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AN OPTIMAL STRONG EQUILIBRIUM SOLUTION
FOR COOPERATIVE MULTI-LEADER-FOLLOWER
STACKELBERG MARKOV CHAINS GAMES

K.K. Trejo, J. B. Clempner and A. S. Poznyak

This paper presents a novel approach for computing the strong Stackelberg/Nash equilib-
rium for Markov chains games. For solving the cooperative n-leaders and m-followers Markov
game we consider the minimization of the Lp−norm that reduces the distance to the utopian
point in the Euclidian space. Then, we reduce the optimization problem to find a Pareto op-
timal solution. We employ a bi-level programming method implemented by the extraproximal
optimization approach for computing the strong Lp−Stackelberg/Nash equilibrium. We vali-
date the proposed method theoretically and by a numerical experiment related to marketing
strategies for supermarkets.

Keywords: strong equilibrium, Stackelberg and Nash, Lp−norm, Markov chains
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1. INTRODUCTION

Stackelberg games are usually represented by a leader-follower problem which corre-
sponds to a bi-level programming problem. In bi-level programming problems there are
two competing decision-making parties [4]: a) one is upper level decision makers and,
b) the other is lower level decision makers. The two levels interact with each other as
follows. The lower level is completely restricted by the upper level’s decision and for
each decision made by the upper level, lower level will choose the best option according
to their objectives. Instead the upper level objectives are restricted from below by the
lower level: the upper level control the lower level’s decision in the way that lower level
will react by choosing the best option.

In a Stackelberg game the leader’s optimization problem is represented by the upper
level, restricted by the follower’s optimization mission at the lower level. The dynamics
of a Stackelberg game is as follows ([30]): The leader considers the best-reply of the
follower. Then, he/she commits to a mixed strategy (a probability distribution over
deterministic schedules) that minimizes the cost, anticipating the predicted best-reply
of the follower. Then, taking into the account the adversary’s mixed strategy selection,
the follower in equilibrium selects the expected best-reply that minimizes the cost.
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Bi-level programming models have vast theoretical studies and applications in the
real world. The traditional methods employed to solve these problems include penalty
functions ([1]), the Karush–Kuhn–Tucker method ([6, 19]) and branch-and-bound pro-
cedures [5]. Relevant literature related to bi-level programming models is presented in
([14, 12, 20]). Alternative techniques using evolutionary algorithms have also been used
to solve bi-level programming problems ([11, 24]). Applications were presented into the
security domain by ([9, 27, 31]) suggesting a upper level that represents defenders trying
to minimize risk, and a lower level that represents attackers trying maximizing destruc-
tion for a given target. Additionally, an application into energy area was suggested by
([15]) where the upper level represents the energy provider that minimizes total cost, and
the lower level represents the energy consumer that determines the pattern of consump-
tion. There are several applications implemented into different areas: transportation
([7, 10, 21]), agriculture ([16]), network ([23, 22]), management ([3]), gas ([13]).

This paper presents a novel approach for computing the strong Stackelberg/Nash
equilibrium for Markov chains games. We solve the cooperative n-leaders and m-
followers Markov game considering the minimization of the Lp−norm. The existence of
the Lp−Stackelberg/Nash equilibrium is characterized as a strong Pareto policy, which
is the closest in the Euclidean norm to the virtual minimum (utopia point). Then, we
reduce the optimization problem to find a Pareto optimal solution. We employ a bi-level
programming model implemented by the extraproximal optimization approach [2, 30]
for computing the strong Stackelberg/Nash equilibrium. The extraproximal approach
is a natural extension of the proximal and the gradient optimization methods used for
solving the more difficult problems for finding an equilibrium point in game theory. It is
defined by a two-step iterated procedure consisting of a prediction step that calculates
the preliminary position approximation to the equilibrium point, and a basic adjust-
ment of the previous step. We design the method for the static strong Stackelberg/Nash
game in terms of nonlinear programming problems implementing the Lagrange prin-
ciple. In addition, we make use of the Tikhonov’s regularization method to ensure
the convergence of the cost-functions to a unique Strong Lp−Stackelberg/Nash equi-
librium. We formulate the nonlinear programming problem considering several linear
constraints employing the c-variable method for making the problem computationally
tractable. For solving each equation of the extraproximal optimization approach we use
the projectional gradient method. The proposed method approaches in exponential time
to a unique Strong Lp−Stackelberg/Nash equilibrium. The usefulness of the proposed
solution is proved theoretically, and by an application example related to the effective-
ness of relationship marketing strategies within the department store sector of the retail
industry (supermarkets).

The remainder of the paper is structured as follows. The next Section presents the
preliminaries needed to understand the rest of the paper. Section 3 establishes the defini-
tions of the strong Lp−Stackelberg/Nash equilibrium. The extraproximal approach for
the conditional optimization problems is described in Section 4. Section 5 proves that the
proposed method approaches in exponential time to a unique strong Stackelberg/Nash
equilibrium. A numerical example related to marketing strategies for supermarkets val-
idates the proposed method in Section 6. We close with final comments in Section 7.
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2. MARKOV GAMES

We consider the usual partial order for n-vectors x and y, the inequality x ≤ y means
that xi ≤ yi for all l = 1, . . . ,N . We have that

x < y ⇔ x ≤ y and x 6= y
x� y ⇔ xl < yl for all l = 1, . . . ,N .

A sequence {xn} ⊂ Rn converging to x is said to converge in the direction y ∈ Rn if
there is a sequence of positive numbers in such that in → 0 and

lim
n→∞

(xn − x) /in = y.

Let S be a finite set consisting of states {s1, . . . , sN}, N ∈ N, called the state space.
A Stationary Markov chain ([8]) is a sequence of S-valued random variables s(n), n ∈ N,
satisfying the Markov condition:

P (s(n+ 1) = s(j)|s(n) = s(i), s(n− 1) = s(in−1), . . . , s(1) = s(i1))
P
(
s(n+ 1) = s(j)|s(n) = s(i)

)
=: π(ij).

(1)

The Markov chain can be represented by a complete graph whose nodes are the states,
where each edge (s(i), s(j)) ∈ S2 is labeled by the transition probability (1). The matrix
Π = (π(ij))(s(i),s(j))∈S ∈ [0, 1]N×N determines the evolution of the chain: for each n ∈ N,
the power Πn has in each entry (s(i), s(j)) the probability of going from state s(i) to state
s(j) in exactly n steps.

