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A note on the commutator of two

operators on a locally convex space

Edvard Kramar

Abstract. Denote by C the commutator AB − BA of two bounded operators A

and B acting on a locally convex topological vector space. If AC − CA = 0,
we show that C is a quasinilpotent operator and we prove that if AC − CA is
a compact operator, then C is a Riesz operator.

Keywords: locally convex space; commutator; nilpotent operator; compact ope-
rator; Riesz operator

Classification: 46A03, 47B47, 47B06

1. Introduction

Let X be a complex Hausdorff locally convex topological vector space. A sys-
tem of seminorms P = {pα : α ∈ ∆} inducing the topology on X will be called
a calibration. We denote by P(X) the collection of all calibrations on X . For a
given seminorm pα we denote Uα = {x ∈ X : pα(x) < 1}. A calibration P is di-
rected if for each pα, pβ ∈ P there is some pγ ∈ P such that pα ≤ pγ and pβ ≤ pγ .
For a given calibration P the system of semiballs {εUα : ε > 0, α ∈ ∆} forms a
neighborhood base at 0. Let us denote by L(X) the set of all linear continuous
operators on X . An operator T ∈ L(X) is compact (T ∈ K(X)) if there is some
open neighborhood W at 0 such that T (W ) is a relatively compact set, and T
is bounded (T ∈ B(X)) if T (W ) is a bounded set. If P is some given directed
calibration on X we can replace the set W by some semiball Uγ in the above def-
inition. If the set T (Uγ) is bounded and pγ ∈ P is the corresponding seminorm
for Uγ , then for each pα ∈ P there is some cα > 0 such that pα(Tx) ≤ cαpγ(x),
x ∈ X , α ∈ ∆. We say that T is bounded with respect to the seminorm pγ . For
a given P ∈ P(X) we denote by BP (X) the collection of all linear operators T
on X for which pα(Tx) ≤ cpα(x), where x ∈ X , pα ∈ P , and c > 0 is inde-
pendent of α ∈ ∆. BP (X) is a unital normed algebra with respect to the norm
‖T ‖P = sup{pα(Tx) : pα(x) ≤ 1, x ∈ X, pα ∈ P}. For a given pα ∈ P let Jα

denote the null space of pα. The quotient space Xα = X/Jα is a normed space

with the norm ‖xα‖α = pα(x), where xα = x + Jα, and X̃α denotes the com-
pletion of Xα. Let T ∈ L(X) be such that T (Jα) ⊆ Jα, then the corresponding
operator Tα on Xα is well-defined by Tα(xα) = Tx+ Jα, its continuous extension
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to X̃α will be denoted by T̃α. For a given T ∈ L(X) the number λ ∈ C is in
the resolvent set of T iff (λI − T )−1 exists in L(X). The spectrum σ(T ) is the
complement of the resolvent set. An operator T is quasinilpotent if σ(T ) = {0}.
For an associative algebra A and any a, b ∈ A the commutator ab − ba will be
denoted by [a, b] or also by δa(b).

2. The results

Lemma 1. Let X be a locally convex space and let F = {Ai : i ∈ N} be a finite

family of operators in B(X), where N = {1, 2, . . . , n}. Let A be the algebra of

operators generated by F . Then there exists a calibration P ∈ P(X) such that

the following hold:

(i) A is contained in BP (X),
(ii) there is some pγ ∈ P such that all operators from A are bounded with

respect to the seminorm pγ .

Proof: (i) Let P0 = {qα : α ∈ ∆} be a directed calibration on X . For any

Ai ∈ F there exists some q
(i)
γ ∈ P0 such that for each α ∈ ∆ the following holds

qα(Aix) ≤ a(i)
α q(i)

γ (x), x ∈ X

for some a
(i)
α > 0. Write λα = max{a

(i)
α : i ∈ N}, α ∈ ∆, and let qγ ∈ P0

be a common successor of q
(i)
γ , i ∈ N . Then, clearly for each i ∈ N we have

qα(Aix) ≤ λαqγ(x), x ∈ X , and for any T ∈ A there is some tα > 0 such that

(1) qα(Tx) ≤ tαqγ(x), x ∈ X.

