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Remarks on LBI-subalgebras of C(X)

Mehdi Parsinia

Abstract. Let A(X) denote a subalgebra of C(X) which is closed under local
bounded inversion, briefly, an LBI-subalgebra. These subalgebras were first
introduced and studied in Redlin L., Watson S., Structure spaces for rings of

continuous functions with applications to realcompactifications, Fund. Math.
152 (1997), 151–163. By characterizing maximal ideals of A(X), we generalize

the notion of z
β
A

-ideals, which was first introduced in Acharyya S.K., De D., An

interesting class of ideals in subalgebras of C(X) containing C∗(X), Comment.
Math. Univ. Carolin. 48 (2007), 273–280 for intermediate subalgebras, to the
LBI-subalgebras. Using these, it is simply shown that the structure space of
every LBI-subalgebra is homeomorphic with a quotient of βX. This gives a dif-
ferent approach to the results of Redlin L., Watson S., Structure spaces for rings

of continuous functions with applications to realcompactifications, Fund. Math.
152 (1997), 151–163 and also shows that the Banaschewski-compactification of
a zero-dimensional space X is a quotient of βX. Finally, we consider the class
of complete rings of functions which was first defined in Byun H.L., Redlin L.,
Watson S., Local invertibility in subrings of C∗(X), Bull. Austral. Math. Soc.
46(1992), 449–458. Showing that every such subring is an LBI-subalgebra, we
prove that the compactification of X associated to each complete ring of func-
tions, which is identified in Byun H.L., Redlin L., Watson S., Local invertibility

in subrings of C∗(X), Bull. Austral. Math. Soc. 46(1992), 449–458 via the
mapping ZA, is in fact, the structure space of that subring. Henceforth, some
statements in Byun H.L., Redlin L., Watson S., Local invertibility in subrings

of C∗(X), Bull. Austral. Math. Soc. 46(1992), 449–458 could be proved in
a different way.

Keywords: local bounded inversion; structure space; z
β
A

-ideal; complete ring of
functions

Classification: 54C30, 46E25

1. Introduction

Throughout this paper all topological spaces are assumed to be completely
regular and Hausdorff. For a given topological space X , C(X) denotes the alge-
bra of all real-valued continuous functions on X , C∗(X) denotes the subalgebra
of C(X) consisting of all bounded continuous functions. For each f ∈ C(X),
Z(f) = {x ∈ X : f(x) = 0} denotes the zero-set of f and Coz(f) denotes the
complement of Z(f) with respect to X . For each element f of an intermediate
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262 Parsinia M.

subalgebra A(X) (i.e., C∗(X) ⊆ A(X) ⊆ C(X)), ZA(f) denotes {E ∈ Z(X) :
∃g ∈ A(X) : fg|X\E = 1} (refer to [6] for more details about the mapping ZA).
By a realcompactification of X we mean a realcompact space containing X as a
dense subspace. For a topological space X , βX is the Stone-Čech compactification
of X and υX is the Hewitt-realcompactification of X . Every f ∈ C(X) may be
considered as a continuous function from X into the one-point compactification
R

∗ = R ∪ {∞} of R and thus it has a Stone extension f∗ : βX → R
∗. Clearly, if

f is bounded, then f∗ is the same as fβ. The set of all points in βX where f∗ takes
real values is denoted by υfX , i.e., υfX = {p ∈ βX : f∗(p) 6= ∞}. For a subring
R of C(X) we set υRX = {p ∈ βX : f∗(p) < ∞, ∀f ∈ R} =