Definition 2.1. A controllable Markov chain ([26]) is a 4-tuple

MC = {S,A,K,Π} (2)

where:

• S is a finite set of states, S ⊂ N.

• A is the set of actions, which is a metric space. For each s ∈ S, A(s) ⊂ A is the
non-empty set of admissible actions at state s ∈ S. Without loss of generality we
may take A= ∪s∈SA(s);

• K = {(s, a)|s ∈ S, a ∈ A(s)} is the set of admissible state-action pairs, which is a
finite subset of S ×A;

• Π =
[
π(i,j|k)

]
is a stationary controlled transition matrix, where

π(ij|k) ≡ P (s(n+ 1) = s(j)|s(n) = s(i), a(n) = a(k))

represents the probability associated with the transition from state s(i) to state
s(j) under an action a(k) ∈ A(s(i)), k = 1, . . . ,M , M ∈ N.

Definition 2.2. A Markov Decision Process is a pair

MDP = {MC,J} (3)

where:
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• MC is a controllable Markov chain (2)

• J : S ×K→ R is a cost function, associating to each state a real value.

The Markov property of the decision process in (3) is said to be fulfilled if

P (s(n+ 1)|(s(1), s(2), . . . , s(n− 1)), s(n) = s(i), a(n) = a(k))
= P (s(n+ 1)|s(n) = s(i), a(n) = a(k)).

The strategy (policy)

d(k|i)(n) ≡ P (a(n) = a(k)|s(n) = s(i))

represents the probability measure associated with the occurrence of an action a(n) from
state s(n) = s(i).

The elements of the transition matrix for the controllable Markov chain can be ex-
pressed as

P
(
s(n+ 1) = s(j)|s(n) = s(i)

)
M∑
k=1

P
(
s(n+ 1) = s(j)|s(n) = s(i), a(n) = a(k)

)
d(k|i)(n).

Let us denote the collection
{
d(k|i)(n)

}
by Dn as follows

Dn =
{
d(k|i)(n)

}
k=1,M, i=1,N

.

A policy
{

d loc(n)
}
n≥0

is said to be local optimal if for each n ≥ 0 it maximizes
the conditional mathematical expectation of the utility function J(d(k|i)(n)) under the
condition that the history of the process

Fn := {D0, P {s0 = s (j)}j=1,N ; . . . ;Dn−1, P {sn = s (j)}j=1,N}

is fixed and can not be changed hereafter, i. e., it realizes the “one-step ahead” conditional
optimization rule

dloc(n) := arg min
d(n)∈Dn

E
{
J(d(k|i)(n)) | Fn

}
(4)

where J(d(k|i)(n)) is the utility function at the state sn+1.

The dynamic of the game for Markov chains is described as follows. The game consists
of N players (denoted by l = 1,N ) and begins at the initial state sl(0) which (as well
as the states further realized by the process) is assumed to be completely measurable.
Each of the players l is allowed to randomize, with distribution dl(k|i)(n), over the pure

action choices al(k) ∈ A
l
(
sl(i)

)
, i = 1, Nl and k = 1,Ml. From now on, we will consider

only stationary strategies dl(k|i)(n) = dl(k|i). These choices induce the state distribution
dynamics

P l
(
sl(n+ 1)=s(jl)

)
=

Nl∑
il=1

(
Ml∑
kl=1

πl(il,jl|kl)
dl(kl|il)

)
P l
(
s(l)(n)=s(il)

)
.
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In the ergodic case when the Markov chain is ergodic for any stationary strategy dl(k|i) the
distributions P l

(
sl(n+ 1)=s(jl)

)
exponentially fast converge to their limits P l

(
s = s(i)

)
satisfying

P l
(
s(l) = s(jl)

)
=

Nl∑
il=1

(
Ml∑
kl=1

πl(il,jl|kl)
dl(kl|il)

)
P l
(
s(l)=s(il)

)
. (5)

The cost function of each player, depending on the states and actions of all the other
players, is given by the values W l

(i1,k1;...;iN ,kN ), so that the “average cost function” Jl in
the stationary regime can be expressed as

Jl
(
c1, . . . , cN

)
:=

∑
i1,k1

· · ·
∑

iN ,kN

W l
(i1,k1,...,iN ,kN )

N∏
l=1

cl(il,kl)
(6)

where

W l
(i1,k1,...,iN ,kN ) =

∑
j1

· · ·
∑
jN

J l(i1,j1,k1,...,iN ,jN ,kN )

N∏
l=1

πl(il,jl|kl)

and cl :=
[
cl(il,kl)

]
il=1,Nl;kl=1,Ml

is a matrix with elements

cl(il,kl)
= dl(kl|il)P

l
(
s(l)=s(il)

)
(7)

satisfying

cl ∈ Cladm=


cl :

∑
il,kl

cl(il,kl)
=1, cl(il,kl)

≥0,

∑
kl

cl(jl,kl)
=
∑
il,kl

πl(il,jl|kl)
cl(il,kl)

(8)

where Cladm (C admissible). Notice that by (7) it follows that

P l
(
s(l)=s(il)

)
=
∑
kl

cl(il,kl)
dl(kl|il) =

cl
(il,kl)P

kl

cl
(il,kl)

. (9)

In the ergodic case
∑
kl
cl(il,kl)

> 0 for all l = 1,N . The individual aim of each player is
Jl(cl) → min

c(l)∈C(l)
adm

.
To study the existence of Pareto policies we shall first follow the well-known “scalar-

ization” approach. Thus, given a n-vector λ > 0 we consider the scalar (or real-valued)
cost-function J.

Let

ul := col
(
cl(il,kl)

)
, U l := C

(l)
adm

(
l = 1,N

)
, U :=

N⊗
l=1

U l

where col is the column operator which transforms the matrix cl(il,kl)
in a column.

The Pareto set can be defined as ([17, 18])

P :=
{
u∗ (λ) := arg min

u∈U

[ N∑
l=1

λlJ
l (u)

]
, λ ∈ SN

}
(10)
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such that

SN :=
{
λ ∈ RN : λ ∈ [0, 1] ,

N∑
l=1

λl = 1
}
.

