I are such that det(In + (−1)jdjB(t)) 6= 0 for t ∈ I,

(−1)j(t − s) < 0 (j = 1, 2), then the fundamental matrix Z (Z(s) = In) of the
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homogeneous system dx(t) = dB(t) · x(t) has the form (see [11])

(2.62) Z(t) =







































exp(S0(B)(t) − S0(B)(s))

×
∏

s<τ6t

(1− d1B(τ))−1
∏

s6τ<t

(1 + d2B(τ)) for t > s,

exp(S0(B)(t) − S0(B)(s))

×
∏

t<τ6s

(1− d1B(τ))
∏

t6τ<s

(1 + d2B(τ))−1 for t < s,

In for t = s.

Corollary 2.7. Let Ak ∈ BV(I;Rn×n), fk ∈ BV(I;Rn) and tk ∈ I (k = 0,

1, . . .) be such that conditions (2.3) and (2.4) hold, the matrix-functions Sc(Ak)

(k = 0, 1, . . .) satisfy the Lappo-Danilevskĭı condition and

lim
k→∞

sup
∑

t∈I

‖djAk(t)‖ < ∞ (j = 1, 2),(2.63)

and the conditions

lim
k→∞

(Sc(Ak)(t)− Sc(Ak)(tk)) = Sc(A0)(t)− Sc(A0)(t0),(2.64)

lim
k→∞

djAk(t) = djA0(t) (j = 1, 2)(2.65)

and

lim
k→∞

∫ t

tk

exp(−Sc(Ak)(τ) + Sc(Ak)(tk)) dfk(τ)(2.66)

=

∫ t

t0

exp(−Sc(A0)(τ) + Sc(Ak)(t0)) df0(τ)

are fulfilled uniformly on I. Then inclusion (2.5) holds.

Corollary 2.8. Let Ak ∈ BV(I;Rn×n), fk ∈ BV(I;Rn) and tk ∈ I (k = 0, 1, . . .)

be such that conditions (2.3), (2.4),

lim
k→∞

sup

n
∑

i,l=1;i6=l

∨

I

(akil) < ∞

and

1 + (−1)jdja0ii(t)) 6= 0 for t ∈ I (j = 1, 2; i = 1, . . . , n)
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hold, and the conditions

lim
k→∞

(akii(t)− akii(tk)) = a0ii(t)− a0ii(t0) (i = 1, . . . , n),

lim
k→∞

∫ t

tk

z−1
kii(τ) dA(akii, akil)(τ) =

∫ t

t0

z−1
0ii (τ) dA(a0ii, a0il)(τ) (i 6= l; i, l = 1, . . . , n)

and

lim
k→∞

∫ t

tk

z−1
kii(τ) dA(akii, fki)(τ) =

∫ t

t0

z−1
0ii (τ) dA(a0ii, f0i)(τ) (i = 1, . . . , n)

are fulfilled uniformly on I, where A is the operator defined by (1.4), and zkii,

defined according to (2.62), is a solution of the Cauchy problem dz(t) = z(t) dakii(t),

z(tk) = 1 for i ∈ {1, . . . , n} and every sufficiently large k. Then inclusion (2.5) holds.

R em a r k 2.6. In Theorems 2.1′–2.3′ and Corollaries 2.1′, 2.2–2.8, we can assume

H0(t) = In, without loss of generality. In this case, it is evident that

I(H0, Y )(t)− I(H0, Y )(s) = Y (t)− Y (s) for Y ∈ BV(I;Rn×n) and t, s ∈ I.

R em a r k 2.7. The following example shows that if condition (2.63) is violated,

then the statement of Corollary 2.7 is not true in general.

E x am p l e. Let I = [0, 1], A0(t) = 0, f0(t) = fk(t) = 0, tk = t0 = 0, ck = c0 = 1,

Ak(t) =















k−1 for t ∈
2k2

⋃

i=1

]t2i−1k, t2ik],

0 for t /∈
2k2

⋃

i=1

]t2i−1k, t2ik],

where tik = (2k2+1)−1i (i = 0, . . . , 2k2) for every natural k. Then all the conditions

of Corollary 2.7 are fulfilled except of (2.63). It is evident that x0(t) ≡ 1. On the

other hand, the Cauchy problem (1.1k), (1.2k) has a unique solution xk and, in

addition, xk(1) =
(

1− 1/k2
)k2

. Therefore, condition (1.3) is not valid since

lim
k→∞

xk(1) = exp(−1) 6= x0(1).
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3. Auxiliary propositions

Lemma 3.1. Let a ∈ I be a fixed point. Then:

(a) if X ∈ BVloc(I;R
n×m), Y ∈ BVloc(I;R

m×l) and Z ∈ BVloc(I;R
l×k), then

B(X,B(Y, Z))(t) = B(XY,Z)(t) for t ∈ I,

B

(

X,

∫ .

a

dY (s) · Z(s)

)

(t) =

∫ t

a

dB(X,Y )(s) · Z(s) for t ∈ I;

(b) if X ∈ BVloc(I;R
n×n), Y ∈ BVloc(I;R

n×n) and Z ∈ BVloc(I;R
n×n), then

I(X, I(Y, Z))(t) = I(XY,Z)(t) for t ∈ I.

