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Abstract. We consider a flexible class of space-time point process models—inhomogeneous
shot-noise Cox point processes. They are suitable for modelling clustering phenomena,
e.g. in epidemiology, seismology, etc. The particular structure of the model enables the
use of projections to the spatial and temporal domain. They are used to formulate a step-
wise estimation method to estimate different parts of the model separately. In the first
step, the Poisson likelihood approach is used to estimate the inhomogeneity parameters.
In the second and third steps, the minimum contrast estimation based on K-functions
of the projected processes is used to estimate the interaction parameters. We study the
asymptotic properties of the resulting estimators and formulate a set of conditions sufficient
for establishing consistency and asymptotic normality of the estimators under the increasing
domain asymptotics.
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1. Introduction

Statistical inference for spatial and temporal point processes has seen a significant

development over the past few decades and it is now a well-established field [18],

[19], [15], [2]. It might seem tempting to simply extend the methods from the purely

spatial setting to the space-time setting but a lot of caution should be taken in

such a case. A space-time point process in R
d × R should not be considered just

a point process in R
d+1. The temporal coordinate plays a distinct role and hence

devoted space-time methods should be used for statistical inference. Developing

The research has been supported by the Czech Science Foundation, project no. 16-03708S.
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the methods for the space-time setting is an ongoing process and many interesting

problems remain open.

In the present paper we focus on the problem of parameter estimation for the so-

called shot-noise Cox processes (doubly stochastic point processes with a particular

structure of the driving random field, see [13]). They constitute a flexible class of

parametric models suitable for modelling clustered point patterns. As is the case for

Cox point processes in general, obtaining the maximum likelihood estimates is often

computationally too demanding for such models. The likelihood contains expectation

of a complicated integral term with respect to the distribution of the driving random

field. Hence, moment-based estimation methods are preferable in this case due to the

lower computational demands for both the stationary and non-stationary processes.

For the space-time point processes, estimation of the moment properties—

particularly of the second and higher orders—often turns out to be problematic

due to the high variability of the estimates. This may in turn cause low stability

of the derived moment-based estimators of the model parameters. In an attempt

to remedy this problem, the paper [16] proposed a step-wise estimation method

for inhomogeneous space-time shot-noise Cox processes with a particular model

structure. It is based on the projections of the space-time process to the spatial and

temporal domain. The idea of using the projection processes is due to [14]. The

estimation method proposed in [16] proved to be applicable in realistic scenarios but

asymptotic properties of the resulting estimators were not studied. In this paper, we

fill in this gap—we provide a set of sufficient conditions under which the consistency

and asymptotic normality of the estimators under the increasing domain asymptotics

can be proved.

After presenting the necessary background material in Sections 2 and 3, the model

parametrization is given in Section 4. Then, the estimation procedure is described in

Section 5. The main results of the paper are formulated in Section 6 together with

the discussion of the assumptions. The proofs are deferred to Appendices.

2. Background

We start with introducing the necessary notation and concepts relating to the

space-time point processes. For more detailed information on space-time point pro-

cesses see [3].

We denote by R the set of real numbers and by B(R) the corresponding Borel

σ-algebra. For simplicity we restrict our attention to the space-time point processes

in R2×R, i.e. the spatial domain is R2 and the temporal domain is R. Furthermore,

B(R2) and B(R2 ×R) denote the Borel σ-algebras on the appropriate spaces. In the
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latter case we emphasize the role of the temporal coordinate by using the notation

R
2 × R.

Throughout this paper, we regard a simple space-time point processX as a random

countable locally finite subset of R2 × R. A point (u, t) ∈ X is thus interpreted as

an event of the process which occurs at the location u ∈ R
2 at the time t ∈ R.

The volume of a Borel set B, i.e. its Lebesgue measure of appropriate dimension,

is denoted by |B|, ‖x‖ is the Euclidean norm of a vector x and I is the indicator

function.

The kth-order factorial moment measure αk of X is defined as

αk(A) = E

( 6=∑

(u1,t1),...,(uk,tk)∈X

I[((u1, t1), . . . , (uk, tk)) ∈ A]

)
, A ∈ (B(R2 × R))⊗k,

where 6= denotes that the summation is over k-tuples of distinct points of X .

If the density of the measure αk w.r.t. the Lebesgue measure of dimension 3k exists

for some k ∈ N, we call it the kth-order intensity function of X and denote it by ̺k.

We assume in the following that the first- and second-order intensity functions ̺1
and ̺2 of X exist. For simplicity, we use the notation ̺1 = ̺ and we call ̺ the

intensity function (or simply the intensity if it is constant).