The Pareto front is defined as the image of P under J as follows

J(P):=
{(
J1 (u∗ (λ)) , J2 (u∗ (λ)) , . . . , JN (u∗ (λ))

)
|u∗ ∈ P

}
.

The vector u∗ is called a Pareto optimal solution for P.

A Nash equilibrium is a strategy u∗ =
(
u0∗, . . . , uN∗

)
such that

J
(
u0∗, . . . , uN∗

)
≤ J

(
u0∗, . . . , ul, . . . , uN∗

)
for ul ∈ U l, l = 1,N .

A strong Nash equilibrium is a strategy u∗∗ =
(
u0∗∗, . . . , uN∗∗

)
such that there does

not exist any ul ∈ U l

J
(
u0∗∗, . . . , ul, . . . , uN∗∗

)
≤ J

(
u0∗∗, . . . , uN∗∗

)
for ul ∈ U l, l = 1,N .

Formulation of the problem: The game problem is to find a policy u∗ that mini-
mizes J(u1, . . . , uN ) in the sense of Pareto.

Let P be a subset of Rn. The tangent cone to P at u ∈ P is the set of all the
directions u′ ∈ Rn in which some sequence in P converges to u.

A vector u∗ ∈ P in Rn is said to be

1. a Pareto point of P if there is no u ∈ P such that u < u∗;

2. a weak Pareto point of P if there is no u ∈ P such that u� u∗;

3. a proper Pareto point of P if u∗ is a Pareto point and, in addition, the tangent
cone to P at u∗ does not contain vectors u′ < 0.

A policy u∗ is said to be a Pareto policy (or Pareto optimal) if there is no policy u
such that J(u) < J(u∗), and similarly for weak or proper Pareto policies.

Let ‖·‖ be the Euclidean norm in Rn and let % : ∆→ R+ be the map defined as

%(d) := ‖J(u)− J(u∗)‖ .

This is a utility function for the Markov Chain game in the sense that if u and u′ are
such that J(u) < J(u′), then %(u) < %(u′).

A policy u∗ is said to be strong Pareto optimal (or a strong Pareto policy) if it
minimizes the function % that is,

%(u∗) = inf {%(u)|u∗ ∈ ∆} =: %∗. (11)

As % is a utility function, it is clear that a strong Pareto policy is Pareto optimal,
but of course the converse is not true.
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3. THE STACKELBERG/NASH GAME

Let us introduce the variables

vm := col c(m), V m := C
(m)
adm

(
m = 1,M

)
. (12)

Let us consider a Stackelberg game with N leaders whose strategies are denoted by
ul ∈ U l

(
l = 1,N

)
where U is a convex an compact set. Denote by u = (u1, . . . , uN )> ∈

U , the joint strategy of the players and ul̂ is a strategy of the rest of the players adjoint
to ul, namely,

ul̂ :=
(
u1, . . . , ul−1, ul+1, . . . , uN

)> ∈ U l̂ :=
N⊗

h=1, h6=l

Uh

such that u = (ul, ul̂)
(
l = 1,N

)
. As well, let us consider M followers with strate-

gies vm ∈ V m
(
m = 1,M

)
and V is also a convex an compact set. Denote by v =

(v1, . . . , vM) ∈ V :=
⊗M

m=1 V
l the joint strategy of the followers and vm̂ is a strategy

of the rest of the players adjoint to vm, namely,

vm̂ :=
(
v1, . . . , vm−1, vm+1, . . . , vM

)> ∈ V m̂ :=
M⊗

q=1, q 6=m

V q

such that v = (vm, vm̂)
(
m = 1,M

)
.

3.1. The Nash and Strong Nash equilibrium

The dynamics of the game is as follows. The leaders play cooperatively and they are
assumed to anticipate the reactions of the followers trying to reach the strong Nash
equilibria. For reaching the goal of the game leaders first try to find a joint strategy
u∗ =

(
u1∗, . . . , uN∗

)
∈ U satisfying for any admissible ul ∈ U l and any l = 1,N

GLp (u, û(u)) :=
N∑
l=1

[∣∣∣∣( min
ul∈U l

ϕl

(
ul, ul̂

))
− ϕl

(
ul, ul̂

)∣∣∣∣p]1/p (13)

where û(u) = (u1̂>, . . . , uN̂>)> ∈ Û ⊆ RN (N−1) ([29, 28]). Here ϕl
(
ul, ul̂

)
is the cost-

function of the leader l which plays the strategy ul ∈ U l and the rest of the leaders play
the strategy ul̂ ∈ U l̂.

If we consider the utopia point

ūl := arg min
ul∈U l

ϕl

(
ul, ul̂

)
(14)

then, we can rewrite Eq. (13) as follows

GLp (u, û(u)) :=
N∑
l=1

[∣∣∣ϕl (ūl, ul̂)− ϕl (ul, ul̂)∣∣∣p]1/p . (15)

The functions ϕl
(
ul, ul̂

) (
l = 1,N

)
are assumed to be convex in all their arguments.
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Condition 3.1. The function GLp (u, û(u)) satisfies the Nash condition

max
û(u)∈Û

g (u, û(u)) =
N∑
l=1

ϕl

(
ūl, ul̂

)
− ϕl

(
ul, ul̂

)
≤ 0

(16)

for any ul ∈ U l and all l = 1,N

Definition 3.2. A strategy u∗ ∈ Uadm is said to be a Lp−Nash equilibrium if

u∗Lp
∈Arg min

u∈Uadm

{
GLp (u, û(u))

}
. (17)

Remark 3.3. If GLp
(u, û(u)) is strictly convex then

u∗Lp
= arg min

u∈Uadm

{
GLp

(u, û(u))
}
.

Definition 3.4. A strategy u∗∗ ∈ U is said to be a Strong Lp−Nash equilibrium if

u∗∗Lp
∈Arg min

u∈Uadm,λ∈SN

{
GLp

(u(λ), û(u, λ))
}
. (18)

Remark 3.5. If GLp
(u(λ), û(u, λ)) is strictly convex then

u∗∗Lp
= arg min

u∈Uadm,λ∈SN

{
GLp

(u(λ), û(u, λ))
}
.