Lemma 3.2. Let h ∈ BVloc(I;R
n), and let H ∈ BVloc(I;R

n×n) be a nonsingular

matrix-function. Then the mapping x → y = Hx + h establishes a one-to-one

correspondence between the solutions x and y of systems dx(t) = dA(t) ·x(t)+df(t)

and dy(t) = dA∗(t) · y(t) + df∗(t), respectively, where

A∗(t) = I(H,A)(t), f∗(t) = h(t)−h(a)+B(H, f)(t)−

∫ t

a

dA∗(s) ·hk(s) for t ∈ I,

and a ∈ I is a fixed point. Besides,

In + (−1)jdjA∗(t) ≡ (H(t) + (−1)jdjH(t)) · (In + (−1)jdjA(t))H
−1(t) (j = 1, 2).

Lemma 3.3. Let αk, βk ∈ BV(I;R) (k = 0, 1, . . .) be such that

lim
k→∞

‖βk − β0‖s = 0 and lim
k→∞

sup
∨

I

(αk) < ∞,

and let the condition

lim
k→∞

(αk(t)− αk(a)) = α0(t)− α0(a)

be fulfilled uniformly on I, where a ∈ I is a fixed point. Then

lim
k→∞

∫ t

a

βk(τ) dαk(τ) =

∫ t

a

β0(τ) dα0(τ) uniformly on I.
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Lemma 3.4. Let

det(In + (−1)jdjA0(t)) 6= 0 for t ∈ I (j = 1, 2)

and let

lim
k→∞

Yk(t) = Y0(t) uniformly on I,(3.1)

where Y0 and Yk (k = 1, 2, . . .) are fundamental matrices of homogeneous sys-

tems (1.10) and (1.1k0) (k = 1, 2, . . .), respectively. Then

inf{|det(Y0(t))| : t ∈ I} > 0,(3.2)

inf{|det(Y −1
0 (t))| : t ∈ I} > 0,(3.3)

and

lim
k→∞

Y −1
k (t) = Y −1

0 (t) uniformly on I.(3.4)

We omit the proofs of the above lemmas. One can find the proofs of Lemmas 3.1

and 3.2 in [3], and Lemmas 3.3 and 3.4 in [6].

The conclusion of the next lemma is often used implicitly in various papers

(e.g. [7], [22]). We give the proof from those papers.

Lemma 3.5. Let sequences of matrix-functions Bk ∈ BVloc(I;R
n×n) and points

tk ∈ I (k = 0, 1, . . .) be such that conditions (2.4),

det(In + (−1)jdjB0(t)) 6= 0 for t ∈ I, (−1)j(t− t0) < 0 (j = 1, 2)(3.5)

and

lim
k→∞

sup{‖djBk(t)− djB0(t)‖ : t ∈ I, (−1)j(t− tk) < 0} = 0 (j = 1, 2)(3.6)

hold. Then

det(In + (−1)jdjBk(t)) 6= 0 for t ∈ I, (−1)j(t− tk) < 0 (j = 1, 2)(3.7)

and there exists a positive number r0 such that

‖(In + (−1)jdjB0(t))
−1‖ 6 r0 for t ∈ I, (−1)j(t− t0) < 0(3.8)

and

‖(In + (−1)jdjBk(t))
−1‖ 6 r0 for t ∈ I, (−1)j(t− tk) < 0 (j = 1, 2)

for every sufficiently large k.
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P r o o f. Since
∨

I

B0 < ∞, the series
∑

t∈I

‖djB0(t)‖ (j = 1, 2) converge. Thus for

any j ∈ {1, 2} the inequality ‖djB0(t)‖ > 1/2 may hold only for a finite number of

points tj1, . . . , tjmj
from I. Therefore,

(3.9) ‖djB0(t)‖ <
1

2
for t ∈ I, t 6= tji (i = 1, . . . ,mj).

First consider the case when j = 2 and tk > t0 for every sufficiently large k. We can

assume that t2i > tk (i = 1, . . . ,m2) for every sufficiently large k.

It follows from (3.5), (3.6) and (3.9) that det(In + d2Bk(t2i)) 6= 0 (i = 1, . . . ,m2)

and ‖djBk(t)‖ < 1/2 for t ∈ Itk , t 6= t2i (i = 1, . . . ,m2) for every sufficiently large k.