Just as in [16], we consider a particular type of inhomogeneity of the process X ,

the second-order intensity reweighted stationarity (SOIRS), see [1]. It means that

the inhomogeneous pair-correlation function of X defined as

g((u, t), (v, s)) =
̺2((u, t), (v, s))

̺(u, t)̺(v, s)

depends only on the differences (v − u, s− t).

Consider a stationary process X0 (its distribution is invariant w.r.t. translations

of R2 × R). Now we form a thinned process X by randomly deleting or retaining

each point, independently of the others. The retention probabilities are given by

a function f : R
2 × R → [0, 1]. We call f the inhomogeneity function. The thinned

process X is an example of a SOIRS process.

If the kth-order intensity function ̺0,k of the stationary process X0 exists, so does

the kth-order intensity function ̺k of the thinned process X and it has the form

̺k((u1, t1), . . . , (uk, tk)) = ̺0,k((u1, t1), . . . , (uk, tk))

k∏

i=1

f((ui, ti)),

(u1, t1), . . . , (uk, tk) ∈ R
2 × R.

This in turn means that the pair-correlation functions of X and X0 are the same.
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Following [14], we define the space-time K-function of a SOIRS process X as

K(r, t) =

∫

R

∫

R2

I[‖s‖ 6 r, |τ | 6 t]g(s, τ) ds dτ, r > 0, t > 0.

Here d· denotes integration with respect to the Lebesgue measure over the appro-

priate space.

We consider the space-time observation window in the product form W × T ,

W ∈ B(R2), T ∈ B(R). We assume that it has a finite positive Lebesgue measure.

The assumed existence of the second-order intensity function of X implies that

for any pair of distinct points (u, t) 6= (v, s) from X (with both u, v ∈ W or both

t, s ∈ T ) we have u 6= v and t 6= s almost surely. Hence, we may define the spatial

and temporal projection process as

Xs = {u ∈ R
2 : ∃ t ∈ T such that (u, t) ∈ X},

Xt = {t ∈ R : ∃u ∈ W such that (u, t) ∈ X}.

The moment characteristics of the projection processesXs, Xt are fully determined

by the characteristics of the space-time process X . Let the kth-order intensity func-

tion ̺k of the space-time process X exist. Then the kth-order intensity function ̺s,k

of Xs exists and takes the form

̺s,k(u1, . . . , uk) =

∫

T

. . .

∫

T

̺k((u1, t1), . . . , (uk, tk)) dt1 . . . dtk, u1, . . . , uk ∈ R
2,

and similarly for ̺t,k of Xt.

3. Space-time shot-noise Cox processes

A space-time shot-noise Cox process is a Cox process with the driving field Λ of

the form

(3.1) Λ(u, t) =
∑

(r,v,s)∈Φ

r k((u, t), (v, s)), (u, t) ∈ R
2 × R,

where Φ is a Poisson process on (0,∞) × R
2 × R with intensity measure U , and k

is a probability density function on R
2 × R. In the following, k will be called the

smoothing kernel. Some basic integrability assumptions must be fulfilled in order to

secure the existence of the shot-noise Cox process with given U and k, see [13].
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The space-time process X driven by the random field (3.1) is stationary if the ker-

nel k depends only on the difference of its arguments, k((u, t), (v, s)) = k(v − u, s− t),

and the intensity measure U has the product form

(3.2) U(dr, dv, ds) = µV (dr) dv ds.

Here µ > 0 and V (dr) is an arbitrary measure on (0,∞) satisfying the integrability

condition
∫∞

0 min(1, r)V (dr) <∞.

A shot-noise Cox point process can be viewed as a generalized cluster process.

The measure V determines the distribution of the number of points in a cluster. By

choosing an appropriate measure V , we can obtain a much more variable number of

points in individual clusters than for the classical Poisson-Neyman-Scott process [15],

Sec. 5.3.

The moment properties of shot-noise Cox processes are easily available [10], Sec. 4.

For a space-time processes satisfying (3.2) we have

̺(u, t) = µ

∫ ∞

0

rV (dr)

∫

R2×R

k((u, t), (v, s)) dv ds, (u, t) ∈ R
2 × R,

g((u, t), (v, s)) = 1 +
µ
∫∞

0
r2V (dr)

∫
R2×R

k((u, t), (w, τ))k((v, s), (w, τ)) dw dτ

̺(u, t)̺(v, s)
,

(u, t), (v, s) ∈ R
2 × R.