⋂
f∈R υfX . It follows

that υCX = υX and υC∗X = βX . Also, υX ⊆ υRX for each subring R of C(X),
see [1] for more details. A maximal ideal M of a subalgebra A(X) is called real
maximal, if A(X)/M ∼= R. If the field A(X)/M properly contains a copy of R,
then M is called a hyper-real maximal ideal. A subalgebra A(X) of C(X) is called
closed under bounded inversion, briefly, a BI-subalgebra, if f is invertible in A(X)
whenever f ∈ A(X) with f ≥ 1. Also, A(X) is called a β-subalgebra, if the struc-
ture space of A(X) is homeomorphic with βX ([13, Definition 2.5]). It is shown
in [13, Theorem 2.8] that every β-subalgebra is a BI-subalgebra. However, the
converse is not true, in general. For example, let p, q ∈ βX\υX and I = Mp∩M q,
then [17, Remark 1.7 and Remark 4.1] and [13, Theorem 2.9] show that I +R is a
BI-subalgebra which is not a β-subalgebra. It is easy to see that every intermedi-
ate subalgebra A(X) is a β-subalgebra. However, a β-subalgebra need not be an
intermediate subalgebra. For example, whenever p ∈ βX \ υX , then Mp + R is a
β-subalgebra which is not an intermediate subalgebra (refer to [13] and [17]). Note
that [13, Theorem 2.9] shows that the β-subalgebras which are also closed under
uniform topology are precisely the intermediate subalgebras. A subalgebra A(X)
of C(X) is called closed under local bounded inversion, briefly, LBI-subalgebras,
if whenever f ∈ A(X) is bounded away from zero on some cozero-set E, then f is
E-regular in A(X); i.e., if f ≥ c > 0 on E, then there exists g ∈ A(X) such that
fg|E = 1. These subalgebras were introduced and studied in [15]. It is easy to
see that every LBI-subalgebra is a BI-subalgebra. However, the converse of this
statement does not hold, in general (see Example 2.2 in the next section). In [13,
Theorem 2.8] it is stated that the collection of all maximal ideals of a β-subalgebra
A(X) is {Mp

A : p ∈ βX}, in which Mp
A = {f ∈ A(X) : (fg)∗(p) = 0, ∀g ∈ A(X)}.

Moreover, it follows from [13, Proposition 2.7] that every maximal ideal of a
BI-subalgebra A(X) is of the form Mp

A, for some p ∈ βX . Following [13] we
set SA(f) = {p ∈ βX : (fg)∗(p) = 0, ∀g ∈ A(X)} for each f in a subal-
gebra A(X); thus, Mp

A = {f ∈ A(X) : p ∈ SA(f)}. It is easy to see that
SA(fg) = SA(f)∪ SA(g), SA(f2 + g2) = SA(f)∩ SA(g) and SA(fn) = SA(f), for
each f, g ∈ A(X) and each n ∈ N. Furthermore, clβXZ(f) ⊆ SA(f) ⊆ Z(f∗) and
thus SA(f)∩X = Z(f). It is evident that SC(f) = clβXZ(f) and SC∗(f) = Z(fβ).
For terms and notations not defined here we follow the standard text [9].

The aim of this paper is to investigate a different approach to the results of [5]
and [15]. This is done via characterizing maximal ideals of the subalgebras which
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are considered in the mentioned papers. Moreover, we generalize the notion of

zβA-ideals, which was first defined in [2] for intermediate subalgebras, to the LBI-

subalgebras. Furthermore, we show that zβA-ideals coincide with z-ideals in LBI-
subalgebras. Note that an ideal I in a commutative ring R is called a z-ideal, if
Mf ⊆ I whenever f ∈ I, where Mf is the intersection of all maximal ideals of R
containing f . This paper consists of three sections. Section 1 is the introduction
as we have already noticed. In Section 2, we consider the class of LBI-subalgebras
of C(X). By characterizing maximal ideals of these subalgebras, we generalize the

notion of zβA-ideals to the LBI-subalgebras. Using these, we give another proof of
the fact that the structure space of each LBI-subalgebra is homeomorphic with
a quotient of βX , which is proved in [15] via the mapping ZA. In Section 3, we
consider the class of complete rings of functions which is introduced in [5]. It
simply follows that every complete ring of functions is an LBI-subalgebra and
thus the compactification associated with each complete ring of functions, which
is identified in [5] via the mapping ZA, is just the structure space of that subring.
Thus, some results of [5] could be achieved in a different way.

