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Abstract. We consider the class H0 of sense-preserving harmonic functions f = h + g
defined in the unit disk |z| < 1 and normalized so that h(0) = 0 = h′(0) − 1 and g(0) =
0 = g′(0), where h and g are analytic in the unit disk. In the first part of the article we
present two classes P0H(α) and G0H(β) of functions from H0 and show that if f ∈ P0H(α)

and F ∈ G0H(β), then the harmonic convolution is a univalent and close-to-convex harmonic
function in the unit disk provided certain conditions for parameters α and β are satisfied.
In the second part we study the harmonic sections (partial sums)

sn,n(f)(z) = sn(h)(z) + sn(g)(z),

where f = h+g ∈ H0, sn(h) and sn(g) denote the n-th partial sums of h and g, respectively.
We prove, among others, that if f = h + g ∈ H0 is a univalent harmonic convex mapping,
then sn,n(f) is univalent and close-to-convex in the disk |z| < 1/4 for n > 2, and sn,n(f) is
also convex in the disk |z| < 1/4 for n > 2 and n 6= 3. Moreover, we show that the section
s3,3(f) of f ∈ C0H is not convex in the disk |z| < 1/4 but it is convex in a smaller disk.

Keywords: harmonic mapping; partial sum; univalent mapping; convex mapping; starlike
mapping; close-to-convex mapping; harmonic convolution; direction convexity preserving
map
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1. Introduction and main results

One of the interesting features of a univalent harmonic mapping f is that

if f is convex (starlike, convex in a direction α, respectively) in the unit disk

D = {z ∈ C : |z| < 1}, then it does not hold in general that the function g defined by
g(z) = r−1f(rz) is convex (starlike, convex in a direction α, respectively), for r < 1.

The aim of this article is to discuss properties such as convolution results and sections

of univalent harmonic mappings in the plane. Our theorems are generalizations of

known results for univalent analytic mappings, which we now recall.

The class S of all univalent mappings h analytic in D normalized by h(0) =

h′(0) − 1 = 0 is the central object in the study of univalent function theory, see

[8], [24]. In 1928, Szegő [36] proved that if h ∈ S then all sections sn(h)(z) :=
n∑

k=1

akz
k of h =

n∑
k=1

akz
k are univalent in the disk |z| < 1/4 and the number 1/4

cannot be replaced by a larger one. There exists a considerable amount of results

in the literature concerning sections of mappings from S and some of its various
geometric subclasses mentioned later in this section. We refer the reader to [8],

Section 8.2, pages 243–246, for a general survey and to recent papers [20], [21],

[22], [23], which stimulated further interest on this topic. Moreover, the theory of

Hadamard convolution also plays a major role in dealing with such problems. See [9],

[10], [32], [34]. However, corresponding questions for the class of univalent harmonic

mappings seem to be difficult to handle as can be seen from the recent investigations

of the authors [3], [4], [15], [16].

Let H be the class of all complex-valued harmonic functions f = h + g defined

on D, where h and g are analytic on D with the normalization h(0) = 0 = h′(0)− 1

and g(0) = 0. Set

H0 = {f = h+ g ∈ H : g′(0) = 0}.

According to the work of Lewy [13], a function f = h + g ∈ H is locally univalent
and sense-preserving on D if and only if its Jacobian Jf (z) is positive in D, where

Jf (z) = |fz(z)|2 − |fz(z)|2 = |h′(z)|2 − |g′(z)|2.

In view of this result, we observe that Jf (z) > 0 in D if and only if h′(z) 6= 0 in D and

the (second complex) dilatation ω(z) = g′(z)/h′(z) of f = h+ g is analytic in D and

has the property that |ω(z)| < 1 for z ∈ D.

Following the pioneering work of Clunie and Sheil-Small [2], let SH denote the

subclass of H of functions that are sense-preserving and univalent in D, and further

let S0
H = SH ∩ H0. The class S0

H reduces to S when g(z) is identically zero. Note
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that each f = h+ g ∈ H0 has the form

(1.1) h(z) = z +

∞∑

n=2

anz
n and g(z) =

∞∑

n=2

bnz
n.

For p > 1 and q > 2, we define the harmonic sections (partial sums) sp,q(f) of

f = h+ g ∈ H0 as follows:

sp,q(f)(z) = sp(h)(z) + sq(g)(z).

Also, denote by ωp,q(f) the dilatation of the harmonic sections sp,q(f)(z).

Recall that a domain Ω is said to be close-to-convex if the complement of Ω can be

written as a union of non-intersecting half-lines. A harmonic function f ∈ H is said
to be convex (close-to-convex, starlike, respectively) in |z| < r if it is univalent and

the range f(|z| < r) is convex (close-to-convex, starlike with respect to the origin,

respectively). By C0
H (K0

H , S0∗
H , respectively) we denote the subclasses of functions

in S0
H which are convex (close-to-convex, starlike, respectively) in |z| < 1 just like C,

K and S∗ are the subclasses of functions in S mapping D onto these respective

domains. The reader is referred to [2], [5], [6], [26] for many interesting results on

planar univalent harmonic mappings.