In both the equations we have a product of separate integrals for V and k. This prop-

erty will be important for the estimation procedure discussed below. In order to sim-

plify the notation we write in the following V1 =
∫∞

0
rV (dr) and V2 =

∫∞

0
r2V (dr).

Location-dependent thinning using an inhomogeneity function f applied to a sta-

tionary shot-noise Cox process specified by µ, V and k, yields a SOIRS shot-noise

Cox process with the same µ and V but with a new kernel k̃((u, t), (v, s)) = f(u, t)×

k(v − u, s − t). In the following, however, we prefer the parametrization using the

function f and the kernel k(y−x) as opposed to the inhomogeneous kernel function k̃.

4. Model specification and parametrization

Let X0 be a stationary space-time shot-noise Cox process on R
2 × R specified by

the constant µ > 0, the measure V on R
+ (parametrized by a scalar parameter θ)

and the homogeneous kernel function k(u, t). We denote by ̺0,k, ̺0,s,k and ̺0,t,k the

kth-order intensity functions of X0 and of the projection processes X0,s and X0,t,

respectively. Throughout this section, we assume that ̺0,2 exists and is bounded so

that the pair-correlation function of X0 is properly defined.
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Let X be the SOIRS process obtained by location-dependent thinning from X0

using the inhomogeneity function f . As before, we denote by ̺k, ̺s,k, and ̺t,k
the kth-order intensity functions of X and of the projection processes Xs and Xt,

respectively.

Following [7] and [14], we adopt a pragmatic assumption that the inhomogene-

ity function f has a space-time product structure. In particular, we assume the

parametric form of f

(4.1) f(u, t;βs, βt) = f1(z1(u)β
T
s )f2(z2(t)β

T
t ),

where z1(u) and z2(t) are vectors of spatial and temporal covariates, respectively,

and f1, f2 are positive, strictly increasing functions on R. The vectors βs, βt denote

the unknown inhomogeneity parameters. For a more concise notation we write in the

following way: f1(z1(u)β
T
s ) = f1(u;βs), and similarly for f2. Moreover, we assume

max
u∈R2

f1(u;βs) = 1 = max
t∈R

f2(t;βt).

This assumption prevents overparametrization of the model. We further set β0 =

log(µV1) and hence the intensity function ̺ of X is parametrized by the vector

β = (β0, βs, βt).

Further, following an example of a structured space-time Poisson cluster process

in [14], Sec. 5, we assume a product structure of the kernel function k, i.e.

(4.2) k(u, t) = k1(u; ψ̃)k2(t; ξ̃), u ∈ R
2, t ∈ R,

where k1(·; ψ̃) and k2(·; ξ̃) are probability density functions on R
2 and R, parame-

trized by the (vector) parameters ψ̃ and ξ̃, respectively.

The assumptions (4.1) and (4.2) allow us to introduce a tractable estimation pro-

cedure (the second-order moment characteristics of the projected processes have

a tractable form) but do not imply spatio-temporal separability of the process X .

In the following we take advantage of the notation

K1(v − u; ψ̃) =

∫

R2

k1(u − w; ψ̃)k1(v − w; ψ̃) dw, u, v ∈ R
2,

K2(s− t; ξ̃) =

∫

R

k2(t− τ ; ξ̃)k2(s− τ ; ξ̃) dτ, s, t ∈ R.

The moment characteristics of X are derived easily from the model assumptions

and the formulae in Section 3. The intensity function and the pair-correlation func-

tion are

̺(u, t;β) = µV1f1(u;βs)f2(t;βt), (u, t) ∈ R
2 × R,

g(v, s;µ, θ, ψ̃, ξ̃) = 1 +
V2

µ(V1)2
K1(v; ψ̃)K2(s; ξ̃), v ∈ R

2, s ∈ R.
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As in [16], we get for the intensity functions and the pair-correlation functions of

Xt and Xs that

̺t(t;β) = µV1f2(t;βt)

∫

W

f1(w;βs) dw, t ∈ R,

̺s(u;β) = µV1f1(u;βs)

∫

T

f2(τ ;βt) dτ, u ∈ R
2,

gt(s; ξ) = 1 + Ct
V2

µ (V1)2
K2(s; ξ̃) = 1 + ξ0K2(s; ξ̃), t, s ∈ R,

gs(u;ψ) = 1 + Cs
V2

µ (V1)2
K1(u; ψ̃) = 1 + ψ0K1(u; ψ̃), u, v ∈ R

2,

where the constants Ct, Cs are given by

Ct =
1

(
∫
W f1(w;βs) dw)2

∫

W

∫

W

f1(u;βs)f1(v;βs)K1(v − u; ψ̃) du dv,(4.3)

Cs =
1

(
∫
T
f2(τ ;βt) dτ)2

∫

T

∫

T

f2(s;βt)f2(t;βt)K2(s− t; ξ̃) ds dt.(4.4)

We also use the notation ψ0 = Cs V2/[µ (V1)
2], ξ0 = Ct V2/[µ (V1)

2] and ψ = (ψ0, ψ̃),

ξ = (ξ0, ξ̃).

