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IN MINIMAL AND PSEUDOCONVEX DOMAINS
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Abstract. We present new sharp embedding theorems for mixed-norm analytic spaces
in pseudoconvex domains with smooth boundary. New related sharp results in minimal
bounded homogeneous domains in higher dimension are also provided. Last domains we
consider are domains which are direct generalizations of the well-studied so-called bounded
symmetric domains in C

n
. Our results were known before only in the very particular case

of domains of such type in the unit ball. As in the unit ball case, all our proofs are heavily
based on nice properties of the r-lattice. Some results of this paper can be also obtained in
some unbounded domains, namely tubular domains over symmetric cones.

Keywords: embedding theorem; minimal domain; pseudoconvex domain; Bergman-type
space
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1. Introduction

The theory of analytic spaces on general admissible domains has been well-

developed by various authors during last decades (see [3], [6], [8], [10], [12], [14],

[15], [16], [20], [23], [26], [29], [30] and various references there). In this partially

expository paper we will turn to the study of certain new embedding theorems for

some new mixed norm analytic classes in strictly pseudoconvex domains in C
n with

smooth boundary. We add such type sharp theorems also in other domains based on

same ideas (bounded symmetric domains and their direct generalizations). In this

paper also we extend some theorems from [17] and [18] where they can be seen in

context of less general unit ball. Proving estimates and embedding theorems in pseu-

doconvex domains with smooth boundary we heavily use the technique which was

The second author was supported by MNTR Serbia, Project 174017.
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developed recently in [2], [1]. For similar results in bounded symmetric domains and

their direct generalizations we are based on a series of recent subtle results of Yamaji

(see [32], [33] and various references there). Note that pseudoconvex domains with

smooth boundary are not symmetric, tubular domains are not bounded. Minimal

bounded homogeneous domains serve as direct extensions of bounded symmetric

domains (see [32], [33] and references there).

The motivation of this paper was to provide some sharp embedding theorems

from [30] in more general form and also add new results and discussions on embedding

theorems in pseudoconvex domains making the picture more complete. New related

results on sharp embeddings on other domains will be also presented in this paper.

Untill now there are only several sharp embedding theorems in analytic function

spaces in domains with complex structure in higher dimension.

Proofs of the last theorems in minimal domains repeat the proofs of Theo-

rems 3.1–3.3 and they will be omitted.

In our embeddings theorems for analytic function spaces in pseudoconvex domains

with smooth boundary and minimal bounded homogeneous domains the so-called

Carleson type measures constantly appear. We turn to some history related to

this problem. Carleson measures were introduced by Carleson [5] in his solution of

the corona problem in the unit disk of the complex plane, and, since then, have

become an important tool in analysis, and an interesting object of study per se. Let

A be a Banach space of analytic functions on a domain D ⊂ C
n. Given p > 1,

a finite positive Borel measure µ on D is a Carleson measure of A (for p) if there is

a continuous inclusion A →֒ Lp(µ), that is there exists a constant C > 0 such that

∫

D

|f(z)|p dµ(z) 6 C‖f‖pA, f ∈ A.

A finite positive Borel measure µ is a Carleson measure of Hp(∆) Hardy space if and

only if there exists a constant C > 0 such that µ(Sθ0,h) 6 Ch for all sets

Sθ0,h = {reiθ ∈ ∆: 1− h 6 r < 1, |θ − θ0| < h}

(see, also, [5], [22]). The set of Carleson measures of Hp(∆) does not depend on p.

In [11] (see also [21] and [22] for a result of such type) the author obtained a similar

description for the Carleson measures of the Bergman spaces Ap(∆). It was obtained

in terms of the special sets Sθ0,h. In [7] the authors characterized Carleson mea-

sures for Bergman spaces in the unit ball Bn ⊂ C
n, and Cima and Mercer [6] found

description of Carleson measures of Bergman spaces in strongly pseudoconvex do-

mains with smooth boundary, showing in particular that the set of Carleson measures

of Ap(D) is independent of p > 1. We turn to more details. In [7] a characterization
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of Carleson measures of Bergman spaces is formulated in terms of more general sets

than Sθ0,h. We will use the one expressed via the intrinsic Kobayashi geometry of

the domain. Let z0 ∈ D and 0 < r < 1, let BD(z0, r) denote the ball of center z0 and

radius 1
2 log((1 + r)/(1 − r)) for the Kobayashi distance kD of D (that is, of radius r

with respect to the pseudohyperbolic distance ̺ = tanh(kD); see Section 2 for the

necessary definitions). It is known (see [19] for D = ∆, [34] for D = Bn, and [2], [1]

for D strongly pseudoconvex) that a finite positive measure µ is a Carleson measure

of Ap(D) for p if and only if for some (and hence all) 0 < r < 1 there is a constant

Cr > 0 such that

µ(BD(z0, r)) 6 Crν(BD(z0, r))

for all z0 ∈ D. The proof of this we see in [2] relied on Cima and Mercer’s charac-

terization (see also [6]).