Szegő [36] also proved that if h ∈ C (S∗), then all sections sn(h) of h are convex

(starlike) in the disk |z| < 1/4. Miki [19] showed that the same holds for close-to-con-

vex functions in S. We refer to [1], [12], [18], [20], [21], [27], [28], [32], [34], [35]
for many interesting results and expositions on this topic for the case of conformal

mappings. For the case of univalent harmonic mappings, almost nothing appears

in the literature until recently, where for a given α < 1, the authors in [15], [16]

considered the class

P0
H(α) = {f = h+ g ∈ H0 : Re (h′(z)− α) > |g′(z)| for z ∈ D}

and discussed the properties of harmonic sections of functions from the class P0
H :=

P0
H(0) (see Lemmas E and F). We note that functions in P0

H(α) are univalent and

close-to-convex in the unit disk D whenever 0 6 α < 1. Moreover, P0
H(α) ⊂ P0

H for

0 6 α < 1 and P0
H ⊂ K0

H , so P0
H ( S0

H . Also for β < 1, we define

G0
H(β) =

{
f = h+ g ∈ H0 : Re

(h(z)
z

)
− β >

∣∣∣
g(z)

z

∣∣∣ for z ∈ D
}

and observe that G0
H(β) ⊂ G0

H(0) := G0
H for 0 6 β < 1. The classes P0

H(α) and G0
H(β)

will be considered to state and prove a new convolution result (see Theorem 1.1) along

the lines of ideas of Ponnusamy [25] for analytic functions.
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We define the harmonic convolution (Hadamard product) as follows: For f =

h+ g ∈ H with the series expansions for h and g as in (1.1), and F = H +G ∈ H,
where

H(z) = z +

∞∑

n=2

Anz
n and G(z) =

∞∑

n=1

Bnz
n,

we define

(f ∗ F )(z) = z +

∞∑

n=2

anAnz
n +

∞∑

n=1

bnBnzn.

Clearly, f ∗ F = F ∗ f . Then, for two subsets P ,Q ⊂ H, we define P ∗ Q = {f ∗ g :
f ∈ P , g ∈ Q}.

Theorem 1.1. Let α, β ∈ [0, 1) and γ = 1− 2(1−α)(1− β). Then hold P0
H(α) ∗

G0
H(β) ⊂ K0

H , whenever γ > 0. In particular, P0
H ∗ G0

H(1/2) ⊂ K0
H and P0

H(1/2) ∗
G0
H ⊂ K0

H .

The proof of Theorem 1.1 will be given in Section 2. We now present an example

which shows that there are harmonic functions in G0
H(β) that are not univalent in D.

Example 1.1. Consider the harmonic function f(z) = z + a(1 − β)z2, where

0 6 β < 1 and a ∈ C. By the definition of G0
H(β) it is clear that f ∈ G0

H(β) if and

only if |a| 6 1. A direct calculation shows that f is univalent in D if and only if

|a| 6 (1 − β)/2. Thus if a is a complex number such that |a| ∈ ((1 − β)/2, 1] then

f ∈ G0
H(β), but is not necessarily univalent in D.

Remark 1.1. Dorff in [3] (see also [4]) considered S0
H mappings that are convex in

one direction and these results have been extended by the present authors in [14], [17].

According to Theorem 1.1 and Example 1.1, it follows that the convolution of a non-

univalent harmonic function with a certain class of harmonic functions could still be

close-to-convex in D. Note that f(z) = z + z2/2 belongs to P0
H but is not convex

in D.

At this place it is worth recalling the well-known fact that the convolution of two

convex functions in C0
H is not necessarily univalent in D (see also [3]). To do this, we

consider the harmonic convex mapping f0 = h0 + g0 ∈ C0
H , where

(1.2) h0(z) =
2z − z2

2(1− z)2
and g0(z) =

−z2

2(1− z)2
.

The function f0 maps D harmonically onto the half-plane {w : Rew > −1/2} and
can be obtained as the vertical shear (i.e. shear in the direction π/2) of the function
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l(z) = z/(1 − z) with dilatation ω(z) = −z. That is, h0 and g0 are obtained as the

solution of the linear system

h0(z) + g0(z) = l(z) and g′0(z)/h
′
0(z) = −z

with the conditions h0(0) = g0(0) = 0 (see the shearing theorem due to Clunie

and Sheil-Small [2], Theorem 5.3). The function f0 plays the role of extreme for

certain extremal problems for the class C0
H . Now, we see that the convolution f0 ∗ f1

of the right-half plane mapping f0 and the hexagon mapping (see [7]) defined by

f1 = h1 + g1, where

h1(z) = z +

∞∑

n=2

z6n+1

6n+ 1
and g1(z) = −

∞∑

n=2

z6n−1

6n− 1
,

is not even locally univalent in D. This is because the dilatation ωf0∗f1 of f0 ∗ f1 has
the property that

|ωf0∗f1(z)| =
∣∣∣
(g0 ∗ g1)′(z)
(h0 ∗ h1)′(z)

∣∣∣ =
∣∣∣
z4(2 + z6)

1 + 2z6

∣∣∣ ≮ 1 for every z ∈ D.