As well, in this process the followers try to reach one of the Nash equilibria trying
to find a joint strategy v∗ =

(
v1∗, . . . , vM∗

)
∈ V satisfying for any admissible vm ∈ V m

and any m = 1,M

FLp (v, v̂(v)) :=
M∑
m=1

[∣∣∣∣( min
vm∈Vm

ψm
(
vm, vm̂

))
− ψm

(
vm, vm̂

)∣∣∣∣p]1/p (19)

where v̂(v) = (v1̂>, . . . , vM̂>)> ∈ V̂ ⊆ RN (N−1) ([29, 28]). Here ϕm
(
vm, vm̂

)
is the

cost-function of the follower m which plays the strategy vm ∈ V m and the rest of the
leaders play the strategy vm̂ ∈ V m̂.

If we consider the utopia point

v̄m := arg min
vm∈Vm

ψm
(
vm, vm̂

)
(20)

then, we can rewrite Eq. (13) as follows

FLp (v, v̂(v)) :=
M∑
m=1

[∣∣ψm (v̄m, vm̂)− ψm (vm, vm̂)∣∣p]1/p . (21)

The functions ψm
(
vm, vm̂

) (
m = 1,M

)
are assumed to be convex in all their arguments.

Condition 3.6. The function FLp
(v, v̂(v)) satisfies the Nash condition

max
v̂(v)∈V̂

f (v, v̂(v)) =
M∑
m=1

ψm
(
v̄m, vm̂

)
− ψm

(
vm, vm̂

)
≤ 0 (22)

for any vm ∈ V m and all m = 1,M.
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3.2. The Stackelberg game

Leaders and followers together are in a Stackelberg game: the model involves two coop-
eratively Nash games restricted by a Stackelberg game defined as follows.

Definition 3.7. A game with N leaders and M followers said to be a cooperatively
Stackelberg–Nash game if

GLp
(u(λ), û(u, λ)|v) :=

N∑
l=1

[∣∣∣ϕl (ūl, ul̂|v)− ϕl (ul, ul̂|v)∣∣∣p]1/p
given λ ∈ SN such that

max
û(u)∈Û

g (u, û(u)|v) =
N∑
l=1

ϕl

(
ūl, ul̂|v

)
− ϕl

(
ul, ul̂|v

)
≤ 0

where ul̂ is a strategy of the rest of the leaders adjoint to ul, namely,

ul̂ :=
(
u1, . . . , ul−1, ul+1, . . . , uN

)
∈ U l̂ :=

N⊗
h=1, h6=l

Uh

and
ūl := arg min

ul∈U l

ϕl

(
ul, ul̂|v

)
such that

fLp (v(θ), v̂(v, θ)|u) :=
M∑
m=1

[∣∣ψm (v̄m, vm̂|u)− ψm (vm, vm̂|u)∣∣p]1/p (23)

where θ ∈ SN and given that vm̂ is a strategy of the rest of the followers adjoint to vm,
namely,

vm̂ :=
(
v1, . . . , vm−1, vm+1, . . . , vM

)
∈ V m̂ :=

M⊗
q=1, q 6=l

V q

and
v̄m := arg min

vm∈Vm

ψm
(
vm, vm̂|u

)
.

Remark 3.8. In the case of the bi-level approach introduced in Definition (3.7) we
employ the restriction fLp

(v(θ), v̂(v, θ)|u) in Eq. (23) for ensuring the followers to play
cooperatively.

Definition 3.9. LetGLp
(u(λ), û(u, λ)|v) be the cost functions of the leaders

(
l = 1,N

)
.

A strategy u∗ ∈ U of the leaders together with the collection v∗ ∈ V of the followers is
said to be a cooperatively Stackelberg–Nash equilibrium if

(u∗, v∗)∈Arg min
u∈U,û(u)∈Û,λ∈SN

max
v∈V,v̂(v)∈V̂ ,θ∈SN{

GLp
(u(λ), û(u, λ)|v) |g (u, û(u)|v) ≤ 0, fLp

(v(λ), v̂(v, λ)|u) ≤ 0
}
.

(24)
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Remark 3.10. If GLp (u(λ), û(u, λ)|v) is strictly convex then

(u∗, v∗) = arg min
u∈U,û(u)∈Û,λ∈SN

max
v∈V,v̂(v)∈V̂ ,θ∈SN

{
GLp

(u(λ), û(u, λ)|v) |g (u, û(u)|v) ≤ 0,

fLp
(v(θ), v̂(v, θ)|u) ≤ 0

}
.

4. THE EXTRAPROXIMAL METHOD FOR OPTIMIZATION PROBLEMS

4.1. The regularized Lagrange principle application

Applying the Lagrange principle (see, for example, [26]) for Definition 3.9, we may
conclude that (24) can be rewritten as

(u∗, v∗)∈Arg min
u∈U,û(u)∈Û,λ∈SN

max
v∈V,v̂(v)∈V̂ ,θ∈SN ,ω≥0,ξ≥0

L(u, û(u), v, v̂(v), λ, θ, ω, ξ)

L(u, û(u), v, v̂(v), λ, θ, ω, ξ) := GLp
(u(λ), û(u, λ)|v) + ωg (u, û(u)|v) + ξfLp

(v(θ), v̂(v, θ)|u) .

The approximative solution obtained by the Tikhonov’s regularization (see [26]) is
given by

(u∗, v∗)∈ arg min
u∈U,û(u)∈Û,λ∈SN

max
v∈V,v̂(v)∈V̂ ,θ∈SN ,ω≥0,ξ≥0

L(u, û(u), v, v̂(v), λ, θ, ω, ξ)

Lδ(u, û(u), v, v̂(v), λ, ω, ξ)
:= GLp,δ (u(λ), û(u, λ)|v) + ωgδ (u, û(u)|v) + ξfLp,δ (v(θ), v̂(v, θ)|u)− δ

2 (ω2 + ξ2)
(25)

where

GLp,δ (u(λ), û(u, λ)|v) =
NP
l=1

h˛̨̨
ϕl
“
ūl, ul̂|v

”
− ϕl

“
ul, ul̂|v

”˛̨̨pi1/p
+ δ

2
(‖u‖2 + ‖û(u)‖2 + ‖λ‖2)

gδ (u, û(u)|v) =
NP
l=1

h
ϕl
“
ūl, ul̂|v

”
− ϕl

“
ul, ul̂|v

”i
+ δ

2
(‖u‖2 + ‖û(u)‖2)

fLp,δ (v(θ), v̂(v, θ)|u)

=
MP
m=1

ˆ˛̨
ψm
`
v̄m, vm̂|u

´
− ψm

`
vm, vm̂|u

´˛̨p˜1/p
+ δ

2
(‖v‖2 + ‖v̂(v)‖2 + ‖θ‖2).