2. LBI-subalgebras of C(X)

As noted in the introduction, every LBI-subalgebra is a BI-subalgebra. Thus,
[13, Proposition 2.7] implies that each maximal ideal of an LBI-subalgebra A(X)
has the form Mp

A for some p ∈ βX . The following statement shows that in an
LBI-subalgebra A(X), the ideal Mp

A is always maximal for each p ∈ βX . Note
that in this paper LBI-subalgebras are assumed to separate points and closed
sets of X .

Lemma 2.1. For each p ∈ βX , the ideal Mp
A is maximal in the LBI-subalgebra

A(X).

Proof: Assume that Mp
A is not a maximal ideal. As A(X) is an LBI-subalgebra,

there exists q ∈ βX such that M q
A is a maximal ideal in A(X) and Mp

A ⊂ M q
A.

Let f ∈ M q
A \ Mp

A, thus, there exists g ∈ A(X) such that (fg)∗(p) 6= 0; i.e,
p /∈ Z((fg)∗). Therefore, there exists h ∈ C(X) such that p ∈ clβXZ(h) and
clβXZ(h) ∩ Z((fg)∗) = ∅. It follows that h ∈ Mp and f(x)g(x) > c > 0 for
each x ∈ Z(h) where c ∈ R

≥0. Set F = {x ∈ X : f(x)g(x) > c}, clearly, F is a
cozero-set containing Z(h) on which fg is bounded away from zero. Thus, there
exists k ∈ A(X) such that fgk|F = 1, since A(X) is an LBI-subalgebra. Hence,
fgk|Z(h) = 1 which implies that 1 − fgk|Z(h) = 0. As p ∈ clβXZ(h), we have
(1 − fgk)∗(p) = 0 and hence for each t ∈ A(X) we have ((1 − fgk)t)∗(p) = 0,
since Z(h) ⊆ Z((1 − fgk)t) and thus if p /∈ Z(((1 − fgk)t)∗). Then there exists
l ∈ C(X) such that p ∈ clβXZ(l) and Z(l) ∩ Z((1 − fgk)t) = ∅. This implies
that Z(l) ∩ Z(h) = ∅, however, l, h ∈ Mp which is a contradiction. Therefore,
1 − fgk ∈ Mp

A ⊆ M q
A and thus 1 ∈ M q

A which is a contradiction. �
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Note that Lemma 2.1 does not hold for BI-subalgebras, in general, as the
following example shows. This example investigates a BI-subalgebra which is not
an LBI-subalgebra.

Example 2.2. Let X be a topological space and p, q ∈ βX \ υX with p 6= q. Also,
let I = Mp ∩ M q and AI = Iu + R. It follows from [17, Lemma 2.2] that AI is a
BI-subalgebra. Moreover, using [16, Lemma 5.1], we have Mp ⊆ Mp

AI
and thus

I ⊆ Mp
AI

. Therefore, if Mp
AI

is maximal in AI , then [17, Theorem 2.7] implies that

Mp
AI

= Iu which means that (Mp)u = (M q)u. This contradicts p 6= q. Therefore,

Mp
AI

is not maximal in AI and hence we can infer from Lemma 2.1 that AI is not
an LBI-subalgebra.

The concept of zβA-ideal was first introduced in [2] for intermediate subalgebras.
It follows from Lemma 2.1 that this concept could be applied for LBI-subalgebras,
see Definition 2.5 in the following. The next statement generalizes [2, Lemma 2.2]
to LBI-subalgebras.

Notation. For a subalgebra A(X) of C(X), S(A) denotes {SA(f) : f ∈ A(X)};
for an ideal I of A(X), SA[I] denotes {SA(f) : f ∈ I} and for a subcollection F
of S(A), S−1

A [F ] denotes {f ∈ A(X) : SA(f) ∈ F}.

Lemma 2.3. Let A(X) be an LBI-subalgebra of C(X), then SA(f) = ∅ if and

only if f is an invertible element in A(X).