The latter inequalities imply that the matrices In + d2Bk(t) (j = 1, 2) are invertible

for t ∈ It0 , t 6= tji (i = 1, . . . ,mj), too. From this, it is evident that condition (3.7)

is fulfilled and there exists a positive number r0 for which estimates (3.8) hold.

Analogously we can prove this estimate for the other cases. �

4. Proof of the main results

P r o o f of Theorem 2.2. In virtue of (2.10),

lim
k→∞

sup
t∈I,t6=tk

{‖djAk(t)− djA0(t)‖} = 0 (j = 1, 2).(4.1)

So, according to Lemma 3.5 there exists a positive number r0 such that

det(In + (−1)jdjAk(t)) 6= 0 for t ∈ I, (−1)j(t− tk) < 0 (j = 1, 2)

and

‖(In + (−1)jdjA0(t))
−1‖ 6 r0 for t ∈ I, (−1)j(t− tk) < 0 (j = 1, 2)(4.2)

for every sufficiently large k. Hence, there exists a natural k0 such that problem

(1.1k), (1.2k) has a unique solution xk for every k > k0.

Let zk(t) = xk(t) − x0(t) for k ∈ {k0, k0 + 1, . . .}. First, consider the case when

tk > t0 (k = k0, k0 + 1, . . .). Below, for this case, we assume that k > k0.

Let ε be an arbitrary small positive number. It is not difficult to check that

zk(t) = zk(tk + ε)+

∫ t

tk+ε

dA0(s) · zk(s)+

∫ t

tk+ε

dĀk2(s) ·xk(s)+ f̄k2(t)− f̄k2(tk + ε)

for t > tk + ε, where Ākj(t) = Akj(t) − A0j(t), f̄kj(t) = fkj(t) − f0j(t) (j = 1, 2).

Thanks to (1.10) and the definition of a solution of system (1.1k), we get

djxk(t) = djAk(t) · xk(t) + djf(t) for t ∈ I (j = 1, 2).(4.3)
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Using the integration-by-parts formula (1.6), equalities (4.3), the general integration-

by-parts formula (1.7) and equality (1.9) we conclude

∫ t

tk+ε

dĀk2(s) · xk(s)

= Āk2(t) · xk(t)− Āk2(tk + ε) · xk(tk + ε)−

∫ t

tk+ε

Āk2(s) dxk(s)

+
∑

tk+ε<s6t

d1Āk2(s) · d1xk(s)−
∑

tk+ε6s<t

d2Āk2(s) · d2xk(s)

= Āk2(t) · xk(t)− Āk2(tk + ε) · xk(tk + ε)

−

∫ t

tk+ε

Āk2(s)( dAk(s) · xk(s) + dfk(s))

+
∑

tk+ε<s6t

d1Āk2(s) · (d1Ak(s) · xk(s) + d1fk(s))

−
∑

tk+ε6s<t

d2Āk2(s) · (d2Ak(s) · xk(s) + d2fk(s)) for t > tk + ε.

Therefore,

zk(t) = zk(tk + ε) + Jk2(t, tk + ε) +Qk2(t, tk + ε) +

∫ t

tk+ε

dA0(s) · zk(s)(4.4)

for t > tk + ε, where

Jkj(t, τ) = Ākj(t) · xk(t)− Ākj(τ) · xk(τ) −

∫ t

τ

Ākj(s) dAk(s) · xk(s)

+
∑

s∈]τ,t]

d1Ākj(s) · d1Ak(s) · xk(s)

−
∑

s∈[τ,t[

d2Ākj(s) · d2Ak(s) · d2xk(s) for τ < t (j = 1, 2),

Jkj(t, t) ≡ On×n (j = 1, 2), Jkj(t, τ) = −Jkj(τ, t) for t < τ (j = 1, 2);

Qkj(t, τ) ≡ f̄kj(t)− f̄kj(τ) − B(Ākj , fk)(t) + B(Ākj , fk)(τ) (j = 1, 2).

LetB0 be a matrix-function defined by B0(tk+ε) = A0(tk+ε) andB0(s) = A0(s−)

for s > tk + ε. Obviously,

d2B0(tk + ε) = d2A0(tk + ε) and d1(B0(s)−A0(s)) = −d1A0(s) for s > tk + ε.

Hence, according to (1.5),

∫ t

tk+ε

dA0(s) · zk(s) =

∫ t

tk+ε

dB0(s) · zk(s) + d1A0(t) · zk(t) for t > tk + ε.
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Consequently, thanks to (2.3), it follows from (4.4) that

zk(t) = (In − d1A0(t))
−1

(

zk(tk + ε) + Jk2(t, tk + ε) +Qk2(t, tk + ε)

+

∫ t

tk+ε

dB0(s) · zk(s)

)

for t > tk + ε.