Now, the function Gδ (u, û(u)|v) is strictly convex if the Hessian matrix is positive
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semi-definite, then Gδ (u, û(u)|v) attains a minimum at (u, û(u)|v) if

∇2Gδ (u, û(u)|v)

=


∂2

(∂u1)
2Gδ (u, û(u)|v) · · · ∂2

∂u1∂uN
Gδ (u, û(u)|v)

∂2

∂u2∂u1
Gδ (u, û(u)|v) · · · ∂2

∂u2∂uN
Gδ (u, û(u)|v)

· · · · · · · · ·
∂2

∂uN∂u1
Gδ (u, û(u)|v) · · · ∂2

(∂uN )2
Gδ (u, û(u)|v)



=


δIn1×n1 DG1,2(û1,2) · · · DG1,N (û1,N )
DG2,1(û2,1) δIn2×n2 · · · DG3,2(û3,2)
· · · · · · · · · · · ·

DG3,1(û3,1) DG3,2(û3,2) · · · δInN×nN

 > 0

or, equivalently, δ should provide the inequality

min
u∈U,û∈Û

[
λmin

(
∇2Gδ (u, û(u)|v)

)]
> 0. (26)

Here, ûik is independent of u(i) and u(k), that is, ∂
∂u(i) ûik = 0 and ∂

∂u(k) ûik = 0.

As well as, the function fδ (v, v̂(v)|u) is strictly concave if the Hessian matrix is
negative semi-definite, then fδ (v, v̂(v)|u) attains a maximum at (v, v̂(v)|u) if

max
v∈V,v̂∈V̂

[
λmax

(
∇2fδ (v, v̂(v)|u)

)]
< 0. (27)

With sufficiently large δ, the considered functions provide the uniqueness of the con-
ditional optimization problem (25).

Notice also that the Lagrange function in (25) satisfies the saddle-point ([25]) condi-
tion, namely, for all u ∈ U, û ∈ Û , v ∈ V, v̂(v) ∈ V̂ , λ ∈ SN , θ ∈ SN , ω≥ 0 and ξ ≥ 0
we have

Lδ(u∗δ , û∗δ(u), vδ, v̂δ(v), λ∗δ , θδ, ωδ, ξδ) ≤ Lδ(u∗δ , û∗δ(u), v∗δ , v̂
∗
δ (v), λ∗δ , θ

∗
δ , ω
∗
δ , ξ
∗
δ )

≤ Lδ(uδ, ûδ(u), v∗δ , v̂
∗
δ (v), λδ, θ∗δ , ω

∗
δ , ξ
∗
δ ).

(28)
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4.2. The proximal format

In the proximal format (see, [2]) the relation (25) can be expressed as

ω∗δ = arg max
ω≥0

{
− 1

2‖ω − ω
∗
δ‖2 + γLδ(u∗δ , û∗δ(u), v∗δ , v̂

∗
δ (v), λ∗δ , θ

∗
δ , ωδ, ξ

∗
δ )
}

ξ∗δ = arg max
ξ≥0

{
− 1

2‖ξ − ξ
∗
δ‖2 + γLδ(u∗δ , û∗δ(u), v∗δ , v̂

∗
δ (v), λ∗δ , θ

∗
δ , ω
∗
δ , ξδ)

}
u∗δ = arg min

u∈U

{
1
2‖u− u

∗
δ‖2 + γLδ(uδ, û∗δ(u), v∗δ , v̂

∗
δ (v), λ∗δ , θ

∗
δ , ω
∗
δ , ξ
∗
δ )
}

û∗δ = arg min
û∈Û

{
1
2‖û− û

∗
δ‖2 + γLδ(u∗δ , ûδ(u), v∗δ , v̂

∗
δ (v), λ∗δ , θ

∗
δ , ω
∗
δ , ξ
∗
δ )
}

v∗δ = arg max
v∈V

{
− 1

2‖v − v
∗
δ‖2 + γLδ(u∗δ , û∗δ(u), vδ, v̂∗δ (v), λ∗δ , θ

∗
δ , ω
∗
δ , ξ
∗
δ )
}

v̂∗δ = arg max
v̂∈V̂

{
− 1

2‖v̂ − v̂
∗
δ‖2 + γLδ(u∗δ , û∗δ(u), v∗δ , v̂δ(v), λ∗δ , θ

∗
δ , ω
∗
δ , ξ
∗
δ )
}

λ∗δ = arg min
λ∈SN

{
1
2‖λ− λ

∗
δ‖2 + γLδ(u∗δ , û∗δ(u), v∗δ , v̂

∗
δ (v), λδ, θ∗δ , ω

∗
δ , ξ
∗
δ

}
θ∗δ = arg max

θ∈SN

{
− 1

2‖θ − θ
∗
δ‖2 + γLδ(u∗δ , û∗δ(u), v∗δ , v̂

∗
δ (v), λ∗δ , θδ, ω

∗
δ , ξ
∗
δ

}

(29)

where the solutions u∗δ , û
∗
δ(u), v∗δ , v̂

∗
δ (v), λ∗δ , ω

∗
δ and ξ∗δ depend on the parameters δ, γ > 0.