Let us define a new family of seminorms P = {pα : α ∈ ∆}, where pα(x) =
max{qα(x), λαqγ(x)}, x ∈ X , α ∈ ∆. For each α ∈ ∆, qα ≤ pα and pα ≤
max{1, λα}max{qα, qγ}, thus P is a calibration on X . For any pα ∈ P and any
Ai ∈ F we have pα(Aix) = max{qα(Aix), λαqγ(Aix)} ≤ max{λαqγ(x), λαλγqγ(x)}
≤ c0λαqγ(x) ≤ c0pα(x), x ∈ X , where c0 = max{1, λγ}, hence Ai ∈ BP (X).
Then we have, for any T ∈ A, pα(Tx) ≤ cpα(x), where c is independent of
α ∈ ∆. Thus, T ∈ BP (X).

(ii) Choose any pα ∈ P and any T ∈ A. By (1) and by the relationship between
P0 and P we obtain pα(Tx) ≤ max{1, λα}max{qα(Tx), qγ(Tx)} ≤ dαqγ(x) ≤
dαpγ(x), x ∈ X , where dα = max{1, λα}max{tα, tγ}. �

In the following lemma we specify some properties of the passage to the quotient
space on which the induced operators are well-defined.

Lemma 2. Let X be a locally convex space and let F be, as above, a finite family

of bounded operators. Let A be the algebra generated by F and let P ∈ P(X) and

pγ ∈ P be from the previous lemma. Then for each pγ′ ∈ P for which pγ ≤ pγ′

the following hold.

(i) ˜(S + T )γ′ = S̃γ′ + T̃γ′, S, T ∈ A.
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(ii) (̃ST )γ′ = S̃γ′ T̃γ′ , S, T ∈ A.

(iii) ‖T̃γ′‖γ′ ≤ ‖T ‖P , T ∈ A.

(iv) If T ∈ A is a compact operator for which T (Uγ′) is a relatively compact

set, then T̃γ′ is a compact operator, too.

Proof: By the preceding lemma, and by the assumption pγ ≤ pγ′ , each T ∈ A is
also bounded with respect to the seminorm pγ′ . Especially we have T (Jγ′) ⊆ Jγ′ .

Thus, the corresponding operator Tγ′ on Xγ′ and its extension T̃γ′ on X̃γ′ are
well-defined and are bounded. By [4, p. 413], we have the equalities (i) and (ii).
Let us prove (iii). The algebra A is contained in BP (X), hence for each T ∈ A it
follows

pα(Tx) ≤ ‖T ‖Ppα(x), x ∈ X, pα ∈ P.

Especially, pγ′(Tx) ≤ ‖T ‖P pγ′(x), x ∈ X , then also ‖Tγ′‖γ′ ≤ ‖T ‖P , and also

‖T̃γ′‖γ′ ≤ ‖T ‖P . Since each relatively compact set is also totally bounded, the
statement (iv) follows by [4, p. 413]. �

Let A be an associative algebra and a, b ∈ A such that δ2
a(b) = [a, δa(b)] = 0.

Then the following is true (see e.g. [1, p. 86])

(2) δn
a (bn) = n!δa(b)n, n ∈ N.

Proposition 1. Let A be an associative algebra and assume that a, b ∈ A satisfy

the conditions δ2
a(b) = 0 and [b, an] = 0 for some n ∈ N. Then

δa(b)2n−1 = 0.

Proof: By the assumption δ2
a(b) = 0 we have [a, δb(a)] = −[a, δa(b)] = 0. Then

it is easy to show by induction that [b, ak] = kak−1[b, a], for each k ∈ N. Thus
for k = n, and by the above assumption we obtain anb = an−1ba. If we multiply
this equality by a on the left, we have an+1b = ban+1. In the same way we obtain
by induction

an+kb = ban+k, k = 0, 1, 2, . . .