Let r1 = r0 + 1. Due to (4.1) and estimate (4.2), without loss of generality we get

‖zk(t)‖ 6 r1

(

‖zk(tk + ε)‖+ ‖Jk2(t, tk + ε)‖+ ‖Qk2(t, tk + ε)‖(4.5)

+

∫ t

tk+ε

‖zk(τ)‖ d‖V (B0)(τ)‖

)

for t > tk + ε.

Let

αk = sup
t∈I,t6=tk

{‖Āk2(t)‖}, βk = sup
t∈I,t6=tk

{‖f̄k2(t)‖}, γk = sup
t∈I,t6=tk

{
∣

∣

∣

∣

∨

]tk,t[

(Ak)

∣

∣

∣

∣

}

.

Then by (2.10) and (2.11) we have

lim
k→∞

αk(1 + γk) = lim
k→∞

βk(1 + γk) = 0.(4.6)

It is evident that

‖Jk2(t, tk + ε)‖ 6 2αk‖xk‖k2 + αkγk‖xk‖k2

+ 2αk‖xk‖k2

(

∑

tk+ε<s6t

‖d1Ak(s)‖+
∑

tk+ε6s<t

‖d2Ak(s)‖

)

and, therefore,

‖Jk2(t, tk + ε)‖ 6 εk‖xk‖k2 for t > tk + ε,(4.7)

where εk = αk(2 + 3γk) (k = 1, 2, . . .). Moreover, if we take into account the fact

that the operator B is linear with respect to each of its variables and equals zero if

the second variable is a constant function, then we obtain

‖B(Āk2, fk)(t)− B(Āk2, fk)(tk + ε)‖

6 ‖B(Āk2, f̄k2)(t) − B(Āk2, f̄k2)(tk + ε)‖

+ ‖B(Āk2, f0)(t)− B(Āk2, f0)(tk + ε)‖ for t > tk + ε.
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Let r2 =
∨

I

(A0) and r3 =
∨

I

(f0). By the definition of the operator B, we have

‖B(Āk2, f̄k2)(t)− B(Āk2, f̄k2)(tk + ε)‖ 6 2αkβk + βk(γk + r2) for t > tk + ε.

Moreover, using the integration-by-parts formula we find

‖B(Āk2, f0)(t) − B(Āk2, f0)(tk + ε)‖

6 αk

t
∨

tk+ε

(f0) + 2αk

(

∑

tk+ε<s6t

‖d1f0(s)‖+
∑

tk+ε6s<t

‖d2f0(s)‖

)

for t > tk + ε

and, consequently,

‖B(Āk2, f0)(t)− B(Āk2, f0)(tk + ε)‖ 6 3αkr3 for t > tk + ε.

Further,

‖Qk2(t, tk + ε)‖ 6 δk for t > tk + ε,(4.8)

where δk = βk(2 + 2αk + γk + r2) + 3αkr3. From (4.5), by (4.7) and (4.8) we get

‖zk(t)‖ 6 r1

(

‖zk(tk + ε)‖+ εk‖xk‖k2 + δk +

∫ t

tk+ε

‖zk(τ)‖ d‖V (B0)(τ)‖

)

(4.9)

for t > tk + ε. So, according to the Gronwall inequality (see [22], Theorem I.4.30)

‖zk(t)‖ 6 r1(‖zk(tk + ε)‖+ εk‖xk‖k2 + δk) exp(r1‖V (B0)(t)− V (B0)(tk)‖)

6 r1
(

‖zk(tk + ε)‖+ εk‖xk‖k2 + δk
)

exp(r1r2) for t > tk + ε.

Now, passing to the limit in the last inequality for ε → 0, we conclude

‖zk‖k2 6 r1
(

‖zk(tk+)‖+ εk‖xk‖k2 + δk
)

exp(r1r2).(4.10)

In virtue of (4.6), we find

lim
k→∞

εk = 0.(4.11)

Therefore, there exists a natural k1 > k0 such that

r1 exp(r1r2)εk <
1

2
(k > k1).
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Due to this inequality, (4.10) implies

‖xk‖k2 6 ‖x0‖k2 + r1(‖zk(tk+)‖+ εk‖xk‖k2 + δk) exp(r1r2) (k > k1),

which, due to (2.12) yields that the sequence ‖xk‖k2 (k = k1, k1 +1, . . .) is bounded.

In view of conditions (2.10) and (2.11) we have

lim
k→∞

δk = 0.(4.12)

Moreover, using (2.12) we get

lim
k→∞

zk(tk+) = lim
k→∞

(xk(tk+)− x0(tk+)) = lim
k→∞

(xk(tk+)− x0(t0+))

= lim
k→∞

(

[(In + d2A(tk))xk(tk) + d2fk(tk)]

− [(In + d2A(t0))x0(t0) + d2f0(t0)]
)

= lim
k→∞

(ck2 − c02) = 0.