4.3. The Extraproximal method

The Extraproximal Method for the conditional optimization problems (25) was suggested
in ([2, 30]). We design the method for the static Stackelberg–Nash game in a general
format. The general format iterative version (n = 0, 1, . . .) of the extraproximal method
with some fixed admissible initial values (u0 ∈ U , û0 ∈ U , v0 ∈ V , v̂0 ∈ V , ω0 ≥ 0,
ξ0 ≥ 0, λ0 ∈ SN and θ0 ∈ SN ) is as follows:

1. The first half-step (prediction):

ω̄n = arg min
ω≥0

{
1
2‖ω − ωn‖

2 − γLδ(un, ûn(u), vn, v̂n(v), λn, θn, ω, ξ̄n)
}

ξ̄n = arg min
ξ≥0

{
1
2‖ξ − ξn‖

2 − γLδ(un, ûn(u), vn, v̂n(v), λn, θn, ω̄n, ξ)
} (30)
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ūn = arg min
u∈U

{
1
2‖u− un‖

2 + γLδ(u, ûn(u), vn, v̂n(v), λn, θn, ω̄n, ξ̄n)
}

ûn = arg min
û∈Û

{
1
2‖û− ûn‖

2 + γLδ(un, û(u), vn, v̂n(v), λn, θn, ω̄n, ξ̄n)
}

v̄n = arg min
v∈V

{
1
2‖v − vn‖

2 − γLδ(un, ûn(u), v, v̂n(v), λn, θn, ω̄n, ξ̄n)
}

v̂n = arg min
v̂∈V̂

{
1
2‖v̂ − v̂n‖

2 − γLδ(un, ûn(u), vn, v̂(v), λn, θn, ω̄n, ξ̄n)
}

λ̄n = arg min
λ∈SN

{
1
2‖λ− λn‖

2 + γLδ(un, ûn(u), vn, v̂n(v), λ, θn, ω̄n, ξ̄n)
}

θ̄n = arg min
θ∈SN

{
1
2‖θ − θn‖

2 − γLδ(un, ûn(u), vn, v̂n(v), λn, θ, ω̄n, ξ̄n)
}
.

2. The second (basic) half-step

ωn+1 = arg min
ω≥0

{
1
2‖ω − ωn‖

2 − γLδ(ūn,ûn(u), v̄n,v̂n(v), λ̄n, θ̄n, ω, ξ̄n)
}

ξn+1 = arg min
ξ≥0

{
1
2‖ξ − ξn‖

2 − γLδ(ūn,ûn(u), v̄n,v̂n(v), λ̄n, θ̄n, ω̄n, ξ)
}

un+1 = arg min
u∈U

{
1
2‖u− un‖

2 + γLδ(u,ûn(u), v̄n,v̂n(v), λ̄n, θ̄n, ω̄n, ξ̄n)
}

ûn+1 = arg min
û∈Û

{
1
2‖û− ûn‖

2 + γLδ(ūn, û(u), v̄n,v̂n(v), λ̄n, θ̄n, ω̄n, ξ̄n)
}

vn+1 = arg min
v∈V

{
1
2‖v − vn‖

2 − γLδ(ūn,ûn(u), v,v̂n(v), λ̄n, θ̄n, ω̄n, ξ̄n)
}

v̂n+1 = arg min
v̂∈V̂

{
1
2‖v̂ − v̂n‖

2 − γLδ(ūn,ûn(u), v̄n, v̂(v), λ̄n, θ̄n, ω̄n, ξ̄n)
}

λn+1 = arg min
λ∈SN

{
1
2‖λ− λn‖

2 + γLδ(ūn,ûn(u), v̄n,v̂n(v),λ, θ̄n, ω̄n, ξ̄n)
}

θn+1 = arg min
θ∈SN

{
1
2‖θ − θn‖

2 − γLδ(ūn,ûn(u), v̄n,v̂n(v),λ̄n, θ, ω̄n, ξ̄n)
}
.

(31)

5. CONVERGENCE ANALYSIS AND UNIQUENESS

The following theorem presents the convergence conditions of (4.3) – (31) and gives the
estimate of its rate of convergence for the strong Lp− Stackelberg/Nash equilibrium. As
well, we prove that the extraproximal method converges to a unique equilibrium point.

Let us define the following extended vectors

ũ:=

 u
û
λ

 ∈ Ũ :=U × Û × R+, z̃:=


v
v̂
θ
ξ
ω

 ∈ Z̃:=V × V̂ × R+ × R+ × R+.
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Then, the regularized Lagrange function can be expressed as

L̃δ(ũ, z̃) := Lδ(uδ, ûδ, vδ, v̂δ, λδ, θδ, ξδ, ωδ).

The equilibrium point that satisfies (29) can be expressed as

ũ∗δ = arg min
ũ∈Ũ

{
1
2‖ũ− ũ

∗
δ‖

2+γL̃δ(ũ, z̃∗δ )
}

z̃∗δ = arg max
z̃∈Z̃

{
1
2‖z̃ − z̃

∗
δ‖

2+γL̃δ(ũ∗δ , z̃)
}
.

Now let us introduce the following variables

w̃ =
(
w̃1

w̃2

)
∈ Ũ × Z̃, ṽ =

(
ṽ1
ṽ2

)
∈ Ũ × Z̃

and let define the Lagrangian in term of the previous variables

Lδ(w̃, ṽ) := L̃δ(w̃1, ṽ2)− L̃δ(ṽ1, w̃2).

For w̃1 = ũ, w̃2 = z̃, ṽ1 = ṽ∗1 = ũ∗δ and ṽ2 = ṽ∗2 = z̃∗δ we have

Lδ(w̃, ṽ∗) := L̃δ(ũ, z̃∗δ )− L̃δ(ũ∗δ , z̃).

In these variables the relation (29) can be represented by

ṽ∗= arg min
w̃∈Ũ×Z̃

{
1
2‖w̃ − ṽ

∗‖2+γLδ(w̃, ṽ
∗)
}
. (32)

Finally, we have that the extraproximal method can be expressed by

1. First step
v̂n= arg min

w̃∈Ũ×Z̃

{
1
2‖w̃ − ṽn‖

2+γLδ(w̃, ṽn)
}
. (33)

2. Second step
ṽn+1= arg min

w̃∈Ũ×Z̃

{
1
2‖w̃ − ṽn‖

2+γLδ(w̃, v̂n)
}
. (34)

Theorem 5.1. Let L̃δ(ũ, z̃) be differentiable in ũ and z̃, whose partial derivative with
respect to z̃ satisfies the Lipschitz condition with positive constant C0. Then,

‖ṽn+1 − v̂n‖ ≤ γC0‖ṽn − v̂n‖. (35)