We say that a finite positive Borel measure µ is a (geometric) θ-Carleson measure

if for some (and hence all) 0 < r < 1 there is a constant Cr > 0 such that

µ(BD(z0, r)) 6 crν(BD(z0, r))
θ

for all z0 ∈ D. Note a 1-Carleson measures are the usual Carleson measures of Ap(D),

and we know in pseudoconvex domains (see [2], [1]) that θ-Carleson measures are

exactly the Carleson measures of weighted Bergman spaces. Note also that when

D = Bn, a q-Carleson measure in the sense of [34] is a (1 + q/(n+ 1))-Carleson

measure in our sense. We refer the reader to [9] and various references there for

various (not only sharp) embedding theorems and related results in case of polydisk

for analytic Bergman type and Besov type spaces in higher dimension and for various

related mixed norm spaces of harmonic functions of several variables.

In this paper we are however more interested in Carleson type measures for some

new analytic Bergman type mixed norm spaces in strongly pseudoconvex domains

with smooth boundary. Note the literature concerning various one dimensional em-

beddings is very large. In recent papers of Yamaji (see [32], [33] and references there)

new subtle estimates from below for the Bergman kernel and weighted Bergman ker-

nel (see definitions below) on balls forming r-lattices (and some other nice properties

of r-lattices) were provided in context of bounded minimal homogeneous domains.

We will use them to get complete analogues of some of our theorems formulated be-

low, in context of pseudoconvex domains with smooth boundary in minimal bounded

homogeneous domains. Similarly to pseudoconvex domains with smooth boundary

in minimal bounded homogeneous domains some sharp Carleson type embeddings

for Bergman type spaces and mixed norm spaces will be also fully characterized in

terms of Carleson type measures of minimal bounded homogeneous domains (see def-

initions of Carleson type measures for these domains below). Note these two scales of
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complicated domains in higher dimension are different. The minimal bounded homo-

geneous domains can be viewed as direct extensions of bounded symmetric domains,

while bounded pseudoconvex domains with smooth boundary generally speaking are

not even symmetric (see [32], [33] and various references there).

Throughout this paper constants are denoted by C and Ci, i ∈ N or by C with

other indexes. They are positive and need not be the same at each occurrence.

2. Preliminaries on geometry of strongly pseudoconvex domains with

smooth boundary and minimal boounded homogeneous domains

In this section we provide a chain of facts, properties and estimates on the geometry

of strongly convex domains which we will use heavily in all our proofs below. Prac-

tically all of them are taken from recent interesting papers of Abate and coauthors

(see [2], [1]). In particular, following these papers we provide several results on the

boundary behavior of Kobayashi balls, and formulate a vital submean property for

nonnegative plurisubharmonic functions in Kobayashi balls. Then at the end of this

section we will also add some basic notation taken from recent papers of S.Yamaji to

formulate our sharp embedding theorems for analytic mixed norm spaces in minimal

bounded homogeneous domains in higher dimension. These assertions are complete

analogues of our lemmas below in context of bounded pseudoconvex domains with

smooth boundary. Some related results, lemmas will be also given in this section to

make the picture more complete. We now first recall the standard definition and the

main properties of the Kobayashi distance which can be seen in various books and

papers (we refer, for example, to [2], [1], [13], [14] for details). Let k∆ denote the

Poincaré distance on the unit disk ∆ ⊂ C
n. If X is a complex manifold, the Lempert

function δX : X ×X → R
+ of X is defined by

δX(z, w) = inf{k∆(ζ, η) : there exists a holomorphic ϕ : ∆ → X

with ϕ(ζ) = z and ϕ(η) = w}

for all z, w ∈ X . The Kobayashi pseudodistance kX : X × X → R
+ of X is the

smallest pseudodistance on X bounded below by δX. We say that X is (Kobayashi)

hyperbolic if kX is a true distance and in that case it is known that the metric topol-

ogy induced by kX coincides with the manifold topology of X (see, e.g., [2], [1]). For

instance, all bounded domains are hyperbolic (see, e.g., [2], [1]). The following prop-

erties are well-known in literature. The Kobayashi (pseudo)distance is contracted by

holomorphic maps: if f : X → Y is a holomorphic map then

kY (f(z), f(w)) 6 kX(z, w), z, w ∈ X.
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Next, the Kobayashi distance is invariant under biholomorphisms and decreases

under inclusions: if D1 ⊂ D2 ⊂⊂ C
n are two bounded domains we have kD2

(z, w) 6

kD1
(z, w) for all z, w ∈ D1. Further, the Kobayashi distance of the unit disk coincides

with the Poincare distance. Also, the Kobayashi distance of the unit ball Bn ⊂ C
n

coincides with the well-known in many applications the so-called Bergman distance

(see [2], [1], [18], [34]).

If X is a hyperbolic manifold, z0 ∈ X and r ∈ (0, 1) we shall denote by BX(z0, r)

the Kobayashi ball of center z0 and radius
1
2 log((1 + r)/(1 − r)) :

BX(z0, r) = {z ∈ X : tanh kX(z0, z) < r}.

We can see that ̺X = tanh kX is still a distance on X, because tanh is a strictly

convex function on R
+. In particular, ̺Bn is the pseudohyperbolic distance of Bn.

The Kobayashi distance of bounded strongly pseudoconvex domains with smooth

boundary has several important properties. First of all, it is complete (see [2], [1]),

and hence closed Kobayashi balls are compact. It is vital that we can describe the

boundary behavior of the Kobayashi distance: if D ⊂⊂ C
n is a strongly pseudocon-

vex bounded domain and z0 ∈ D, there exist c0, C0 > 0 such that

c0 −
1

2
log d(z, ∂D) 6 kD(z0, z) 6 C0 −

1

2
log d(z, ∂D), z ∈ D

where d(·, ∂D) denotes the Euclidean distance from the boundary of D (see [2], [1]).