Proof: It is clear that if f is invertible in A(X), then SA(f) = ∅. Let f ∈ A(X)
and SA(f) = ∅, therefore, f /∈ Mp

A for each p ∈ βX . As A(X) is an LBI-
subalgebra, [13, Proposition 2.7] implies that f misses each maximal ideal of
A(X). Hence, f is invertible in A(X). �

Definition 2.4. A non-empty subcollection F of S(A) is called a zβA-filter on
βX , whenever

1) ∅ /∈ F ;
2) if S1, S2 are in F , then S1 ∩ S2 ∈ F ;
3) if S1 ∈ F , S2 ∈ S(A) and S1 ⊆ S2, then S2 ∈ F .

Also, zβA-ultrafilters and prime zβA-filters are defined similarly to z-ultrafilters
and prime z-filters, respectively.

Definition 2.5. An ideal I in an LBI-subalgebra A(X) is called a zβA-ideal if

S−1
A SA[I] = I in which S−1

A SA[I] = {f ∈ A(X) : SA(f) ∈ SA[I]}.

The definition of zβA-ideal, evidently, implies that every maximal ideal of A(X)

is a zβA-ideal. The next statement, which is a generalization of [2, Theorem 2.3
and Theorem 2.6] to LBI-subalgebras, indicates the close connection between

zβA-ideals and zβA-filters.

Proposition 2.6. Let A(X) be an LBI-subalgebra of C(X), then

1) if I is a proper ideal of A(X), then SA[I] is a zβA-filter on βX ;

2) if F is a zβA-filter on βX , then S−1
A [F ] is a zβA-ideal in A(X);
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3) if M is a maximal ideal in A(X), then SA[M ] is a zβA-ultrafilter on βX ;

4) if U is a zβA-ultrafilter on βX , then S−1
A [U ] is a maximal ideal in A(X).

Proof: Using Lemmas 2.1 and 2.3, and also [2, Theorem 2.3 and Theorem 2.6],
the proof is straightforward. �

The next statement gives an algebraic characterization of zβA-ideals which re-

veals that the class of zβA-ideals of an LBI-subalgebra A(X) coincides with the
class of z-ideals of A(X). This statement is a generalization of [2, Theorem 3.8]
to LBI-subalgebras.

Proposition 2.7. Let A(X) be an LBI-subalgebra and f, g ∈ A(X), then

SA(g) ⊆ SA(f) if and only if Mf(A) ⊆ Mg(A).

Proof: As A(X) is an LBI-subalgebra, f ∈ Mg(A) if and only if SA(g) ⊆ SA(f).
Now, let Mf (A) ⊆ Mg(A) and p ∈ SA(g), then g ∈ Mp

A and f ∈ Mf(A) ⊆
Mg(A) ⊆ Mp

A. Thus, p ∈ SA(f), which implies that SA(g) ⊆ SA(f). Conversely,
assume the contrary that SA(g) ⊆ SA(f) but Mf (A) 6⊆ Mg(A). Therefore, there
exists h ∈ Mf (A) such that h /∈ Mg(A). Hence, there exists some M ∈ Max(A)
such that h /∈ M and g ∈ M . As A(X) is an LBI-subalgebra, M = Mp

A, for
some p ∈ βX . Hence, g ∈ Mp

A and h /∈ Mp
A, which means that p ∈ SA(g) and

p /∈ SA(f). This contradiction shows that Mf(A) ⊆ Mg(A). �

It follows from the above proposition that an ideal I in an LBI-subalgebra

A(X) is a zβA-ideal if and only if it is a z-ideal. Therefore, from well-known

properties of z-ideals, it follows that every maximal ideal in A(X) is a zβA-ideal,

every zβA-ideal is an intersection of prime ideals, every minimal prime ideal over

a zβA-ideal is also a zβA-ideal and hence every minimal prime ideal of A(X) is

a zβA-ideal. These facts are generalizations of [2, Theorem 3.2, Theorem 3.3,

Theorem 5.5 and Theorem 3.8] to LBI-subalgebras. Using the notion of zβA-
ideals, we show that the structure space of each LBI-subalgebra is Hausdorff.
Let A(X) be an LBI-subalgebra, then it is clear that S(A) constitutes a base for
the closed subsets of a topology on βX which we call S(A)-topology and denote
by τS(A). X is a dense subspace of (βX, τS(A)), since A(X) separates points and
closed sets in X . If τ denotes the usual topology on βX , then, clearly, τS(A) ⊆ τ .
Therefore, (βX, τS(A)) is compact. This fact leads to the next statement which is
a reformulation of [15, Theorem 3.5].