In order to state other results, we need to recall some standard notations and

results on harmonic mappings.

A domain D ⊂ C is said to be convex in the direction α (α ∈ R) if for every

a ∈ C the set D ∩ {a + teiα : t ∈ R} is either connected or empty. A univalent
harmonic function f defined on |z| < r is said to be convex in the direction α if

f(|z| < r) is convex in the direction α. We denote by CH(α) the family of normalized

univalent harmonic functions which are convex in the direction α in D. We may set

C0
H(α) := CH(α) ∩H0.

Obviously, every function that is convex in the direction α (0 6 α < π) is nec-

essarily close-to-convex, but the converse is not true. Clearly, a convex function is

convex in every direction. The class of functions convex in one direction has been

studied by many mathematicians (see, for example, [3], [11]) as a subclass of func-

tions introduced by Robertson [29]. The case α = 0 (α = π/2) is called convex in

real (vertical) direction.

Concerning the classical result of Szegő [36] for the class C, it is natural to ask
whether every section of f ∈ C0

H is convex in some disk |z| < r. Thus, the first task

is to derive properties of sections sn,n(f) of f ∈ C0
H . Moreover, in our theorems we

see that s2,2(f) and s4,4(f) are (fully) convex in the disk |z| < 1/4. It is surprising to

see that s3,3(f0) is not convex in the disk |z| < 1/4 (see Theorem 4.2 and Figure 1),

where f0 is defined by (1.2).

This leads us to propose the following.
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Figure 1. Images of D1/4 under s3,3(f0)(z) = z + 3z2/2 + 2z3 −
(

z2/2 + z3
)

.

Problem 1.1. Suppose that f ∈ C0
H . Is each section sn,n(f) convex in the disk

|z| < 1/4 for n > 2 and n 6= 3?

In this article, we solve this problem and our solution implies that for n > 2

and n 6= 3, each section sn,n(f) is convex in the direction of the real axis in the

disk |z| < 1/4, in particular. On the other hand, Problem 1.1 remains open for the

sections sp,q(f) of f ∈ C0
H if p 6= q, p > 1 and q > 2. Thus, as in the case of conformal

mappings, it is natural to raise the following question.

Problem 1.2. Suppose that f ∈ S0
H (S0∗

H , K0
H , C0

H , C0
H(α)). Determine ̺p,q so

that each section sp,q(f) belongs to the corresponding class in the disk |z| < ̺p,q for

p > 1 and q > 2.

Solution to Problem 1.1 requires some ideas from the work of Ruscheweyh [31]

and Ruscheweyh and Salinas [33].

In Section 3, we discuss the close-to-convexity of sn,n(f). In Section 4, we prove

that s2,2(f) of f ∈ C0
H is convex in the disk |z| < 1/4 while s3,3(f0) is not convex in

the disk |z| < 1/4. Finally, in Section 5, we prove that (see Theorem 5.2) for n > 4,

each sn,n(f) is convex in the disk |z| < 1/4.

We end this section with the following conjecture.
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Conjecture 1.1. Suppose that f ∈ C0
H . Then s3,3(f) is convex in the direction

of the real axis as well as the imaginary axis in the disk |z| < 1/4.

2. Convolution theorem

We need the following well-known result which follows easily from the Herglotz

representation for analytic functions with positive real part in the unit disk.

Lemma A. If p is analytic in D, p(0) = 1, and Re p(z) > 1/2 in D then for any

function F analytic in D, the function p ∗ F takes values in the convex hull of the

image of D under F .

We next recall another important result due to Clunie and Sheil-Small [2], which

relates the harmonic mapping f = h+ g to the analytic functions Fλ = h+ λg.

Lemma B ([2]). If a harmonic mapping f = h+ g on D satisfies |g′(0)| < |h′(0)|
and the function Fλ = h+λg is close-to-convex for all |λ| = 1, then f is close-to-con-

vex and univalent in D.

P r o o f of Theorem 1.1. Let f1 ∈ P0
H(α) have the canonical decomposition

f1 = h1 + g1 with

(2.1) h1(z) = z +

∞∑

n=2

anz
n and g1(z) =

∞∑

n=2

bnz
n.

Let f2 ∈ G0
H(β) have the canonical decomposition f2 = h2 + g2 with

(2.2) h2(z) = z +

∞∑

n=2

Anz
n and g2(z) =

∞∑

n=2

Bnz
n.

Now, we define H = h1 ∗ h2 + g1 ∗ g2 and Hε = (h1 ∗ h2) + ε(g1 ∗ g2). Then

H(0) = 0 = Hε(0) and H
′
ε(0) = 1. We need to show that H ∈ K0

H . We remark that,

as (h1 ∗ h2)
′(0) = 1 > (g1 ∗ g2)′(0) = 0, by Lemma B, it is enough to prove that for

all ε with |ε| = 1, the function Hε is close-to-convex in D.

By using the representations (2.1) and (2.2) we have

H ′
ε(z) = 1 +

∞∑

n=2

nanAnz
n−1 + ε

∞∑

n=2

nbnBnz
n−1, |ε| = 1.