We provide some facts on Kobayashi balls of Bn (for proofs see [2], [1] and [34]).

The ball BBn(z0, r) is given by

BBn(z0, r) =
{
z ∈ Bn :

(1− ‖z0‖2)(1− ‖z‖2)

|1− 〈z, z0〉|2
> 1− r2

}
.

Geometrically, it is an ellipsoid of (Euclidean) center

c =
1− r2

1− r2‖z0‖2
z0,

its intersection with the complex line Cz0 is an Euclidean disk of radius

r
1− ‖z0‖2

1− r2‖z0‖2
,

and its intersection with the affine subspace through z0 orthogonal to z0 is a Eu-

clidean ball of the larger radius

r

√
1− ‖z0‖2

1− r2‖z0‖2
.
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Let ν denote the Lebesgue volume measure of R2n, normalized so that ν(Bn) = 1.

We denote by the same letter the Lebesgue measure on the pseudoconvex domain D.

Then the volume of a Kobayashi ball BBn(z0, r) is given by (see [34])

ν(BBn(z0, r)) = r2n
( 1− ‖z0‖2

1− r2‖z0‖2

)n+1

.

A similar estimate is valid for the volume of Kobayashi balls in strongly pseudo-

convex bounded domains:

Lemma A ([2], [1]). Let D ⊂⊂ C
n be a strongly pseudoconvex bounded domain

with smooth boundary. Then there exist c1 > 0 and C1,r > 0 for each r ∈ (0, 1),

depending on r such that

c1r
2nd(z0, ∂D)n+1 6 ν(BD(z0, r)) 6 C1,rd(z0, ∂D)n+1

for every z0 ∈ D and r ∈ (0, 1).

Let D ⊂⊂ C
n be a bounded strongly pseudoconvex domain with smooth boundary

in C
n. We shall use the following notation:

⊲ δ : D → R
+ will denote the Euclidean distance from the boundary, that is δ(z) =

d(z, ∂D);

⊲ given two nonnegative functions f , g : D → R
+ we shall write f � g to say that

there is C > 0 such that f(z) 6 Cg(z) for all z ∈ D. The constant C is independent

of z ∈ D, but it might depend on other parameters (r, θ, etc.);

⊲ given two strictly positive functions f , g : D → R
+ we shall write f ≈ g if f � g

and g � f, that is if there is C > 1 such that C−1g(z) 6 f(z) 6 Cg(z) for all

z ∈ D;

⊲ H(D) will denote the space of holomorphic functions on D, endowed with the

topology of uniform convergence on compact subsets;

⊲ given 1 6 p 6 ∞, the Bergman space Ap(D) is the Banach space Lp(D) ∩H(D),

endowed with the Lp-norm;

⊲ more generally, given β ∈ R we introduce the weighted Bergman space

Ap
β(D) = Ap(D, β) = LP (δβν) ∩H(D)

endowed with the norm

‖f‖p,β =

[∫

D

|f(ζ)|pδβ(ζ) dν(ζ)

]1/p
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if 1 6 p <∞, and with the norm

‖f‖∞,β = ‖fδβ‖∞

if p = ∞;

⊲ K : D × D → C will be the Bergman kernel of D. Further, Kt is a kernel of

type t defined in a standard manner with help of the well-known Henkin-Ramirez

function, see [4]. Note we have K = Kn+1 (see [1], [4]);

⊲ given r ∈ (0, 1) and z0 ∈ D, we shall denote by BD(z0, r) the Kobayashi ball of

center z0 and radius
1
2 log((1 + r)/(1 − r)).

See, e.g., [2], [1], [13], [14] for definitions, basic properties and applications to the

geometric function theory of the Kobayashi distance and [13], [14], [24] for definitions

and basic properties of the Bergman kernel. Let us now recall a number of results

proved in [2]. The first one gives information about the shape of Kobayashi balls.

Let further dνt(z) = (δ(z))t dν(z), t > −1.

Lemma B ([2], Lemma 2.2). Let D ⊂⊂ C
n be a bounded strongly pseudoconvex

domain. Then there is C > 0 such that

C

1− r
δ(z0) > δ(z) >

1− r

C
δ(z0)

for all r ∈ (0, 1), z0 ∈ D and z ∈ BD(z0, r).

Definition 2.1. Let D ⊂⊂ C
n be a bounded domain, and r > 0. An r-lattice

in D is a sequence {ak} ⊂ D such that D =
⋃
k

BD(ak, r) and there exists m > 0

such that any point in D belongs to at most m balls of the form BD(ak, R), where

R = (1 + r)/2.

The existence of r-lattices in bounded strongly pseudoconvex domains is ensured

by the following.

Lemma C ([2], Lemma 2.5). Let D ⊂⊂ C
n be a bounded strongly pseudoconvex

domain. Then for every r ∈ (0, 1) there exists an r-lattice in D, that is there exist

m ∈ N and a sequence {ak} ⊂ D of points such that D =
∞⋃
k=0

BD(ak, r) and no

point of D belongs to more than m of the balls BD(ak, R), where R = (1 + r)/2,

να(BD(ak, R)) = (δα(ak))ν(BD(ak, R)), α > −1; this equality follows directly from

the properties of r-lattices on Kobayashi balls we listed above and the definition of

the weighted Lebegues measure.