P r o o f . See [30] �

Theorem 5.2. (Convergence and Uniqueness) Let L̃δ(ũ, z̃) be differentiable in ũ and z̃,
whose partial derivative with respect to z̃ satisfies the Lipschitz condition with positive
constant C. Then, for some δ and

Cl0 =
∑N

l=1
C0,l ≤ N max

l=1,N
C0,l = NCl+0
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and
Cm0 =

∑M

m=1
C0,m ≤ M max

m=1,M
C0,m = MCm+

0

there exists a small-enough

γ0 = γ0(δ) < C

:= max

[
min

{
1√

2Cl+
0 N

,
1+

q
1+2(Cl+

0 )2

2(Cl+
0 )2N

}
,min

{
1√

2Cm+
0 M ,

1+
q

1+2(Cm+
0 )2

2(Cm+
0 )2M

}]

where such that, for any 0 < γ ≤ γ0, sequence {ṽn}, which generated by the equivalent
extraproximal procedure (4.3) - (31), monotonically converges with exponential rate q
∈ (0, 1) to a unique equilibrium point ṽ∗, i. e.,

‖ṽn−ṽ∗‖2≤ en ln q‖ṽ0−ṽ∗‖2 (36)

where
q = 1+ 4(δγ)2

1+2δγ−2γ2C2−2δγ < 1

and qmin is given by
qmin= 1− 2δγ

1+2δγ = 1
1+2δγ .

P r o o f . Following Theorem 1 in [30] we obtain that

q = 1− 2γδ + (2γδ)2

1+2γδ−2γ2C2 < 1.

Iterating over the previous inequality we have

‖ṽ∗δ−ṽn+1‖2≤q‖ṽ∗δ − ṽn‖
2 ≤ · · · ≤ en+1 ln q‖ṽ∗δ − ṽ0‖

2
. (37)

That implies that the series converge and also that the trajectories are bounded. Then,
by Eq. (37) we have that

‖ṽ∗δ−ṽn+1‖2 →
n→∞

0.

Given that ṽ is a bounded sequence, by the Weierstrass Theorem there exist a point
ṽ′ such that any subsequence ṽni

satisfies that ṽni
→

ni→∞
ṽ′. In addition, we have that

‖ṽni
− ṽni+1‖2 → 0. Fixing, n = ni in Eq. (32) and computing the limit when ni →∞

we have
ṽ′ = arg min

w̃∈Ũ×T̃

{
1
2‖w̃ − ṽ

′‖2+γLδ(w̃, ṽ
′)
}
.

Then, we have that ṽ′ = ṽ∗δ , i. e., any limit point of the sequence ṽn is a solution of the
problem. Given that ‖ṽn − ṽ∗δ‖

2 is monotonically decreasing then, there exists a unique
limit point (equilibrium point). As a consequence, we have that the sequence ṽn satisfies
that ṽn →

n→∞
ṽ∗δ with a convergence velocity of en ln q. �
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Fig. 1. Supermarket Markov Chain.

6. APPLICATION EXAMPLE

This example analyzes the effectiveness of relationship marketing strategies within the
department store sector of the retail industry considering two supermarket leaders with
l = 1, 2 and two supermarkets followers with m = 3, 4. The three supermarkets are
branching out into non-food items and they are also department stores in their own
right, selling items as clothes, entertainment products for example toys, books, cosmet-
ics, non-prescription drugs and many other household goods. All the supermarkets offer
loyalty cards having their own system with the purpose to attract customers, encourage
customer loyalty and build strong customer relationships. As well, loyalty cards cre-
ate an advantage for supermarkets developing profiles of individuals’ personal shopping
habits. When linked with the personal details that customers disclosed when signing
up for the scheme, the store is in a position to target promotions that are tailored
around specific customers shopping habits. Based on the available data, supermarkets
discretize the client space in four sub-segments according to the regularly of purchasing,
using frequency of the loyalty card and the revenue. Figure 1 describes the segments and
promotions corresponding to the Markov chain of the marketing problem. Here a cus-
tomer is said to be in state s1 if he/she become a Potential customer. A Low-Frequent
customer corresponds with the state s2 and a Regular customer is a frequent customer
of the loyalty card that is said to be in state s3. A Loyal Customer corresponds with the
state s4 and he/she is a high-frequency user of the loyal card. The promotions (actions)
offered by the supermarkets include two different benefits: 1) points and 2) discounts.
We are interested in contrasting the strategies applied by the supermarkets defined over
all possible combinations of states (i, j) and actions (k) given a fixed utility J(i,j,k).

Our goal is to analyze a four-player Stackelberg game for the norm p = 1 in a
class of ergodic controllable finite Markov chains. Let N1 = N2 = N3 = N4 = 4,
M1 = M2 = M3 = M4 = 2. Following Eq. (3) the individual utility for each player are
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defined by

J
(1)
ij|1=


567 822 733 830
261 896 85 568
30 996 634 261
288 90 806 785

 J
(1)
ij|2=


170 27 57 699
275 855 224 919
50 205 46 909
398 861 751 806



J
(2)
ij|1 =


810 36 27 9
63 90 567 72
81 0 9 45
855 594 441 9

 J
(2)
ij|2 =


8 592 48 0
64 64 312 16
264 32 120 72
400 56 40 200



J
(3)
ij|1 =


22 7 11 6
10 0 19 8
23 28 23 9
90 5 12 1

 J
(3)
ij|2 =


66 0 126 42
18 78 240 6
96 18 60 156
66 102 180 48



J
(4)
ij|1 =


0 60 2 26
10 26 36 48
14 56 28 24
8 12 16 38

 J
(4)
ij|2 =


420 168 378 84
0 280 14 112
42 56 350 140
84 210 336 98

 .
The transition matrices for each player are defined as follows

π
(1)
ij|1=


0.2759 0.4886 0.0366 0.1989
0.1752 0.0953 0.3825 0.3470
0.1695 0.2629 0.4103 0.1574
0.2612 0.1665 0.4124 0.1600

 π
(1)
ij|2=


0.0863 0.3672 0.3201 0.2264
0.4339 0.1684 0.1919 0.2058
0.3856 0.2349 0.1324 0.2471
0.1475 0.3500 0.1903 0.3122