Theorem 2.8. The structure space of an LBI-subalgebra A(X) is homeomorphic

with
(βX,τS(A))

∼A
.

Proof: Define ∼A on βX as follows p ∼A q if Mp
A = M q

A, where p, q ∈ βX .

Clearly, ∼A defines an equivalence relation on βX . Therefore, βX
∼A

is a quotient

of βX . Now, define ϕ :
(βX,τS(A))

∼A
→ Max(A) by ϕ(p) = Mp

A. We show that this

mapping is a homeomorphism. Let Mf = {M ∈ Max(A) : f ∈ M} be a basic
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closed set in Max(A) and p /∈ ϕ−1(Mf ), thus, Mp
A /∈ Mf and hence p /∈ SA(f).

Therefore, there exists g ∈ A(X) such that p /∈ SA(g) and SA(f) ⊆ SA(g).
Thus, p /∈ SA(g) and ϕ−1(Mf ) ⊆ SA(g) which means that ϕ is continuous. It
is clear that ϕ is also one-one and onto. By showing that ϕ is a closed mapping
the proof is completed. Let SA(f) be a basic closed set and Mp

A /∈ ϕ(SA(f)).
Thus, p /∈ SA(f) and hence there exists g ∈ A(X) such that SA(f) ⊆ SA(g) and
p /∈ SA(g). Therefore, ϕ(SA(f)) ⊆ Mg and Mp

A /∈ Mg. Hence, ϕ is a closed
mapping and we are done. �

The next statement follows from Theorem 2.8 which is a reformulation of [15,
Theorem 3.6].

Theorem 2.9. The structure space of each LBI-subalgebra of C(X) is a quotient

of βX ; precisely, Max(A) is homeomorphic with
(βX,τS(A))

∼A
.

Proof: Let A(X) be an LBI-subalgebra of C(X). At first, we show that (βX,τ)
∼A

is a compact Hausdorff space. Evidently, this space is compact. Now, assume that
p and q are two distinct points βX where βX is equipped with the S(A)-topology
and the equivalence relation ∼A is defined on it. It follows that Mp

A and M q
A are

two distinct maximal ideals in A(X). We claim that there exists f ∈ Mp
A and

g ∈ M q
A such that SA(f) ∩ SA(g) = ∅. Otherwise, SA[Mp

A] ∪ SA[M q
A] constitutes

a base for a zβA-filter on βX , let F be this zβA-filter. Then clearly S−1
A [F ] is an

ideal in A(X) containing both Mp
A and M q

A which is a contradiction. Therefore,
(βX,τS(A))

∼A
is Hausdorff. Now, the identity mapping i : (βX, τ) → (βX, τS(A)) is

continuous and hence so is the identity mapping I : (βX,τ)
∼A

→
(βX,τS(A))

∼A
. Thus,

I is a homeomorphism as it is a continuous bijective mapping to a compact
Hausdorff space. Therefore, by Theorem 2.8, we are done. �

An immediate consequence of the above statements is the characterization
of maximal ideals of invertible lattice-ordered subalgebras of C(X). We call a
subalgebra R of C(X) an invertible subalgebra, if f−1 ∈ R whenever f ∈ R with
Z(f) = ∅. Some well-known examples of invertible lattice-ordered subalgebras are
I +R, where I is an absolutely convex ideal in C(X) (refer to [17, Remark 1.8 and
Remark 4.1]) and Cc(X), the subalgebra of C(X) consisting of all functions with
countable image (refer to [8]). It is easy to see that every invertible lattice-ordered
subalgebra R of C(X) is an LBI-subalgebra. Indeed, it is clear that this kind of
subalgebras are BI-subalgebras and if f ∈ R and f ≥ c > 0 on a cozero-set E,
then g = c∨f is in R and clearly is bounded away from zero on X and hence, has
an inverse h in R, and it follows that fh|E = 1. Therefore, the collection of all the
maximal ideals of an invertible lattice-ordered subalgebra R is {Mp