We will sometimes call r-lattice the family of balls BD(ak, r). LetK(z, ξ) be a mea-

surable function on D × D and let t be a positive number. We say that K = Kt
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(or K̃t) is a kernel of Bergman type t for all z ∈ D, if |K(z, ξ)| 6 C(|Φ̃(z, ξ)|−t)

where Φ̃ is the Henkin-Ramirez function. So, if K is a kernel of Bergman type t

then Ks is a kernel of type st, s > 0.

Dealing with an unweighted Bergman kernel K, K = Kn+1, we always assume

|K(z, ak)| ≍ |K(ak, ak)| for any z ∈ BD(ak, r), r ∈ (0, 1) (see [2], [1]). Based on the

definition of the Bergman kernel via the Henkin-Ramirez function (see [4]), it is easy

to see this assertion is valid also for all Kt kernels, t = m(n+ 1), m ∈ N.

The key ingredient of proofs in embeddings in analytic Herz type spaces below is

the assumption that a little bit stronger condition holds, namely, |K(z, ak)| is equiv-

alent to |K(w, ak)| for any Bergman kernel of type t for any w and z in BD(am, r)

and any ak, k ∈ N, where m is any natural number. This is valid in the unit ball

(see [34]) and also plays a key role in the main theorems (see [34]).

This condition, the additonal condition on the Bergman kernel we need in the

proofs on Herz type spaces (Theorem 3.2) below, can probably be dropped.

We shall use a submean estimate for nonnegative plurisubharmonic functions on

Kobayashi balls:

Lemma D ([2], Corollary 2.8). Let D ⊂⊂ C
n be a bounded strongly pseudocon-

vex domain. Given r ∈ (0, 1), set R = (1 + r)/2 ∈ (0, 1). Then there exists a Cr > 0

depending on r such that

χ(z) 6
Cr

ν(BD(z0, r))

∫

BD(z0,R)

χ dν, z0 ∈ D, z ∈ BD(z0, r)

for every nonnegative plurisubharmonic function χ : D → R
+.

We will use this lemma for χ = |f(z)|q, f ∈ H(D), q ∈ (0,∞).

Using properties of Kobayashi balls {BD(ak, r)} we will have the following esti-

mates for the Bergman space Ap
α(D):

‖f‖p
Ap

α
=

∫

D

|f(w)|pδα(w) dν(w) ≍
∞∑

k=1

[
max

z∈BD(ak,r)
|f(z)|p

]
ναBD(ak, r)

≍
∞∑

k=1

∫

BD(ak,R)

|f(z)|pδα(z) dν(z), 0 < p <∞, α > −1.

Let now

A(p, q, α) =

{
f ∈ H(D) :

∞∑

k=1

(∫

BD(ak,r)

|f(z)|pδα(z) dν(z)

)q/p

<∞

}
,
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where 0 < p, q <∞, α > −1. These are Banach spaces if min(p, q) > 1 and complete

metric spaces for other values of parameters.

These A(p, q, α) spaces (or their multifunctional generalizations) can be viewed as

natural extensions of classical Bergman spaces in strictly pseudoconvex domains with

smooth boundary for which the family {BD(ak, r)} related to the r-lattice {(ak)}

exists (see [2], [1]). It is natural to consider the problem of extension of classical

results on Ap
α(D) Bergman spaces to these A(p, q, α) spaces. Some of our results are

motivated by this problem.

The next result is the main result of this section and contains the weighted Lp-

estimates we shall need. Sometimes we denote the unweighted Bergman kernelKn+1

by K.

Theorem A ([1], [10]). Let D ⊂⊂ C
n be a bounded strongly pseudoconvex

domain, and let z0 ∈ D and 1 6 p <∞. Then

∫

D

|K(ζ, z0)|
pδβ(ζ) dν(ζ) �





δβ−(n+1)(p−1)(z0), for − 1 < β < (n+ 1)(p− 1);

|log δ(z0)|, for β = (n+ 1)(p− 1);

1, for β > (n+ 1)(p− 1).

In particular:

(i) ‖K(·, z0)‖p,β � δβ/p−(n+1)/q(z0) and ‖kz0‖p,β � δ(n+1)/2+β/p−(n+1)/q(z0) when

−1 < β < (n + 1)(p − 1), where q > 1 is the conjugate exponent of p (and

(n+ 1)/q = 0 when p = 1);

(ii) ‖K(·, z0)‖p,β � 1 and ‖kz0‖p,β � δ(n+1)/2(z0) when β > (n+ 1)(p− 1);

(iii) ‖K(·, z0)‖p,(n+1)(p−1) � δ−ε(z0) and ‖kz0‖p,(n+1)(p−1) � δ(n+1)/2−ε(z0) for all

ε > 0.

Furthermore,

(iv) ‖K(·, z0)‖∞,β ≈ δβ−(n+1)(z0) and ‖kz0‖∞,β ≈ δβ−(n+1)/2(z0) for all 0 6 β <

n+ 1; and ‖K(·, z0)‖∞,β ≈ 1 and ‖kz0‖∞,β ≈ δ(n+1)/2(z0) for all β > n+ 1.

A complete analogue of this theorem is valid also for generalKt type kernels, t > 0

(see [4], [10]).

We add now shortly some basic facts on minimal bounded homogeneous domains

which we will use partially in our paper (see [32], [33]).