Denoting c := b2n−1 we have δ2n−1
a (c) =

∑2n−1
j=0 (−1)j

(
2n−1

j

)
a2n−1−jcaj . For 0 ≤

j ≤ n−1 we have a2n−1−jcaj = ca2n−1 = a2n−1c, and for n ≤ j ≤ 2n−1 we have

a2n−1−jcaj = a2n−1c. Hence it follows δ2n−1
a (c) = a2n−1c

∑2n−1
j=0 (−1)j

(
2n−1

j

)
=

0. Then by (2) we obtain (2n − 1)!δa(b)2n−1 = δ2n−1
a (b2n−1) = 0. �

Corollary 1. Let A be an associative algebra. If a, b ∈ A are such that δ2
a(b) = 0

and an = 0 for some n ∈ N, then δa(b)2n−1 = 0.

The following theorem is the classical Kleinecke-Shirokov theorem if X is a
Banach space.

Theorem 1. Let X be a sequentially complete locally convex space and let

A, B ∈ B(X) be such that δ2
A(B) = 0. Then δA(B) is a quasinilpotent operator.
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Proof: It may be supposed that X is not a normed space. By Lemma 1, there
is some P ∈ P(X) such that A, B ∈ BP (X). Since X is sequentially complete,
BP (X) is a Banach algebra (see, e.g. [2]). Write T = δA(B), then by (2) for each
λ 6= 0 there exists (T − λI)−1 ∈ BP (X) ⊆ L(X), hence σ(T ) ⊆ {0}. Now, T is
a bounded operator acting on a non-normable locally convex space, hence, by a
consequence of Kolmogorov theorem on normability of topological vector spaces,
T is not invertible. Thus, 0 ∈ σ(T ). �

In the following theorem we shall assume that A is an algebraic operator with
the minimal polynomial µ. This means µ is a monic polynomial with minimal
degree such that µ(A) = 0. This theorem was formulated and proved in [3] for
the algebra of bounded operators on a Banach space, actually, the proof is valid
for operators on any complex vector space. We prove the same result by partially
alternative arguments based on Proposition 1.

Theorem 2. Let X be a complex vector space and A, B ∈ L(X) be such that

δ2
A(B) = 0. Let A be an algebraic operator with the minimal polynomial µ(λ) =∏n

j=1(λ − λj)
nj , where {λj} are distinct. Then for m = 2 max{nj} − 1 holds

δA(B)m = 0.

Proof: For the algebraic operator A with the above minimal polynomial the
following decomposition holds A = A1⊕A2⊕· · ·⊕An on X = X1⊕X2⊕· · ·⊕Xn,
where, for j = 1, . . . , n, Xj = ker((A − λjI)nj ), Aj = A|Xj

and (A − λjI)|Xj

is a nilpotent operator of order nj (see e.g. [5]). Choose any j ∈ {1, 2, . . . , n}.
By the equality δ2

A−λjI(B)Xj = {0} we can prove in the same way as in [3]

that B(Xj) ⊆ Xj . Thus, by Corollary 1, (δA−λjI(B)|Xj
)2nj−1 = 0. Hence

δA(B)m = 0, where m = 2 max{nj} − 1. �

Corollary 2. Let X be a complex vector space and let A, B ∈ L(X) be such that

δ2
A(B) = 0. Let A be an algebraic operator for which the minimal polynomial has

only simple zeroes. Then A commutes with B.

We can find in [4, p. 405] a definition of a Riesz operator acting on a Hausdorff
topological vector space. The following theorem is a generalization to locally
convex spaces of a result proven in [6] for the Banach spaces.

Theorem 3. Let X be a sequentially complete locally convex space and let

A, B ∈ B(X). If δ2
A(B) is a compact operator, then δA(B) is a Riesz operator.