Therefore, by this, (4.11) and (4.12), it follows from (4.10) that

lim
k→∞

‖zk‖k2 = 0.

Analogously to (4.4), we can show that

(4.13) zk(t) = zk(tk − ε)− Jk2(tk − ε, t)−Qk2(tk − ε, t)−

∫ tk−ε

t

dA0(s) · zk(s)

for t 6 tk − ε. Let now the matrix-function B0 be defined by B0(tk − ε) = A0(tk − ε)

and B0(s) = A0(s+) for s < tk − ε. It is evident that

d1B0(tk − ε) = d1A0(tk − ε) and d2(B0(s)−A0(s)) = −d2A0(s) for s < tk − ε.

Hence, according to (1.5),

∫ tk−ε

t

dA0(s) · zk(s) =

∫ tk−ε

t

dB0(s) · zk(s) + d2A0(t) · zk(t) for t < tk − ε.

Using these equalities, from (4.13) we obtain

zk(t) = (In + d2A0(t))
−1

(

zk(tk − ε)− Jk2(tk − ε, t)−Qk2(tk − ε, t)

−

∫ tk−ε

t

dA0(s) · zk(s)

)

for t < tk − ε.
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From this, analogously as above, we have

‖zk‖k1 6 r1(‖zk(tk−)‖+ εk‖xk‖k1 + δk) exp(r1r2)(4.14)

and, in addition, the sequence ‖xk‖k2 (k = k1, k1 + 1, . . .) is bounded.

Thanks to (2.10) and (2.11),

lim
k→∞

(

‖d1A(tk) + d2A(tk)‖+ ‖d1fk(tk) + d2fk(tk)‖
)

= 0.

Using this and (2.12), we conclude

lim
k→∞

zk(tk−) = lim
k→∞

(xk(tk−)− x0(tk−)) = lim
k→∞

(xk(tk−)− x0(t0+))

= lim
k→∞

(

[(In − d1A(tk))xk(tk)− d1fk(tk)]

− [(In + d2A(t0))x0(t0) + d2f0(t0)]
)

= lim
k→∞

(

[(In + d2A(tk))ck + d2fk(tk)]

− [(In + d2A(t0))x0(t0) + d2f0(t0)]
)

− lim
k→∞

(

d1A(tk) + d2A(tk))ck − (d1fk(tk) + d2fk(tk)
)

= lim
k→∞

(ck2 − c02) = 0.

Therefore, due to (4.14), taking into account (4.11) and (4.12), we find

lim
k→∞

‖zk‖k1 = 0.

So, condition (2.12) holds for tk > t0 (k = 1, 2, . . .).

In a similar way, we can prove the theorem for the cases when tk < t0 (k = 1, 2, . . .)

or tk = t0 (k = 1, 2, . . .), as well. �

P r o o f of Theorem 2.3. In view of condition (2.15), analogously to the proof of

Theorem 2.2, we can show that the Cauchy problem (2.17k), (2.18k) has a unique

solution x∗
k for every sufficiently large k. Moreover, according to Lemma 2.2, the

mapping x → Hkx + hk establishes a one-to-one correspondence between the so-

lutions of problem (1.1k), (1.2k) and the solutions of problem (2.17k), (2.18k) for

every natural k. So, problem (1.1k), (1.2k) has a unique solution xk, and x∗
k(t) =

Hk(t)xk(t) + hk(t) for every sufficiently large k.

Conditions (2.15), (2.18)–(2.21) guarantee the fulfillment of the conditions of The-

orem 2.2 for the Cauchy problem (2.16), (2.17) and the sequence of the Cauchy

problems (2.17k), (2.18k) for every sufficiently large k. Hence, by Theorem 2.2,

lim
k→∞

sup
t∈I,t6=tk

{‖x∗
k(t)− x∗

0(t)‖} = 0.

Thus condition (2.22) holds. �
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P r o o f of Corollary 2.1. Let us verify the conditions of Theorem 2.3. From (2.6),

(2.7) it follows that condition (2.18) holds, as well as the condition

lim
k→∞

H−1
k (t) = H−1

0 (t) uniformly on I.(4.15)

Put hk(t) ≡ −Hk(t)ϕk(t) (k = 1, 2, . . .). In view of (2.4) and (2.7), we get

lim
k→∞

Hk(tk) = Q0,

where Q0 = H0(t0−) if tk < t0, Q0 = H0(t0) if tk = t0, and Q0 = H0(t0+) if tk > t0

for every sufficiently large k. By this and (2.25), (2.19) is fulfilled for c∗0 = Q0(t0)c0.