Now we claim that ReH ′
ε(z) > γ, which will prove that Hε is in P0

H(γ).
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Since f1 ∈ P0
H(α), the function Fε1 defined by

Fε1(z) = z +

∑∞
n=2

anz
n + ε1

(∑∞
n=2

bnz
n
)

1− α
, z ∈ D,

satisfies the condition ReF ′
ε1(z) > 0, for all ε1 with |ε1| = 1. A simple calculation

shows that the last inequality is equivalent to the inequality

(2.3) Re

(
1 +

1

2(1− α)

∞∑

n=2

nanz
n−1 +

ε1
2(1− α)

∞∑

n=2

nbnz
n−1

)
>

1

2
, z ∈ D.

Similarly, as the function f2 ∈ G0
H(β), for |ε2| = 1 we have the inequality

Re
(h2(z)

z
+ ε2

g2(z)

z

)
> β, z ∈ D,

which is equivalent to

(2.4) Re

(
1 +

1

2(1− β)

∞∑

n=2

Anz
n−1 +

ε2
2(1− β)

∞∑

n=2

Bnz
n−1

)
>

1

2
, z ∈ D.

Using Lemma A and the inequalities (2.3) and (2.4) we get

Re

(
1 +

1

4(1− α)(1 − β)

∞∑

n=2

nanAnz
n−1 +

ε1ε2
4(1− α)(1 − β)

∞∑

n=2

nbnBnz
n−1

)
>

1

2
.

With γ = 1− 2(1− α)(1− β), the above inequality becomes

Re

(
1 +

∞∑

n=2

nanAnz
n−1 + ε1ε2

∞∑

n=2

nbnBnz
n−1

)
> γ, z ∈ D,

which shows that ReH ′
ε1ε2(z) > γ for each |ε1| = 1 and |ε2| = 1. In particular, for

γ > 0, Hε(z) is close-to-convex for all ε with |ε| = 1. The proof is complete. �

3. Close-to-convexity of sections sn,n(f) of convex functions f

By using Lemma B due to Clunie and Sheil-Small [2], we obtain the following

result.

Theorem 3.1. Suppose that f = h + g ∈ H0 is sense-preserving in D and Fλ =

h+ λg is close-to-convex in D for every |λ| = 1. Then sn,n(f) is close-to-convex and

univalent in the disk |z| < 1/4 for n > 2.
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P r o o f. Let Fλ = h + λg be close-to-convex. Then f is locally univalent in D

and it follows that (see Miki [19]) sn(Fλ) is close-to-convex and univalent in the disk

|z| < 1/4 for all n > 2. In other words, for each n > 2, the section 4sn(Fλ)(z/4) is

close-to-convex and univalent in the unit disk |z| < 1. We observe that

4sn(Fλ)
(z
4

)
= 4sn(h)

(z
4

)
+ 4λsn(g)

(z
4

)
,

and so,
∣∣(4sn(h)

)′
(0)

∣∣ = 1 > 0 =
∣∣∣
(
4sn(g)

(z
4

))′
(0)

∣∣∣.

By Lemma B, we find that

4sn(h)
(z
4

)
+ 4sn(g)

(z
4

)
= 4sn,n(f)

(z
4

)

is close-to-convex and univalent in the disk |z| < 1 for all n > 2. The desired

conclusion follows. �

Remark 3.1. We wish to emphasize that if f = h + g ∈ S0∗
H , then it is not

necessarily true that the analytic functions Fλ = h + λg are univalent in D for all

|λ| = 1. For example, for |λ| = 1, we consider

ϕλ(z) =
z − 1

2
z2 + 1

6
z3

(1 − z)3
+ λ

1

2
z2 + 1

6
z3

(1− z)3
= h(z) + λg(z) = z +

∞∑

n=2

ϕλ,nz
n,

where

ϕλ,n =
1

6
(2n2(1 + λ) + 3n(1− λ) + (1 + λ)) for all n > 2.

When λ = −1, ϕλ(z) reduces to the analytic Koebe function k(z) = z/(1−z)2, which

is univalent and starlike in D. Moreover, ϕλ(z) is easily seen to be univalent only for

λ = −1. For ϕλ to be univalent in D, it is necessary that |ϕλ,n| 6 n for all n > 2.

For |λ| = 1 (λ 6= −1), we see that |ϕλ,n| > n for large values of n and hence, for these

values of λ, ϕλ(z) is not univalent in D. Also, we observe that K(z) = h+ g is the

harmonic Koebe mapping which is indeed starlike in D. This example shows that

there is a limitation on the use of Lemma B. However, an analogue of Theorem 3.1

holds for the family C0
H of univalent harmonic convex mappings.

Theorem 3.2. Let f = h+g ∈ C0
H . Then every section sn,n(f) is close-to-convex

in the disk |z| < 1/4 for n > 2. In particular, sn,n(f) is univalent and sense-pre-

serving in |z| < 1/4 for n > 2. The number 1/4 cannot be replaced by a greater

one.
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P r o o f. Let f = h + g ∈ C0
H . Then the analytic functions Fλ = h + λg are

close-to-convex in D (see [2], Theorem 5.7) for all |λ| = 1. According to the last

observation and Theorem 3.1, we obtain that every section sn,n(f) is close-to-convex

in the disk |z| < 1/4 for n > 2.