We say the bounded U domain in C
n is a minimal domain with a center t ∈ U

if the following condition is satisfied: for every biholomorphism ψ : U → U ′ with

detJ(ψ, t) = 1 we have Vol(U ′) > Vol(U) where J(ψ, t) denotes the complex Jacobi

matrix of ψ at t (see [33]). We fix a minimal bounded homogeneous domain U with

center t.
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Let dVβ(z) = Ku(z, z)
−β dV (z), β ∈ R and let dV denote the Lebesgue measure

on U , (see [33]). Let Lp
a,β(U , dVβ) = Lp(U , dVβ) ∩ H(U), 0 < p 6 ∞, where H(U)

is the class of all analytic functions on U . These spaces are nontrivial if and only

if β > βmin for some fixed βmin (see [33]). Note we will always assume this below.

These are Banach spaces for p > 1.

We below denote by K
(β)
U
the reproducing kernel of L2

a(U , dVβ). Further L
2
a is the

Bergman space on U (unweighted) and L2
a(U , dV ) = L2(U , dV ) ∩H(U). It is known

that Kβ = K
(β)
U

(z, w) = CβKu(z, w)
1+β for some positive constant Cβ , (see [33]).

The Bergman kernelKu(z, w) of U is playing a very important role in our theorems

below. Let dU (·, ·) be the Bergman distance on U . For any z ∈ U , r > 0, let

B(z, r) = {w ∈ U : dU (z, w) 6 r} be the Bergman metric disk with center z and

radius r.

The existence of the so-called Bergman sampling sequence can be seen in [33] (see

also Lemma G). This sequence and estimates of the Bergman kernel on {B(zk, ̺)}

balls are very vital for this paper. We denote below the Lebesgue measure of the

ball B(z, ̺) by Vol. We denote by Vol(E) the volume of the set E.

We supply three lemmas from [33] which are crucial for the proofs of theorems

relating to the minimal domains (Theorems 3.4 and 3.5). Analogues in tube and

pseudoconvex domains can bee seen in [3], [18], [29], [30].

Lemma E ([33]). Take ̺ > 0. Then there exists C̺ > 0 such that

(2.1) C−1
̺ 6

∣∣∣
KU (z, a)

KU (a, a)

∣∣∣ 6 C̺, z, a ∈ U , βU (z, a) 6 ̺,

where βU means the Bergman distance on U .

Lemma F ([33]). There exists a positive constant C such that

(2.2) |f(a)|p 6
C

Vol(B(a, ̺))

∫

B(a,̺)

|f(z)|p dV (z),

f ∈ H(U), p > 1, a ∈ U .

Lemma G ([33]). There exists a sequence {wj} ∈ U satisfying the conditions

U =
∞⋃

j=1

B(wj , ̺), B
(
wi,

̺

4

)
∩B

(
wj ,

̺

4

)
= ∅, i 6= j.

There exists a positive integer n such that each point z ∈ U belongs to at most n

sets B(wj , 2̺).
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3. On some new sharp embedding theorems for mixed norm spaces

in strictly pseudoconvex domain with smooth boundary

and in minimal bounded homogeneous domain

This main part of our work contains formulations of all main results of this work

and also the proofs of our main results in bounded strongly pseudoconvex domains

with smooth boundary and in minimal bounded homogeneous domains. The theory

of analytic spaces in bounded strictly pseudoconvex domains has developed rapidly

during the last decades (see [6], [8], [14], [15], [20], [23]). Several Carleson type sharp

embedding theorems for such spaces are known today (see [1], [6] and references

there). The goal of this paper is to add to this list several new sharp assertions. We

alert the reader that we extend our previous results in the unit ball of Cn from [18].

And the proofs are rather similar. Hovewer, we found our general results interesting

enough to put them in a separate paper. We need for all our proofs as previously

in the unit ball case various properties of r-lattices of D domain, which we listed in

the previous section, and various properties of analytic functions on Kobayashi balls

from recent papers [2] and [1] which we also listed above.

During the past decades the theory of Bergman spaces in strictly pseudoconvex

domains with smooth boundary was developed in many papers by various authors.

Here we consider direct generalizations of such spaces. For the Bergman space theory

in the unit disk and in the unit ball we refer the reader to [9], [34]. One of the goals

of this paper is to extend some results of standard weighted Bergman spaces in the

strictly pseudoconvex domains in Cn to the case of more general A(p, q, α) classes of

Bergman type classes.

Definition 3.1. Let D be a bounded domain with an r-lattice. Let µ be a pos-

itive Borel measure in D, 0 < p, q < ∞, s > −1. Fix r ∈ (0;∞) and an r-lattice

{ak}∞k=1. The analytic space A(p, q, dµ) is the space of all holomorphic functions f

such that

‖f‖qA(p,q,dµ) =
∞∑

k=1

(∫

B(ak,r)

|f(z)|p dµ(z)

)q/p

<∞.

If dµ = δs(z) dν(z) then we will denote by A(p, q, s) the space A(p, q, dµ). This is

a Banach space for min(p, q) > 1. It is clear that A(p, p, s) = Ap
s.

Remark 3.1. It is clear now from the discussion above and the definition of

A(p, p, s) spaces that these classes are independent of {ak} and r. But in the

general case of A(p, q, s) spaces the answer is unknown. For simplicity we denote

‖f‖A(p,q,s,ak,r) by ‖f‖A(p,q,s).
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We also have the following estimates using the r-lattice:

‖f‖qA(p,q,s) =

∞∑

k=1

(∫

D

χBD(ak,r)(z)|f(z)|
pδs(z) dν(z)

)q/p

6 C

(∫

D

|f(z)|pδs(z) dν(z)

)q/p

= C‖f‖q
Ap

s
, q > p, s > −1.