Further, by (2.8) and (2.9), conditions (2.23) and (2.24) hold uniformly on I, where

A∗
k(t) = I(Hk, Ak)(t) − I(Hk, Ak)(tk) for t ∈ I (k = 0, 1, . . .);

f∗
0 (t) = B(H0, f0)(t)− B(H0, f0)(t0)

and

f∗
k (t) = B(Hk, fk − ϕk)(t)− B(Hk, fk − ϕ)(tk)

+

∫ t

tk

dI(Hk, Ak)(s) · ϕk(s) for t ∈ I (k = 1, 2, . . .).

Taking into account Lemma 3.2, it is not difficult to see that problem (2.16), (2.17)

has a unique solution x∗
0(t) ≡ H0(t)x0(t).

Thanks to Theorem 2.3 and Remark 2.1, we have

lim
k→∞

(Hk(t)xk(t)−Hk(t)ϕk(t)) = x∗
0(t)

uniformly on I. Hence, by virtue of conditions (2.7) and (4.15), condition (2.27) is

valid. �

P r o o f of Theorem 2.1. The sufficiency follows from Corollary 2.1 if we assume

ϕk(t) = 0 (k = 1, 2, . . .).

Let us show the necessity. Let ck ∈ R
n (k = 0, 1, . . .) be an arbitrary sequence of

constant vectors satisfying (2.1) and let ej = (δij)
n
i=1 (j = 1, . . . , n).

In view of (2.3), we can assume without loss of generality that problem (1.1k),

(1.2k) has a unique solution xk for every natural k.

For any k ∈ {0, 1, . . .} and j ∈ {1, . . . , n}, let ykj(t) = xk(t) − xkj(t), where xkj

is the unique solution of system (1.1k) under the Cauchy condition x(tk) = ck − ej .

Moreover, let Yk(t) be the matrix-function whose columns are yk1(t), . . . , ykn(t).
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It can be easily shown that Y0 and Yk (k = 1, 2, . . .) satisfy, respectively, homoge-

neous systems (1.10) and (1.1k0) (k = 1, 2, . . .), and

ykj(tk) = ej (j = 1, . . . , n; k = 0, 1, . . .).(4.16)

If
n
∑

j=1

αjykj(t) ≡ on

for some natural k and αj ∈ R (j = 1, . . . , n); then using (4.16) we have

n
∑

j=1

αjej = on

and, therefore, α1 = . . . = αn = 0, i.e. Y0 and Yk (k = 1, 2, . . .) are the fundamental

matrices, respectively, of the homogeneous systems (1.10) and (1.1k0) (k = 1, 2, . . .).

Thanks to Corollary 2.1 and Lemma 3.4, conditions (3.1)–(3.4) hold uniformly on I.

We can assume without loss of generality that Yk(tk) = In (k = 0, 1, . . .). We put

Hk(t) ≡ Y −1
k (t) (k = 0, 1, . . .) and verify conditions (2.6)–(2.9).

Conditions (2.6) and (2.7) coincide with (3.3) and (3.4), respectively.

According to equality (1.11), we have

Hk(t) + B(Hk, Ak)(t) ≡ In (k = 0, 1, . . .).(4.17)

Thus condition (2.8) is evident, since by the definition of the operator I we find

I(Hk, Ak)(t) ≡ On×n (k = 0, 1, . . .).(4.18)

On the other hand, in view of (4.17) and equalities Hk(tk) = In (k = 0, 1, . . .),

according to Lemma 3.1 and the definition of a solution of system (1.1k), we have

B(Hk, fk)(τ)|
t
tk

= B(Hk, xk − yk)(τ)|
t
tk

= B(Hk, xk)(τ)|
t
tk

− B(Hk, yk)(τ)|
t
tk

= B(Hk, xk)(τ)|
t
tk

−

∫ t

tk

dB(Hk, Ak)(s) · xk(s)

= Hk(t)xk(t)−Hk(tk)xk(tk)

−

∫ t

tk

dHk(s) · xk(s)−

∫ t

tk

d(In −Hk(s)) · xk(s)

= Hk(t)xk(t)− xk(tk) for t ∈ I (k = 0, 1, . . .),
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where yk(t) =
∫ t

tk
dAk(s) · xk(s) (k = 0, 1, . . .). Hence,

B(Hk, fk)(τ)|
t
tk

− B(H0, f0)(τ)|
t
t0

(4.19)

= (Hk(t)xk(t)−H0(t)x0(t))− (xk(tk)− x0(t0))

for t ∈ I (k = 1, 2, . . .).

Due to the necessity conditions of the theorem condition (1.3) holds. This, (2.1),

(4.18) and (4.19) imply that condition (2.9) holds uniformly on I. �

P r o o f of Theorem 2.2′. Thanks to conditions (2.31), (2.32) and (2.33), condi-

tions (2.10) and (2.11) hold. The theorem follows from Theorem 2.2 and Remark 2.1.

�

P r o o f of Theorem 2.3′. Condition (2.34) is equivalent to condition (2.19).