Proof: Let us denote by A the algebra of operators generated by A and B.
Denoting C = δ2

A(B), we shall prove that

(3) δn
A(Bn) = n!δA(B)n + Kn, n = 2, 3, . . . ,

where Kn can be written as

(4) Kn = EnC + CE′
n +

∑

i∈Mn

FiCF ′
i , n = 2, 3, . . . ,
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where M2 is an empty set, for n ≥ 3, Mn is some finite set of natural numbers,
and all operators belong to the algebra A. Indeed, for n = 2 we have δ2

A(B2) =
Bδ2

A(B) + 2δA(B)2 + δ2
A(B)B = 2δA(B)2 + K2, where K2 = BC + CB. For a

given n ≥ 2, let (3) be true and let Kn be of the form (4). Then by the Leibniz
formula it follows

δn
A(Bn+1) = n!δA(B)nB + nδn−1

A (Bn)δA(B) + Sn,

where Sn = KnB +
∑n

k=2

(
n
k

)
δn−k
A (Bn)δk

A(B). Applying the operator δA on both
sides of the above equality, and taking into account (3) for the given n, we obtain
by a simple calculation

δn+1
A (Bn+1) = n!δA(B)n+1 + n(n!δA(B)n + Kn)δA(B) + n!(δ2

A(B)δA(B)n−1

+δA(B)δ2
A(B)δA(B)n−2 + · · · + δA(B)n−1δ2

A(B))B + nδn−1
A (Bn)δ2

A(B) + δA(Sn)

= (n + 1)!δA(B)n+1 + Kn+1.

Since (4) is closed for left/right multiplications by elements from A, and δA is
inner derivation, so Kn+1 is again of the form (4). Note, that (3) follows directly
from the relation (2) considering the quotient algebra L(X)/K(X), but we need
also the form of operators Kn given in (4). By Lemma 1 there is some P ∈ P(X),
and pγ ∈ P such that A ⊆ BP (X) and all operators from A are bounded with
respect to the seminorm pγ . Since C ∈ K(X), we can find some semiball Uγ′ ⊆ Uγ

such that C(Uγ′) is relatively compact. Clearly, pγ ≤ pγ′ , hence

pα(Tx) ≤ dαpγ(x) ≤ dαpγ′(x), α ∈ ∆, T ∈ A,

for some dα > 0. Especially for α = γ′ we have pγ′(Tx) ≤ dγ′pγ′(x), consequently
T (Uγ′) ⊆ dγ′Uγ′ , for all T ∈ A. Now, it is easy to see, by (4), that Kn(Uγ′) is
relatively compact set for each n ≥ 2. The relation (3) implies

δA(B)n − Cn =
1

n!
δn
A(Bn), n = 2, 3, . . . ,

where Cn = −Kn/n! are compact operators contained in A. Clearly, Uγ′ is a
semiball for which Cn(Uγ′) are relatively compact sets for all n. Fix any n ≥ 2,
then

‖δA(B)n − Cn‖P =
1

n!
‖δn

A(Bn)‖P ≤
1

n!
‖δA‖

n‖B‖n
P .

Using Lemma 2, we get

‖ ˜δA(B)γ′

n

− (̃Cn)γ′‖γ′ ≤ ‖δA(B)n − Cn‖P ≤
cn

n!
,

where c = ‖δA‖‖B‖P , and (̃Cn)γ′ is compact operator. Therefore also holds

inf
Tγ′∈K(X̃γ′ )

‖ ˜δA(B)γ′

n

− Tγ′‖γ′ ≤
cn

n!
.
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Letting n → ∞ we obtain

lim
n→∞

{ inf
Tγ′∈K(X̃γ′ )

‖ ˜δA(B)γ′

n

− Tγ′‖γ′}1/n = 0.

Thus, δ̃A(B)γ′ is by [8] an asymptotically quasi-compact operator on X̃γ′ , which

means by [8] that it is a Riesz operator on X̃γ′. Therefore, δA(B) is then by
[7, Theorems 6.2, 4.2 and 6.3] a Riesz operator on X . �
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