So, finally, we have

‖f‖A(p,q,s) 6 C‖f‖Ap
s
, q > p, s > −1.

Motivated by this estimate we pose the following very natural and more general

problem (as in the case of the unit ball).

Problem. Let µ be a positive Borel measure in D and let {ak}k∈N be a sequence

such that BD(ak, r) is an r-lattice for a strictly pseudoconvex domain D with smooth

boundary in C
n. Let X be a quasinormed subspace of H(D) and p, q ∈ (0,∞).

Describe all positive Borel measures such that

‖f‖A(p,q,dµ) 6 C‖f‖X .

The following theorem gives a solution for Bergman spaces. It is known (see [30]),

but we put it here with vital remarks after it to complete the picture.

Theorem 3.1. Let 0 < q, p < ∞, 0 < s 6 p < ∞, β > −1. Let µ be a positive

Borel measure on D. Then we have

‖f‖A(q,p,dµ) 6 c1‖f‖As
β

if and only if

(3.1) µ(BD(ak, r)) 6 c2(δ(ak))
q(n+1+β)/s

for some constants c1, c2 > 0, k ∈ N.

Remark 3.2. It is interesting that Theorem 3.1 can be extended even to more

general mixed norm spaces (see [23]) if we replace the Bergman space norm on the

right hand side of the estimate by the mixed norm space norm. This procedure was

done for some other embedding theorems recently in a paper [25]. The ideas are

similar to those used in the paper [25].
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The following theorem gives a solution of the above mentioned problem for Herz

type spaces. In the particular case of q = q1 our Theorem 3.2 was shown in a recent

paper [30].

Theorem 3.2. Let 0 < q, s < ∞, q > s, q > q1, α > −1. Let {ak}∞k=1 be

a sequence forming an r-lattice in D. Let µ be a positive Borel measure in D. Then

(∫

D

|f(z)|q dµ(z)

)1/q
6 c1

(∫

D

(∫

BD(z,r)

|f(w)|s dνα(w)

)q1/s
dν(z)

)1/q1

if and only if

(3.2) µ(BD(ak, r)) 6 c2(δ(ak))
q((n+1+α)/s+(n+1)/q1)

for some constants c1, c2 > 0, k ∈ N.

Remark 3.3. The unit ball case of Theorem 3.2 was considered before in [28], [31].

Remark 3.4. We denote the right hand side of the estimate in Theorem 3.2

by D(f, s, α, q) and by D(f, s, µ, q) replacing the Lebegues measure by any positive

Borel measure. The problem of finding conditions on the positive Borel measure

such that D(f, s, µ, q) is less than the AP
β norm of f also appears naturally and some

sufficient and necessary conditions can be found using the methods of this paper. In

analytic Herz type spaces this type of problems was considered in the unit ball by

the first author in [28], [31].

Finally we formulate a sharp result for multifunctional analytic function spaces in

bounded pseudoconvex domains with smooth boundary.

Theorem 3.3. Let µ be a positive Borel measure on D and {ak} a Kobayashi

sampling sequence forming an r-lattice. Let αi > α0, for large enough α0, fi ∈ H(D),

0 < pi < qi < ∞, i = 1, . . . ,m, so that
m∑
i=1

1/qi = 1. Let (n+ 1 + αi)/(pi(n+ 1)) be

integer for all i. Then

∫

D

m∏

i=1

|fi(z)|
pi dµ(z) 6 c1

m∏

i=1

[ ∞∑

k=1

(∫

B(ak,R)

|fi(z)|
piδαi(z) dν(z)

)qi]1/qi
,

R =
1 + r

2
, r > 0

if and only if

(3.3) µ(BD(ak, r)) 6 c2δ
m(n+1)+

∑m
i=1

αi(ak)

for some constants c1, c2 > 0, k ∈ N.
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Remark 3.5. We wish to formulate also one more general functional case of

Theorem 3.3. Let q > s and p > (q, s), α > α0, for large enough α0. Then

(∫

D

|f(z)|p dµ

)1/p
6 C

∑(∫

BD(ak,R)

|f(z)|sδα(z) dν(z)

)q/s

for a positive Borel measure µ in D is valid if and only if µ(BD(ak, R)) 6 Cδτ0(ak)

for some constant C and τ0 depending on p, q, s, α.

The proof of this assertion can be performed similarly in minimal bounded domains

as well. Using the fact that q > s we embed the right hand side of this estimate into

the Bergman space norm and then continue as in [2] and [32].

Remark 3.6. The additional condition relating pi and αi in Theorem 3.3 as we

can see from the proof below can be dropped, but in this case the proof is simpler.

Remark 3.7. The assertion of Theorem 3.3 can be found in the paper [18] for

the case of the unit ball in C
n. For qi = 1, pi = p, m = 1, it can be seen in [34] in

the unit ball for αj = α, j = 1, . . . ,m. Theorem 3.1 and Theorem 3.3 were given

in [30] without detailed proofs in a sketchy form.