Clearly, the pair-correlation function gt of Xt depends on the “spatial” part of the

model (f1 and k1) only through the constant Ct. Analogously, the pair-correlation

function gs of Xs depends on f2 and k2 only through Cs.

In the following we use mainly the K-functions of the projection processes:

Ks(r;ψ) =

∫

‖u‖6r

gs(u;ψ) du = πr2 + ψ0

∫

‖u‖<r

K1(u; ψ̃) du, r > 0,

Kt(t; ξ) =

∫ t

−t

gt(s; ξ) ds = 2t+ ξ0

∫

|s|<t

K2(s; ξ̃) ds, t > 0.

Below we also use the following notation: ̺(1) and ̺(2) are the first- and

second-order derivatives of the intensity function of X w.r.t. the parameter β;

K
(1)
t (t; ξ),K

(2)
t (t; ξ) are the first- and second-order derivatives of Kt(t; ξ) w.r.t. ξ;

K
(1)
s (r;ψ),K

(2)
s (r;ψ) are the first- and second-order derivatives of Ks(r;ψ) w.r.t. ψ,

assuming that the appropriate derivatives exist.

Finally, we denote by β∗, ψ∗, ξ∗, µ∗, θ∗ the true parameter values governing the

distribution of the process X .
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5. Estimation method using projection processes

In this section we briefly describe the estimation method proposed in the paper

[16], based on the notion of the spatial and temporal projection processes introduced

in [14]. It is a step-wise estimation procedure analogous to the estimation of spatial

SOIRS Cox point processes, in [21]. Even though the estimation method in [16] can

be based either on the pair-correlation functions or the K-functions of the projection

processes, we focus in the following only on the latter case—it enables us to formulate

the asymptotic properties of the estimators. For more details on the estimation

method see [16].

With the aim of discussing the asymptotic properties of the estimators, we focus

here on estimation of β, ξ and ψ. For the parameters µ and θ, the calculations

depend on the particular form of the measure V (more precisely, on the form of V1

and V2) and it is complicated to discuss the asymptotics in the general setting. Also,

the inhomogeneity parameter β and the clustering parameters ξ and ψ are likely to

be of main interest in practical applications.

In the step-wise estimation procedure, we take advantage of the special spatio-

temporal structure of the process X . In the first step, the parameter β of the

intensity function ̺ is estimated. In the second and third step, conditionally on the

knowledge of ̺, the K-functions of the projection processes are estimated from the

data and used for minimum contrast estimation in order to estimate the parameters

ξ and ψ, respectively. Finally, we also show how the parameters µ and θ of the

underlying Poisson measure can be estimated from the previous estimates and the

total number of points observed in W × T .

5.1. First step. Ignoring for the moment the inter-point interactions, the inho-

mogeneity parameter β may be estimated by means of the Poisson log-likelihood

score function given by

U1(β) =
∑

(u,t)∈X∩(W×T )

̺(1)(u, t;β)

̺(u, t;β)
−

∫

W×T

̺(1)(v, s;β) dv ds.

The estimate β̂ is obtained as a solution of the (vector) equation U1(β) = 0.

5.2. Second step. In the next step we use β̂ to calculate the semi-parametric

estimate K̂t(t; β̂) of Kt(t; ξ),

K̂t(t; β̂) =
1

|T |

6=∑

s,τ∈Xt

I(|s− τ | 6 t)

|T ∩ Ts−τ |̺t(s; β̂t)̺t(τ ; β̂t)
,
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where Ts−τ denotes the set T shifted by s−τ . We use the translation edge-correction

factor |T ∩Ts−τ |, see [6], because it is convenient for our discussion on the asymptotic

properties of the estimators. We then minimize the discrepancy

m2,β̂(ξ) =

∫ t1

t0

(K̂t(t; β̂)
c2 −Kt(t; ξ)

c2)2 dt,

where c2 > 0 is the variance-stabilizing exponent, usually taking on values c2 = 1/2

or 1/4, and 0 6 t0 < t1 are fixed constants. Assuming differentiability of m2,β̂(·),

this corresponds to solving the estimating equation

(5.1) U2(β̂, ξ) = − |T |
∂m2,β̂(ξ)

∂ξ

= 2c2|T |

∫ t1

t0

[K̂t(t; β̂)
c2 −Kt(t; ξ)

c2 ]Kt(t; ξ)
c2−1K

(1)
t (t; ξ) dt = 0.