Next we prove the sharpness part. Consider the function f0 = h0 + g0 ∈ C0
H

defined by (1.2). Then for n = 2, we see that s′2(h0)(z) = 1+3z and s′2(g0)(z) = −z.

Therefore, the dilatation ω2,2(f0) of f0 is given by

(3.1) ω2,2(f0)(z) =
s′2(g0)(z)

s′2(h0)(z)
=

−z

1 + 3z
.

Since the Möbius transformation w = M(z) = −z/(1 + 3z) maps the disk |z| < 1/4

onto the disk |w − 3/7| < 4/7, the relation (3.1) implies that |ω2,2(f0)(z)| < 1 for

|z| < 1/4. Moreover, at the boundary point z = −1/4, we have ω2,2(f0)(−1/4) =

M(−1/4) = 1, which shows that the radius 1/4 cannot be replaced by a larger one.

The proof is complete. �

4. The sections s2,2(f) and s3,3(f0)

Let A0 denote the class of all functions h(z) =
∞∑
k=1

akz
k analytic on the unit disk D

and A = {h ∈ A0 : h′(0) = 1}.
A function g ∈ A0 is called direction convexity preserving (g ∈ DCP) if and only

if g ∗ h ∈ C(α) for all h ∈ C(α) and all α ∈ R. Here C(α) denotes the family of
normalized univalent analytic functions in D which are convex in the direction α.

The class DCP is somewhat special in the following sense: for g ∈ DCP, we do

not necessarily have gr(z) := g(rz) ∈ DCP for 0 < r < 1. We therefore define the

DCP radius of an analytic function g to be max{r : g̺ ∈ DCP for 0 < ̺ < r}.
From [31], we observe the following fact.

Lemma C. s2(z) = z + z2 ∈ DCP in the disk |z| < 1/4.

We extend this lemma in Theorem 5.1 for an arbitrary section sn(z) of z/(1− z).

Let us now recall a convolution characterization for a function to be in the class

DCP.

Lemma D ([33]). Let p ∈ A0. Then p ∗̃ f := p ∗ h + p ∗ g ∈ C0
H for every

f = h+ g ∈ C0
H if and only if p ∈ DCP.

Before we proceed to state and prove our main results of this section, it is appro-

priate to include the definition of (fully) convex mappings and some known results
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on sections of functions from the class P0
H . For sense-preserving harmonic functions

f = h+ g ∈ H, one has

∂

∂θ

(
arg

( ∂

∂θ
f(reiθ)

))
= Re

D2f(z)

Df(z)

= Re
z(h′(z) + zh′′(z)) + z(g′(z) + zg′′(z))

zh′(z)− zg′(z)
,

where z = reiθ, Df = zfz − zfz and D2f = D(Df). Recall that if f = h+ g ∈ H
is sense-preserving, f(z) 6= 0 for all z ∈ D \ {0} and the condition

Re
z(h′(z) + zh′′(z)) + z(g′(z) + zg′′(z))

zh′(z)− zg′(z)
> 0 for all z ∈ D \ {0}

is satisfied, then f is univalent and fully convex in D, i.e., the image of every subdisk

|z| < r < 1 under f is convex.

It is appropriate to recall two recent results of the authors.

Lemma E ([16], Theorems 4, 5 and 6). Let f ∈ P0
H . Suppose that p and q satisfy

one of the following conditions:

(a) p = 1 and q > 2,

(b) 3 6 p < q,

(c) p = q > 2,

(d) p > q > 3,

(e) p = 3 and q = 2.

Then sp,q(f) is univalent and close-to-convex in |z| < 1/2. Moreover, we have

(f) for 2 < q, s2,q(f) is univalent and close-to-convex in |z| < (3 −
√
5)/2 ≈

0.381966,

(g) for p > 4, sp,2(f) is univalent and close-to-convex in |z| < 0.433797.

Lemma F ([15], Theorems 2, 3 and 4). Let f = h+ g ∈ P0
H , and suppose that p

and q satisfy one of the following conditions:

(a) p = 1 and q > 2,

(b) 3 6 p < q,

(c) p = q > 2,

(d) p > q > 3.

Then sp,q(f) is convex in |z| < 1/4.

(e) If p = 2 < q, then s2,q(f) is convex in |z| < 0.210222.

(f) If q = 2 < p, then sp,2(f) is convex in |z| < 0.234906.
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Now we explore the disk of convexity of sn,n(f)(z) when f ∈ C0
H . For n = 2, we

obtain the following.

Theorem 4.1. Let f = h + g ∈ C0
H , where h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=2

bnz
n. Then the section s2,2(f) = z + a2z

2 + b2z2 is convex in the disk |z| < 1/4.

The number 1/4 cannot be replaced by a greater one.