As was mentioned above we intend to give in this paper much more general versions

of our earlier results proved before in the case of the unit ball in Cn in bounded strictly

pseudoconvex domains with smooth boundary. We heavily use for this purpose the

new vital technique which was developed in very recent vital papers [2], [1], where

the so-called r-lattice was introduced and studied for bounded strictly pseudoconvex

domains.

Note also that again here as before in the case of the unit ball all our proofs are

heavily based on nice properties of the r-lattice, which we listed in the previous

sections, mentioned above and which will not be mentioned again concretely below.

P r o o f of Theorem 3.1. Suppose (3.1) holds. Then we use the properties of the

r-lattice, which we listed in the previous sections (Lemmas A–D):

( ∞∑

k=1

[∫

BD(ak,r)

|f(z)|q dµ(z)

]p/q)s/p

6 C1

( ∞∑

k=1

max
z∈BD(ak,r)

|f(z)|pδp(n+1+β)/s(ak)

)s/p

6 C2

∞∑

k=1

max
z∈BD(ak,r)

|f(z)|sδ(n+1+β)(ak)

6 C3

∫

D

|f(z)|sδβ(z) dν(z) 6 C4‖f‖
s
As

β
(D), β > −1, 0 < s <∞.
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Conversely, using an appropriate test function fk(z) and estimates from below of

Bergman type kernel Kn+1, |K(z, ak)| > C5(δ(ak))
n+1, from [2], [1] and using also

properties of an r-lattice which we listed in previous section, for the test function

fk(z) = δ(n+τ+1)/s(ak)K
r
n+1(z, ak), z ∈ D, k ∈ N, r =

t

s(n+ 1)
,

t = 2(n+ 1 + τ),

we can choose τ such that r is a natural number large enough (we follow the proof

of the unit ball case) and noting that

(3.4)

(∫

BD(ak,r)

|f(z)|q dµ(z)

)1/q

6 C6

[ ∞∑

k=1

(∫

BD(ak,r)

|f(z)|q dµ(z)

)p/q]1/p
6 C7‖f‖As

β
,

we get what we need.

Indeed, putting fk into (3.4) and using the fact that sup
k

‖fk‖As
β
6 Cδβ−τ (ak)

which follows from Theorem A (see also [4]) we get what we need. The proof is

complete. �

P r o o f of Theorem 3.2. Let (3.2) hold. We have for the same {ak} sequence

and using the properties of the r-lattice, which we listed in the previous sections

(Lemmas A–D)

∫

D

|f(w)|q dµ(w) 6
∞∑

k=1

sup
w∈BD(ak,r)

|f(w)|qµ(BD(ak, r))

6 C1

∞∑

k=1

(
sup

w∈BD(ak,r)

|f(w)|s
)q/s

δq((n+1+α)/s+(n+1)/q1)(ak).

Then we have δ(w) ≍ δ(z), z ∈ BD(w, r) (see [2], [1]) and hence
∫

BD(ak,R)

|f(z)|s dν(z) 6 C2

∫

BD(ak,2R)

(∫

BD(z,r)

|f(w̃)|s dνα(w̃)

)
dν(z)

δn+1+α(z)
.

Hence we have now t = q((n+ 1 + α)/s+ (n+ 1)/q1),
∫

D

|f(z)|q dµ(z)

6 C3

∞∑

k=1

(∫

BD(ak,R)

|f(z)|s dν(z)
1

δn+1(ak)

)q/s
(δ(ak))

t

6 C4

∞∑

k=1

(∫

BD(ak,R)

∫

BD(z,r)

|f(w̃)|s dνα(w̃) dν(z)

)q/s
(δn+1(ak))

q/q1 .
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By Hölder’s inequality we have, using the properties of the r-lattice (Lemmas A–D)

(∫

BD(ak,R)

∫

BD(z,r)

|f(w̃)|s dνα(w̃)
dν(z)

δn+1(z)

)q/s

6

∫

BD(ak,R)

(∫

BD(z,r)

|f(w̃)|s dνα(w̃)

)q/s
(δ−(n+1)s/q(ak)) dν(z), R =

1+ r

2
.

Combining all the above estimates we get the desired results. We show the reverse.

We have for {ak}, z ∈ D, k = 1, 2, . . . and β which is big enough.

fk(z) = δβ−(n+1+α)/s−(n+1)/q1(ak)[Kn+1(z, ak)]
β̃ , β̃ =

β

n+ 1
,

τ = βq1 − q1
n+ 1 + α

s
− (n+ 1)

(β̃ can be chosen to be a large positive integer). Then by Theorem A and Lem-

mas A–D we have

∫

D

(∫

BD(w,r)

|fk(z)|
s dνα(z)

)q1/s
dν(w) 6

[
C(δτ (ak))

( 1

δτ (ak)

)]
6 const.

Then we have, using the estimate from below of the Bergman kernel as we did above
∫

D

|fk(z)|
q dµ(z) > µ(BD(ak, r))[δ

−q((n+1+α)/s+(n+1)/q1)(ak)].

The rest is clear (see also [18]). �

Note that in all the proofs we repeat the arguments from the case of the unit ball

(see, for example, [18]).

P r o o f of Theorem 3.3. We assume (n+ 1 + αj)/(pi(n+ 1)) is integer for all i.