π
(2)
ij|1=


0.1761 0.1204 0.3883 0.3151
0.2207 0.1632 0.2354 0.3807
0.0708 0.3708 0.1364 0.4219
0.0132 0.5169 0.4127 0.0572

 π
(2)
ij|2=


0.2033 0.2456 0.2667 0.2844
0.2732 0.1032 0.3046 0.3190
0.1207 0.0930 0.3997 0.3866
0.1032 0.6976 0.1609 0.0383



π
(3)
ij|1=


0.4109 0.1654 0.0918 0.3319
0.3015 0.2201 0.1029 0.3756
0.1709 0.5673 0.0292 0.2326
0.1885 0.1491 0.3317 0.3307

 π
(3)
ij|2=


0.3046 0.2883 0.2573 0.1498
0.2470 0.0978 0.3060 0.3492
0.3006 0.0439 0.4387 0.2169
0.1141 0.3397 0.1855 0.3607



π
(4)
ij|1=


0.2610 0.3145 0.2088 0.2158
0.3777 0.1968 0.1574 0.2681
0.2593 0.0308 0.5113 0.1986
0.3401 0.4638 0.1200 0.0761

 π
(4)
ij|2=


0.0316 0.4652 0.2221 0.2811
0.1624 0.3245 0.3691 0.1440
0.1448 0.5777 0.2087 0.0688
0.2536 0.1996 0.3231 0.2237

 .
Given δ and γ and applying the extraproximal method we obtain the convergence

of the strategies in terms of the variable cli|k for the leaders (see Figure 2) and the
convergence of the strategies in terms of the variable cmi|k for the followers (see Figure 3).
In addition, the Figure 4 shows the convergence of the parameters Ji and Omega.
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Fig. 2. Convergence of the strategies of the leader 1 (left) leader 2

(right).
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Fig. 3. Convergence of the strategies of the follower 1 (left) and

follower 2 (right).

With final values λ(1)∗ = 0.5063 and λ(2)∗ = 0.4937 for the leaders, and θ(1)∗ = 0.5258
and θ(2)∗ = 0.4792 for the followers (see Figure 5), the mixed strategies obtained for
determining the strong Stackelberg/Nash equilibrium for all the players applying (9) are
as follows

d(1)∗ =


0.8110 0.1890
0.1701 0.8299
0.7720 0.2280
0.2249 0.7751

 d(2)∗ =


0.6023 0.3977
0.8408 0.1592
0.8187 0.1813
0.8242 0.1758

 (38)

d(3)∗ =


0.6478 0.3522
0.7078 0.2922
0.6455 0.3545
0.6442 0.3558

 d(4)∗ =


0.7337 0.2663
0.7454 0.2546
0.7376 0.2624
0.6418 0.3582

 .
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The resulting utilities by segment are as follows:

J (1)(si) =


129, 130
92, 790
84, 590
121, 520

 J (2)(si) =


13, 102
22, 635
1, 113
64, 809

 (39)

J (3)(si) =


551

1, 295
746

1, 494

 J (4)(si) =


3, 914
2, 113
2, 158
3, 467

 . (40)

The resulting utilities by promotion are as follows:

J (1)(ki) =
[

226, 830 201, 190
]

J (2)(ki) =
[

93, 930 7, 729
]

(41)

J (3)(ki) =
[

437 3, 650
]

J (4)(ki) =
[

609 11, 045
]
. (42)
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Relationship marketing recognizes that the focus of marketing is to build a relation-
ship with existing customers. The main purpose of the game is to discover the extent
to which customers use and are influenced by relationship marketing strategies. In ad-
dition, it is to analyze the impact that these strategies have on customer loyalty and
the development of customer-department store relationship. The supermarket leaders
(players 1 and 2) fix their strategies (38) to ensure high degrees of customer loyalty and
retention as well utility by segment (39) and promotion. For segment 1, the leader 1
made a strong emphasis on offering points (0.8110) for attracting Potential customers.
Instead, the leader 2 made emphasis on offering points (0.6023) and discounts (0.3977)
for the same segment. Looking at the utilities of the leaders (39), the follower1 decided
for offering points (0.6478) and discounts (0.3522). Instead, the follower 2 resolved for
competing highlighting points (0.7337). For segment 2 corresponding to Low-Frequent
customers the leader 1 promoted points (0.1701) and discounts (0.8299) and, the leader
2 chose offering points (0.8408) and discounts (0.1592). However, for competing with the
leaders, follower 1 and follower 2 made emphasis on points (0.7078 and 0.7454 respec-
tively). For Regular customers the leader 1 focused on points (0.7720) and discounts
(0.2280) and, the leader 2 made emphasis on points (0.8187). The follower 1 preferred
offering points (0.6455) and discounts (0.3545). Instead, follower 2 made emphasis on
points (0.7376) and discounts (0.2624). For Loyal customers the leader 1 made em-
phasis on points (0.2249) and discounts (0.7751), leader 2 focus on points (0.8242) and
discounts (0.1758) as well, follower 1 chose the same strategies – points (0.6442) and
discounts (0.3558) –. The follower 2 made emphasis on points (0.6418) and discounts
(0.3582). For the leaders the most profitable segments are the Potential customers and
the Loyal customers (see 39 vs. 40). An insight into the mind of the consumer is obvious
from the findings the importance that is placed on a given policy: the utilities obtained
by action for the leaders and followers are shown in Eqs. 41 and 42 respectively.

7. CONCLUSION

In this paper we presented a novel approach in Markov games for computing the strong
Lp−Stackelberg/Nash equilibrium in case of a metric state space (determined by the
positive orthant in the Euclidian space). The existence of the Lp−Stackelberg/Nash
equilibrium was characterized as a strong Pareto policy, which is the closest in the Eu-
clidean norm to the utopian point. The optimization problem was reduced to find a
Pareto solution. We proposed to employ the extraproximal approach for solving the
problem and converge to a strong Lp− Stackelberg/Nash equilibrium. We developed
the method for the Stackelberg game in terms of nonlinear programming problems im-
plementing the Lagrange principle and employed the Tikhonov’s regularization method
to ensure the convergence to a unique strong Stackelberg/Nash equilibrium. Finally, we
applied our approach in a numerical example related to the effectiveness of relationship
marketing strategies for supermarkets showing the usefulness of the solution.

(Received February 19, 2015)
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