P r o o f. Set s2(z) = z + z2. Then, by Lemmas C and D, we conclude that

r−1s2(rz) ∗̃ f(z) is convex in D for 0 < r 6 1/4. Since

r−1s2(rz) ∗̃ f(z) = z + ra2z
2 + rb2z2 = r−1s2,2(f)(rz),

it follows that r−1s2,2(f)(rz) is convex in D for 0 < r 6 1/4. This means that the

section s2,2(f) is (fully) convex in the disk |z| < 1/4.

In order to prove the sharpness part, we consider the section s2,2(f0) of f0 =

h0 + g0 ∈ C0
H , where h0 and g0 are given by (1.2). Note that

s2,2(f0)(z) = s2(h0)(z) + s2(g0)(z) = z +
(3
2

)
z2 −

(1
2

)
z2.

A computation gives

Re
z(zs′2(h0)(z))

′ + z(zs′2(g0)(z))
′

zs′2(h0)(z)− zs′2(g0)(z)
= Re

z + 6z2 − 2z2

z + 3z2 + z2
= Re

1 + w(z)

1− w(z)
,

where

w(z) =
3z2 − 3z2

2z + 9z2 − z2
and lim

z→0

1 + w(z)

1− w(z)
= 1.

Thus, for the convexity of s2,2(z) in the disk |z| < 1/4, it suffices to prove that

|w(z)| < 1 for 0 < |z| < 1/4, which is equivalent to

G(z) = |3z2 − 3z2|2 − |2z + 9z2 − z2|2 < 0 for 0 < |z| < 1

4
.

Let z = reiθ. Then a computation yields

G(reiθ)

= 36r4 sin2 2θ − [(2r cos θ + 8r2 cos 2θ)2 + (2r sin θ + 10r2 sin 2θ)2]

= 36r4 sin2 2θ − (4r2 + 64r4 + 36r4 sin2 2θ + 32r3 cos θ cos 2θ + 40r3 sin θ sin 2θ)

= −[4r2 + 64r4 + 32r3 cos θ(1− 2 sin2 θ) + 64r3 sin2 θ cos θ + 16r3 sin2 θ cos θ]

= −4r2[1 + 16r2 + 4r cos θ(2 + sin2 θ)]

= −4r2[1 + 16r2 + 4r cos θ(3 − cos2 θ)].
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We observe that the function B(x) = x(3−x2) is increasing on [−1, 1] and therefore,

from the last relation, we see that

G(reiθ) 6 −4r2[1 + 16r2 + 4rB(−1)] = −4r2[1 + 16r2 − 8r] = −4r2(4r − 1)2

for r < 1/4 and −π < θ 6 π with equality for θ = π. Thus, G(z) < 0 for 0 < |z| < 1/4

and hence, |w(z)| < 1 for |z| < 1/4. Finally, s2,2(f0) of f0 = h0 + g0 ∈ C0
H is (fully)

convex for |z| < 1/4 but not in a larger disk. The proof is complete. �

For n = 3, we will show that s3,3(f0)(z) is not convex in |z| < 1/4.

Theorem 4.2. The harmonic section

s3,3(f0)(z) = s3(h0)(z) + s3(g0)(z) = z +
3

2
z2 + 2z3 − 1

2
z2 − z3

is not convex in the disk |z| < 1/4. Here f0 = h0 + g0 ∈ C0
H , where h0 and g0 are

given by (1.2).

P r o o f. By Theorem 3.2, s3,3(f0)(z) is locally one-to-one and sense-preserving in

|z| < 1/4. Now, by a computation, we have

F (z) = Re
z(zs′3(h0)(z))

′ + z(zs′3(g0)(z))
′

zs′3(h0)(z)− zs′3(g0)(z)
(4.1)

= Re
z + 6z2 + 18z3 − 2z2 − 9z3

z + 3z2 + 6z3 + z2 + 3z3
.

Let z0 = 1

4
e2iπ/3. Then, it follows that

F (z0) = Re
1

4
e2iπ/3 + 6

16
e4iπ/3 − 2

16
e2iπ/3 + 9

64

1

4
e2iπ/3 + 3

16
e4iπ/3 + 1

16
e2iπ/3 + 9

64

= Re
1

8
e2iπ/3 + 3

8
e−2iπ/3 + 9

64

5

16
e2iπ/3 + 3

16
e−2iπ/3 + 9

64

= Re
− 7

64
−

√
3

8
i

− 7

64
+

√
3

16
i
= −47

97
< 0.

This means that s3,3(f0)(z) is not convex in the disk |z| < 1/4. �

Remark 4.1. For the function f0 = h0 + g0 ∈ C0
H defined by (1.2), it can be

easily seen that the function F (z) defined by (4.1) satisfies the positivity condition

F (z) > 0 for |z| < 0.201254 and thus, the disk of convexity of s3,3(f0) is |z| < r,

where r is close to the value 0.201254. Since the computation is lengthy, we do

not wish to address it for the moment. However, in Theorem 5.3, we actually show

that the section s3,3(f)(z) of every f = h + g ∈ C0
H is indeed convex in the disk

|z| < 0.201254.
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Figure 2. Images of |z| < 1/4, 1/4 < |z| < 1/3, and 1/3 < |z| < 1/2 under s2,2(f0)(z) and
s3,3(f0)(z).