First suppose that (3.3) holds. Then using properties of r-lattices which we listed in

the previous sections and the Kobayashi balls we have (we put αj = α for all j and

the general case is the same here)

∫

D

m∏

i=1

|fi(z)|
pi dµ(z)

6 C1

∞∑

k=1

µ(BD(ak, r))
m∏

i=1

sup
z∈BD(ak,r)

|fi(z)|
pi

∫

D

m∏

i=1

|fi(z)|
pi dµ(z)

6 C2

∞∑

k=1

µ(BD(ak, r))

δm(n+1+α)(ak)

m∏

i=1

∫

BD(ak,R)

|fi(w)|
piδα(w) dν(w)

6 C3

∞∑

k=1

m∏

i=1

∫

BD(ak,R)

|fi(w)|
piδα(w) dν(w).

542



Using the condition
m∑
i=1

1/qi = 1 and Hölder’s inequality for m functions we get what

we need. The reverse follows from the chain of equalities and estimates based again

on the properties of the r-lattice, which we listed in the previous section. Indeed we

have as above for the test function fi

fi(z) = δ(n+1+αi)/pi(ak)K
τi
n+1(ak, z), τi =

2(n+ 1 + αi)

(n+ 1)pi
, i = 1, . . . ,m.

We choose αi such that τi is a large enough positive integer.

By the properties of the r-lattice, which we listed in the previous sections (Lem-

mas A–D) we have

∫

D

m∏

i=1

|fi(z)|
pi dµ(z) >

∫

BD(ak,r)

δm(n+1)+
∑

m
j=1

αj (ak)Kτ (ak, z) dµ(z)

>
µ(BD(ak, r))

δm(n+1)+
∑

m
j=1

αj (ak)
.

Hence we get what we need. Indeed we have the estimates

m∏

i=1

( ∞∑

k=1

(∫

BD(ak,R)

|fi(z)|
piδαi(z) dν(z)

)qi)1/qi

6

m∏

i=1

∞∑

k=1

∫

BD(ak,R)

|fi(z)|
pi(δαi(z)) dν(z)

6 C4

m∏

i=1

∫

D

|fi(z)|
pi(δαi(z)) dν(z) 6 C5, R =

1 + r

2
.

�

The careful analysis of proofs we provided above shows various similarities with

our previously mentioned work in the unit ball. Nevertheless, bounded strictly pseu-

doconvex domains are much more general as domains than the unit balls.

The goal of this subsection is to obtain also new sharp results on Bergman type

analytic spaces in minimal bounded homogeneous domains. Our results were known

before only in the very particular case of domains of such type in the unit ball. Our

results are heavily based on a series of subtle new estimates obtained recently in [33].

We note domains we consider here are direct generalizations of the well-studied so-

called bounded symmetric domains in C
n (see [33]). Note, also, that all the above

mentioned domains and even the polydisk are examples of minimal domains.

Proofs of our last theorems are simply copies of our previous parallel theorems in

bounded pseudoconvex domains with smooth boundary (see above) and we omit the

details of these proofs for that reason.
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The following theorem is a new sharp result on embeddings in L2
a(U , dVβ) analytic

function spaces.

Theorem 3.4. Let 1 < p, q < ∞, 1 < s 6 p < ∞, β > βmin, ̺ > 0. Let {zk} be

a sampling sequence in U , let µ be a positive Borel measure on U . Then

(3.5)

∞∑

k=1

(∫

B(zk,̺)

|f(z)|q dµ(z)

)p/q
6 c1‖f‖Ls

a(U ,dVβ)

if and only if

(3.6) µ(B(zk, ̺) 6 c2(Vol)(B(zk, ̺))
β0

for all {zk} ∈ U , ̺ > 0, for some fixed β0, β0 = β0(β, q, s, n) and for some constants

c1, c2 > 0, k ∈ N.

Note it was shown in [33] that a condition similar to (3.6) holds if and only if

(3.7)

∫

U

|f(z)|p dµ(z) 6 C̃

∫

U

|f(z)|p dVβ(z)

for all p > 0 and for all f ∈ Lp
a(U , dVβ).

The proof of this result and those of Theorems 3.4, 3.5 are similar. Note the proofs

of theorems of this paper can be obtained after careful study of estimates of the proof

of the unit ball case and parallel estimates obtained recently in the case of bounded

minimal homogeneous domains in C
n (see [18], [27], [26], [33]).

The following theorem is another new sharp result on embeddings in L2
a(U , dVβ)

analytic function spaces in minimal bounded homogeneous domain in C
n. The base

of proof are the Forelly-Rudin estimates and a lower estimate for the Bergman kernel.

Theorem 3.5. Let µ be a positive Borel measure on U , and {zk} a Bergman

sampling sequence. Let α > αmin, fi ∈ H(U), 1 < pi, qi < ∞, i = 1, . . . ,m so that
m∑
i=1

1/qi = 1. Then

(3.8)

∫

U

m∏

i=1

|fi(z)|
pi dµ(z) 6 c1

m∏

i=1

[ ∞∑

k=1

(∫

B(zk,2r)

|fi(z)|
pi dVα(z)

)qi]1/qi

if and only if µ(B(zk, r)) 6 c2(Vol(B(zk, r)))
α0 for every k ∈ N, r > 0, for some

fixed α0, α0(m,n, α) and for some constants c1, c2 > 0.
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Similar results with similar proofs were obtained by the first author in tubular

domains over symmetric cones (unbounded domains) and bounded strictly pseudo-

convex (nonsymmetric) domains (see [3], [29], [30] and references there).
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[27] R.F. Shamoyan, O.R.Mihić: On new estimates for distances in analytic function spaces
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