Moreover, due to (2.35), (2.36) and (2.37), conditions (2.23) and (2.24) hold. There-

fore, the theorem follows from Theorem 2.3 and the remark analogous to Remark 2.1.

�

P r o o f of Corollary 2.1′. Let us verify the conditions of Theorem 2.3′. The

validity of conditions (2.18), (2.34) and (4.15) can be shown in a way similar to the

proof of Corollary 2.1. In addition, by (4.15) there exists a positive number r such

that

‖H−1
k (t)‖ 6 r for t ∈ I (k = 0, 1, . . .).

Using Lemma 3.1, from this estimate, (2.7), (2.28), (2.29), (2.38) and (4.15) we find

that condition (2.35) holds, and conditions (2.36) and (2.37) are fulfilled uniformly

on I, where

hk(t) = −Hk(t)ϕk(t), A∗
k(t) = I(Hk, Ak)(τ)|

t
tk
for t ∈ I (k = 0, 1, . . .);

f∗
0 (t) = B(H0, f0)(τ)|

t
t0
, f∗

k (t) = B(Hk, fk − ϕk)(τ)|
t
tk

+

∫ t

tk

dB(Hk, Ak)(s) · ϕk(s)

for t ∈ I (k = 1, 2, . . .).

Further, the rest of the proof coincides with the proof of Corollary 2.1. �

P r o o f of Theorem 2.1′. Sufficiency follows from Corollary 2.1′ if we assume

ϕk(t) = on (k = 1, 2, . . .). The proof of necessity is the same as in the proof of The-

orem 2.1. We only note that by condition (2.7) and equality (4.17), condition (2.28)

is valid, and condition (2.29) is fulfilled uniformly on I. Moreover, according to Re-

mark 2.3, it is evident that sufficiency immediately follows from Theorem 2.1. �
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P r o o f of Corollary 2.2. By (2.41), (2.42) and (2.43) (or (2.44)), the conditions

lim
k→∞

∑

s6t;s,t∈I

(d1Hk(s) · d1Ak(s)− d1H0(s) · d1A0(s)) = On×n,

lim
k→∞

∑

s6t;s,t∈I

(d1Hk(s) · d1fk(s)− d1H0(s) · d1f0(s)) = on,

lim
k→∞

∑

s6t;s,t∈I

(d2Hk(s) · d2Ak(s)− d2H0(s) · d2A0(s)) = On×n

and

lim
k→∞

∑

s6t; s,t∈I

(d2Hk(s) · d2fk(s)− d2H0(s) · d2f0(s)) = on

are fulfilled uniformly on I. From this, the integration-by-parts formula, (2.39)

and (2.40) we obtain that conditions (2.29) and (2.30) are fulfilled uniformly on I.

Therefore, the corollary follows from Theorem 2.1′. �

P r o o f of Corollary 2.3. Using (2.7), (2.32) and (2.45) we conclude that

djA
∗
0(t) ≡ On×n (j = 1, 2). Hence, in view of (2.3) we have

det(In + (−1)jdjA
∗
0(t)) 6= 0 for t ∈ I, (−1)j(t− t0) < 0 and also

for t = t0 if j ∈ {1, 2} is such that (−1)j(tk − t0) > 0 for every k ∈ {1, 2, . . .}.

On the other hand, (2.7), (2.32), (2.33), (2.45) and (2.46) yield that the conditions

lim
k→∞

(B(Hk, Ak)(t)− B(Hk, Ak)(tk)) = B(In, A
∗
0)(t)− B(In, A

∗
0)(t0)

and

lim
k→∞

(B(Hk, fk)(t)− B(Hk, fk)(tk)) = B(In, f
∗
0 )(t) − B(In, f

∗
0 )(t0)

hold uniformly on I. Thus, Corollary 2.3 is a direct consequence of Theorem 2.1′. �

P r o o f of Corollary 2.4. Let

Ckl(t) = In − (Akl(t)−Akl(tk)) + (Bl(t)−Bl(tk)) (l = 1, . . . ,m; k = 1, 2, . . .).

Thanks to (2.48), without loss of generality we can assume that the matrix-functions

Hkl (l = 1, . . . ,m) and Ckl (l = 1, . . . ,m) are nonsingular for every natural k. Using
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now Lemma 3.1, we find that

B(Ckj ,B(Hkj−1, Ak))(τ)|
t
tk

≡ B(Hkj , Ak)(τ))|
t
tk
,

B(Ckj ,B(Hkj−1, fk))(τ)|
t
tk

≡ B(Hkj , fk)(τ)|
t
tk

and

I(Ckj , I(Hkj−1 , Ak))(τ)|
t
tk

≡ I(Hkj , Ak)(τ)|
t
tk

(j = 1, . . . ,m; k = 1, 2, . . .).