In Figure 2, images of |z| < 1/4, 1/4 < |z| < 1/3, and 1/3 < |z| < 1/2 under

s2,2(f0)(z) and s3,3(f0)(z) are drawn in different shades. These pictures were drawn

using Mathematica as plots of the images of equally spaced radial segments and

concentric circles of the corresponding disk and of the two annuli.

5. Disk of convexity of sn,n(f)

We need the following result for the proof of two remaining theorems.

Lemma G ([33], Theorem 2). Let g be analytic in D. Then g ∈ DCP if and only

if for each t ∈ R, g + itzg′ is convex in the direction of the imaginary axis.

For the proof of Theorem 5.1, we use a result of Royster and Ziegler [30] concerning

analytic mappings convex in one direction.
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Lemma H ([30], Theorem 1). Let ϕ(z) be a non-constant function analytic in D.

The function ϕ(z) maps univalently D onto a domain convex in the direction of the

imaginary axis if and only if there are numbers µ and ν, 0 6 µ < 2π and 0 6 ν 6 π,

such that

(5.1) Re{Fµ,ν(z)ϕ
′(z)} > 0

for all z ∈ D, where Fµ,ν(z) = −ieiµ(1− 2ze−iµ cos ν + z2e−2iµ).

By using Lemmas G and H, we now prove the following theorem for n > 4 and

in view of the technical details we present the proof of the case n = 3 separately in

Theorem 5.3.

Theorem 5.1. The section sn(z) :=
n∑

k=1

zk = (z − zn+1)/(1− z) ∈ DCP in the

disk |z| < 1/4 for n > 4.

P r o o f. Let ϕ(z) = sn(z) + itzs′n(z), where t ∈ R. A computation yields that

ϕ′(z) =
1− (n+ 1)zn + nzn+1

(1− z)2
+ it

1− (n+ 1)2zn + n(n+ 2)zn+1

(1− z)2

− it
2nzn+1

(1 − z)2
+ it

2
∑n

k=1
zk

(1− z)2

=
1− (n+ 1)zn + nzn+1

(1− z)2
+ it

1− (n+ 1)2zn + n2zn+1 + 2
∑n

k=1
zk

(1− z)2
.

We now divide our proof into the following three cases.

Case 1 : t > 2/19. Let µ = ν = 0. Then F0,0(z) = −i(1− z)2. It follows that

F0,0(z)ϕ
′(z) = t

[
1− (n+ 1)2zn + n2zn+1 + 2

n∑

k=1

zk
]
− i[1− (n+ 1)zn + nzn+1]

and

Re{F0,0(z)ϕ
′(z)} > t− t

[
(n+1)2|z|n+n2|z|n+1+2

n∑

k=1

|z|k
]
− (n+1)|z|n−n|z|n+1.

It suffices to prove that the right hand side of the above inequality is larger than 0

for |z| = 1/4 and for all n > 4, since it is harmonic in |z| < 1/4. For |z| = 1/4, the

above estimate takes the form

Re{F0,0(z)ϕ
′(z)} > t− t

[5n2 + 8n+ 4

4n+1
+

2− 2

4n

3

]
− 5n+ 4

4n+1

=
t

3
− 5tn2 + (8t+ 5)n+ 4t

3
+ 4

4n+1
:= A(n).
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We see that A(n) is monotonically increasing with respect to n for n > 4. It follows

that

A(n) > A(4) =
57t

44
− 6

44
=

3

44
(19t− 2) > 0

for t > 2/19, which implies that Re{F0,0(z)ϕ
′(z)} > 0 for n > 4 and |z| = 1/4.

Lemma H implies that ϕ(z) is convex in the direction of the imaginary axis in the

disk |z| < 1/4 if t > 2/19 and n > 4.

Case 2 : t < −2/19. Let µ = ν = π. Then Fπ,π(z) = i(1− z)2. It follows that

Fπ,π(z)ϕ
′(z) = −t

[
1− (n+ 1)2zn + n2zn+1 + 2

n∑

k=1

zk
]
+ i[1− (n+ 1)zn + nzn+1].

By a similar reasoning as in Case 1, we obtain that Re{Fπ,π(z)ϕ
′(z)} > 0 for n > 4

and |z| < 1/4. By Lemma H, we thus see that ϕ(z) is convex in the direction of the

imaginary axis in the disk |z| < 1/4 if t < −2/19 and n > 4.

Case 3 : −2/19 6 t 6 2/19. Let µ = ν = π/2. Then F
π/2,π/2(z) = 1 − z2 =

(1− z)(1 + z). It follows that

F
π/2,π/2(z)ϕ

′(z) =
1 + z

1− z
+

1 + z

1− z
(nzn+1 − (n+ 1)zn) + it

1 + z

1− z

+ it
1 + z

1− z

(
−(n+ 1)2zn + n2zn+1 + 2

n∑

k=1

zk
)
,

and therefore,

Re(F
π/2,π/2(z)ϕ

′(z)) >
1− |z|
1 + |z| −

2 |t| |z|
(1− |z|)2 − 1 + |z|

1− |z|(n|z|
n+1 + (n+ 1)|z|n)

− |t|1 + |z|
1− |z|

(
(n+ 1)2|z|n + n2|z|n+1 + 2

n∑

k=1

|z|k
)
.