R : p ∈ βX},
also, it is easy to see that Mp

R = Mp ∩ R for each p ∈ βX . Hence, whenever I is
an absolutely convex ideal in C(X), then the collection of all the maximal ideals
of I + R is {Mp ∩ (I + R) : p ∈ βX} and clearly Mp

I+R
= M q

I+R
if and only if

p, q ∈ θ(I), where θ(I) =
⋂
f∈I clβXZ(f). Therefore, I + R is a β-subalgebra if
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and only if I is contained in a unique maximal ideal. Applying these facts for the
subalgebra CK(X) + R, where CK(X) denotes the ideal of C(X) consisting of all
functions with compact support (refer to [9, 4D]), implies that CK(X)+R has the
unique free maximal ideal CK(X). Thus, whenever X is locally compact, then
Max(CK(X) + R) is homeomorphic with the one-point compactification of X .
Furthermore, the unique free maximal ideal of Cψ(X) + R is Cψ(X), in which
Cψ(X) denotes the ideal of C(X) consisting of all functions with pseudocompact
support (refer to [11]). Hence, whenever X is locally compact, then Max(Cψ(X)+
R) is homeomorphic with the one-point pseudocompactification of X . This means
that the one-point compactification and the one-point pseudocompactification of
locally compact spaces are homeomorphic with quotients of βX .

Similarly, the characterization of maximal ideals of the subalgebra Cc(X) fol-
lows from Lemma 2.1. As earlier noted, Cc(X) is an invertible lattice-ordered
subalgebra of C(X) and thus, the collection of all the maximal ideals of Cc(X) is
{Mp ∩Cc(X) : p ∈ βX}. It is well-known that whenever X is a zero-dimensional
space, then Max(Cc(X)) is homeomorphic with the Banaschewski compactifi-
cation of X which is denoted by βoX (refer to [3]). Therefore, Cc(X) is a β-
subalgebra if and only if X is strongly zero-dimensional. Moreover, if X is a
zero-dimensional space, then β0X is homeomorphic with a quotient of βX ; in
fact, if we define ∼c on βX as p ∼c q if and only if Mp

Cc
= M q

Cc
, then β0X is

homeomorphic with βX
∼c

.

Note that a subring R of C(X) is called a C-ring, if R is isomorphic with
C(Y ) for some completely regular Hausdorff space Y (see [15]). R is called an
intermediate C-algebra, if it is an intermediate subalgebra which is also a C-ring.
Intermediate C-algebras of C(X) are in a 1−1 correspondence with realcompact-
ifications of X according to the following proposition which is a restatement of
[15, Theorem 4.7].

Proposition 2.10 ([15, Theorem 4.7]). There exists a 1 − 1 correspondence

between realcompactifications of X and intermediate C-algebras of C(X).

Proof: We first note that every realcompactification of X is homeomorphic with
a realcompactification of X which is a subset of βX , In fact, let Y be a realcom-
pactification of X and set AY (X) = {f ∈ C(X) : f has an extension to Y }.
As stated in the proof of part (b) of [14, Theorem 4.6.], AY (X) ∼= C(Y ) and
Y ≃ υAY

X . Also, clearly, υAY
X ⊆ βX . Therefore, it suffices to consider the

realcompactifications which are subsets of βX . Now, it is evident that if A(X)
is an intermediate C-algebra of C(X), then υAX is a realcompactification of X .
Also, whenever K is a realcompactification of X , then C(K) is isomorphic with
the intermediate subalgebra AK(X) = {f |X : f ∈ C(K)} of C(X). It follows that
AK(X) is an intermediate C-algebra of C(X) and υAK

X ≃ K. �

For each T ⊆ βX , let BT denote {f ∈ C(X) : f∗(p) < ∞, ∀p ∈ T }, we
use Bp instead of B{p}. It is stated in [7, Theorem 1.2] that an intermediate
subalgebra A(X) is a C-algebra if and only if there exists a subset T of βX such
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that A(X) = BT . It is clear that BT =
⋂
p∈T Bp for each subset T of βX . The

next statement shows that, for each p ∈ βX , Bp is the intermediate subalgebra
generated by the maximal ideal Mp of C(X).