In addition, by conditions (2.47)–(2.50), conditions (2.6) and (2.28) hold, and con-

ditions (2.7), (2.29) and (2.30) are fulfilled uniformly on I, where H0(t) = In and

Hk(t) = Hkm−1(t) (k = 1, 2, . . .). The corollary follows from Theorem 2.1′. �

P r o o f of Corollary 2.5. Let us show sufficiency. Let Hk(t) = Z−1
k (t)

(k = 0, 1, . . .) in Theorem 2.1′. Thanks to (2.53), there exists a positive num-

ber r such that ‖Z−1
k (t)‖ 6 r for t ∈ I (k = 0, 1, . . .). Using this estimate, by (1.11),

the definition of the operator B and the integration-by-parts formula, we have

‖Z−1
k (t) + B(Z−1

k , Ak)(t)− Z−1
k (s)− B(Z−1

k , Ak)(s)‖

= ‖B(Z−1
k , Ak −Bk)(t)− B(Z−1

k , Ak −Bk)(s)‖

=

∥

∥

∥

∥

∫ t

s

Z−1
k (τ) d(Ak(τ)−Bk(τ)) −

∑

s<τ6t

d1Z
−1
k (τ) · d1(Ak(τ)−Bk(τ))

+
∑

s6τ<t

d2Z
−1
k (τ) · d2(Ak(τ) −Bk(τ))

∥

∥

∥

∥

6 r

t
∨

s

(Ak −Bk) + 2r
∑

s<τ6t

‖d1(Ak(τ) −Bk(τ))‖

+ 2r
∑

s6τ<t

‖d2(Ak(τ) −Bk(τ))‖

6 5r
t
∨

s

(Ak −Bk) for s < t (k = 0, 1, . . .).

Consequently,

∨

I

(Hk + B(Hk, Ak)) 6 5r
∨

I

(Ak −Bk) (k = 0, 1, . . .)

and due to (2.51) estimate (2.28) holds. Conditions (2.29) and (2.30) coincide with

conditions (2.54) and (2.55), respectively. Sufficiency follows from Theorem 2.1′.
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Let us show necessity. Let Bk(t) = Ak(t) (k = 0, 1, . . .). Then Zk(t) ≡ Yk(t)

(k = 0, 1, . . .), where Y0 and Yk (k = 1, 2, . . .) are fundamental matrices, respec-

tively, of systems (1.10) and (1.1k0). Analogously, as in the proof of Theorem 2.1,

conditions (2.53) and (4.19) are valid. In addition, condition (2.54) coincides with

condition (2.29), and condition (2.55) follows from condition (4.19). �

P r o o f of Corollary 2.6. Due to conditions (2.56) and (2.57), without loss of

generality, we can assume that condition (2.52) holds for every natural k. Condi-

tion (2.53) follows from condition (2.57) by representation (2.62).

Let us verify condition (2.54). Using the integration-by-parts formula we find

B(Z−1
k , Ak)(t)− B(Z−1

k , Ak)(s)

=

∫ t

s

Z−1
k (τ) dAk(τ)−

∑

s<τ6t

d1Z
−1
k (τ) · d1Ak(τ)

+
∑

s6τ<t

d2Z
−1
k (τ) · d2Ak(τ) for s < t (k = 0, 1, . . .).

In addition, in virtue of equalities (1.12), we have

djZ
−1
k (t) ≡ −Z−1

k (t)djBk(t) · (In + (−1)jdjBk(t))
−1 (j = 1, 2; k = 0, 1, . . .).

Consequently, due to (1.4), we get

B(Z−1
k , Ak)(t)− B(Z−1

k , Ak)(s) =

∫ t

s

Z−1
k (τ) dA(Bk, Ak)(τ) (k = 0, 1, . . .)

for s < t. In the same way we establish the last equalities for the case when t < s.

Analogously, we check the equalities

B(Z−1
k , fk)(t)− B(Z−1

k , fk)(s)

=

∫ t

s

Z−1
k (τ) dA(Bk, fk)(τ) for s, t ∈ I (k = 0, 1, . . .).

Therefore, equalities (2.54) and (2.55) coincide, respectively, with equalities (2.58)

and (2.59). The corollary follows from Corollary 2.5. �

P r o o f of Corollary 2.7. The corollary follows from Corollary 2.6 if we assume

Bk(t) = Sc(Ak)(t) (k = 0, 1, . . .). In addition, we note that condition (2.54) has

the form (2.63), equality (2.57) is equivalent to conditions (2.64) and (2.65), and by

virtue of (2.62) condition (2.58) coincides with (2.66). �

P r o o f of Corollary 2.8. The corollary follows from Corollary 2.6 if we assume

that Bk(t) = diag(Ak(t)) (k = 0, 1, . . .). �
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