For |z| = 1/4, the above estimate takes the following form

Re(F
π/2,π/2(z)ϕ

′(z)) >
3

5
− 8|t|

9
− 5

3

5n+ 4

4n+1
− 5|t|

3

(5n2 + 8n+ 4

4n+1
+

2

3
− 2

3

1

4n

)

=
3

5
− 18|t|

9
− 5

3

5|t|n2 + (8|t|+ 5)n+ 4 + 4

3
|t|

4n+1
:= B(n).

We observe that B(n) is monotonically increasing with respect to n for n > 4. Hence,

B(n) > B(4) =
1

43

(359
10

− 5033|t|
36

)
> 0

for −2/19 6 t 6 2/19. Again, by Lemma H, we obtain that ϕ(z) is convex in the

direction of the imaginary axis in the disk |z| < 1/4 if −2/19 6 t 6 2/19 and for all

n > 4.

The desired conclusion follows from Lemma G. �
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Theorem 5.2. Let f = h+ g ∈ C0
H . Then sn,n(f) is convex in the disk |z| < 1/4

for n > 4.

P r o o f. By Theorem 5.1 and Lemma D, we conclude that r−1sn(rz) ∗̃ f(z) is
convex in D for 0 < r 6 1/4 and n > 4. Since

r−1sn(rz) ∗̃ f(z) = r−1sn,n(f)(rz),

it follows that r−1sn,n(f)(rz) is convex in D for 0 < r 6 1/4 and n > 4. This means

that the section sn,n(f) is (fully) convex in the disk |z| < 1/4 for n > 4. �

Theorem 5.3. Let f = h + g ∈ C0
H . Then s3,3(f) is convex in the disk

|z| < 0.201254.

P r o o f. As in the proof of Theorem 5.2, it suffices to show that s3(z) := z+ z2+

z3 ∈ DCP in the disk |z| < 0.201254.

We only have to give the crucial steps and appropriate replacements in the proof

of Theorem 5.1 for n = 3 and the rest of arguments follows from there. Thus, if ϕ(z)

is as in the proof of Theorem 5.1 with n = 3, then ϕ′(z) takes the form

ϕ′(z) =
1− 4z3 + 3z4

(1− z)2
+ it

1− 16z3 + 9z4 + 2
∑3

k=1
zk

(1− z)2
.

Case 1 : t > 0.105712. It follows from the proof of Theorem 5.1 that

Re{F0, 0(z)ϕ
′(z)} > t− t

[
16|z|3 + 9|z|4 + 2

3∑

k=1

|z|k
]
− 4|z|3 − 3|z|4,

which for |z| 6 0.201254 implies that

Re{F0,0(z)ϕ
′(z)} > t

[
1− 16(0.201254)3 − 9(0.201254)4 − 2

3∑

k=1

(0.201254)k
]

− 4(0.201254)3 − 3(0.201254)3 > 0

for t > t0 ≈ 0.10571184. In particular, by Lemma H, we obtain that ϕ(z) is convex

in the direction of the imaginary axis in the disk |z| < 0.201254 if t > 0.105712.

Case 2 : t < −0.105712. With µ = ν = π we have Fπ,π(z) = i(1− z)2, and

Fπ,π(z)ϕ
′(z) = −t

[
1− 16z3 + 9z4 + 2

3∑

k=1

zk
]
+ i[1− 4z3 + 3z4]
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and by a similar reasoning as in Case 1, we obtain that

Re{Fπ,π(z)ϕ
′(z)} > 0 for |z| < 0.201254

and thus, ϕ(z) is convex in the direction of the imaginary axis in the disk |z| <
0.201254 if t < −0.105712.

Case 3 : −0.105712 6 t 6 0.105712. This case corresponds to µ = ν = π/2, so

F
π/2,π/2(z) = 1− z2 and

Re(F
π/2,π/2(z)ϕ

′(z)) >
1− |z|
1 + |z| −

2 |t| |z|
(1− |z|)2 − 1 + |z|

1− |z|(3|z|
4 + 4|z|3)

− |t|1 + |z|
1− |z|

(
16|z|3 + 9|z|4 + 2

3∑

k=1

|z|k
)
.

For |z| = 0.201254, the above estimate shows that

Re(F
π/2,π/2(z)ϕ

′(z)) > 0.608489− 1.60093|t| > 0

for |t| < 0.608489/1.60093 (> 0.105712). Consequently, by Lemma H, we obtain

that ϕ(z) is convex in the direction of imaginary axis in the disk |z| < 0.201254 if

−0.105712 6 t 6 0.105712 and for n = 3.

The cases 1 to 3 show that s3(z) := z+ z2 + z3 ∈ DCP in the disk |z| < 0.201254.

�
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