Proposition 2.11. For each p ∈ βX , we have Bp = Mp + C∗(X).

Proof: It is clear that Mp + C∗(X) ⊆ Bp. It follows from [13, Theorem 2.9]
that each intermediate subalgebra is uniformly closed, thus, (Mp)u + C∗(X) =
Mp + C∗(X). Moreover, [16, Lemma 5.1] implies that (Mp)u = {f ∈ C(X) : p ∈
Z(f∗)}. Therefore, if f ∈ Bp, then f∗(p) = r for some r ∈ R, hence, (f −r)∗(p) =
0 and thus, f − r ∈ (Mp)u which clearly implies that f ∈ Mp + C∗(X). This
completes the proof. �

It follows from the above proposition and [7, Theorem 1.2] that each inter-
mediate C-algebra is an intersection of intermediate subalgebras generated by a
family of maximal ideals. In fact, whenever A(X) is an intermediate C-algebra,
then A(X) =

⋂
p∈T (Mp

A + C∗(X)), for some T ⊆ βX .

3. Complete ring of functions

Following [5] a subring A(X) of C∗(X) is called a complete ring of functions if
A(X) is a uniformly closed subset of C∗(X), contains the constants and separates
points and closed sets in X . Throughout this section A(X) denotes a subalgebra
of C∗(X) which is a complete ring of functions. It follows from Lemma 2.1 and
part (c) of [5, Lemma 1.2] that every complete ring of functions is an LBI-
subalgebra of C(X). As an example of such rings, let I be a free z-ideal in C(X),
then it is easy to see that (Iu + R) ∩ C∗(X) is a complete ring of functions.

Lemma 3.1. Every maximal ideal in a complete ring of functions A(X) has the

form Mp
A = M∗p ∩A(X), for some p ∈ βX . Moreover, all such ideals are distinct

if and only if A(X) = C∗(X).

Proof: As noted above, every complete ring of functions is an LBI-subalgebra.
Therefore, the collection of all the maximal ideals of A(X) is {MP

A : p ∈ βX}.
Moreover, as every complete ring of functions A(X) is a subring of C∗(X),
SA(f) ⊆ Z(fβ), for all f ∈ A(X). Thus, every maximal ideal in A(X) has
the form M∗p ∩ A(X) = Mp

A, for some p ∈ βX . Also, as such subrings are uni-
formly closed, [13, Theorem 2.9.] implies that the only complete ring of functions
which is a β-subalgebra is C∗(X). �

As every complete ring of functions is an LBI-subalgebra, the structure space of
each complete ring of functions is a compactification of X and hence is a quotient
of βX . This means that the compactification which is characterized in [5] via the
mapping ZA for a complete ring of functions A(X) is, in fact, the structure space
of A(X).

Proposition 3.2. Every complete ring of functions is a C-ring of C∗(X).
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Proof: Every complete ring of functions is, clearly, a uniformly closed Φ-algebra.
Thus, by [10, 3.2], we have A(X) ∼= C(Max(A)) and hence we are done. �

In [5], the equivalence relation ∼A is defined on βX as p ∼A q if Z−1
A [Up] =

Z−1
A [Uq], in which, Up is the unique z-ultrafilter on X containing p and Z−1

A =
{f ∈ A(X) : ZA(f) ⊆ Up}. It is easy to see that p ∼A q if and only if Mp

A = M q
A.

Therefore, βAX(= βX
∼A

) ∼= Max(A). Using this fact, [5, Theorem 2.3] can be
proved in a different way.

Theorem 3.3 ([5, Theorem 2.3]). Let f ∈ C∗(X), then f has an extension fA

to βAX if and only if f ∈ A(X).

Proof: As A(X) ∼= C(Max(A)) ∼= C(βAX)), the statement is clear. �
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