5.3. Third step. The estimation of ψ is analogous to the estimation of ξ in the

second step. We use

K̂s(r; β̂) =

6=∑

x,y∈Xs

I(‖x− y‖ 6 r)

|W ∩Wx−y|̺s(x; β̂s)̺s(y; β̂s)

to construct the discrepancy criterion to be minimized:

(5.2) m3,β̂(ψ) =

∫ r1

r0

(K̂s(u; β̂)
c3 −Ks(u;ψ)

c3)2 du.

Here Wx−y denotes the set W shifted by the vector x − y, c3 > 0 is the variance-

stabilizing exponent (the usual choices are c3 = 1/2 or 1/4) and 0 6 r0 < r1 are

fixed constants.

Assuming differentiability of m3,β̂(·), minimizing (5.2) corresponds to solving the

estimating equation

U3(β̂, ψ) = − |W |
∂m3,β̂(ψ)

∂ψ

= 2c3|W |

∫ r1

r0

[K̂s(r; β̂)
c3 −Ks(r;ψ)

c3 ]Ks(r;ψ)
c3−1K(1)

s (r;ψ) dr = 0.

Altogether, the described estimation procedure can be formulated as solving the

vector estimating equation U(β, ξ, ψ) = (U1(β), U2(β, ξ), U3(β, ψ)) = 0 to obtain the

parameter estimates β̂, ξ̂ and ψ̂.
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5.4. Final step. Finally, we briefly comment on how the parameters µ and θ of

the underlying Poisson measure can be estimated. Once the estimates of ψ and ξ

have been computed, we can plug them into formulas (4.3), (4.4), and from ψ̂0 or ξ̂0
obtain the estimate of α = V2/[µ(V1)

2]. Finally, we calculate θ̂ and µ̂ from α̂ and

the equation

X(W × T ) = µ̂V1

∫

W

f1(u; β̂s) du

∫

T

f2(t; β̂t) dt,

whereX(W×T ) plays the role of the estimate of EX(W×T ) =
∫
W×T

̺(u, t;β) du dt.

The actual form of the calculations depends on the precise form of V1 and V2 de-

pending on θ.

6. Asymptotic properties

In this section we discuss the asymptotic properties of the estimators under the so-

called increasing domain asymptotics, i.e. when the data is observed on an increasing

sequence of compact observation windows. The proofs are deferred to Appendices.

They are inspired by paper [21], which discusses the minimum contrast estimation

in the purely spatial case, but contain important changes.

We consider the following asymptotic regime: Wn × Tn, n > 1, is an increasing

sequence of compact observation windows such that Wn×Tn ր R
2×R and that for

any h ∈ R
2 and k ∈ R,

lim
n→∞

|Wn × Tn|

|(Wn ∩Wn,h)× (Tn ∩ Tn,k)|
= 1,

where Wn,h denotes the set Wn shifted by h ∈ R
2, and similarly for Tn,k. Moreover,

it is required that |∂(Wn × Tn)|/|Wn × Tn| → 0, n → ∞, where |∂(Wn × Tn)| is the

Hausdorff measure of the boundary of Wn × Tn.

Let (β̂n, ξ̂n, ψ̂n) be the estimated parameter values calculated fromWn×Tn, i.e. the

solution of the equation Un(β, ξ, ψ) = (Un,1(β), Un,2(β, ξ), Un,3(β, ψ)) = 0, where

Un,1(β) =
∑

(u,t)∈X∩(Wn×Tn)

̺(1)(u, t;β)

̺(u, t;β)
−

∫

Wn×Tn

̺(1)(v, s;β) dv ds,

Un,2(β, ξ) = 2c2|Tn|

∫ t1

t0

[K̂t,n(t;β)
c2 −Kt(t; ξ)

c2 ]Kt(t; ξ)
c2−1K

(1)
t (t; ξ) dt,

Un,3(β, ψ) = 2c3|Wn|

∫ r1

r0

[K̂s,n(r;β)
c3 −Ks(r;ψ)

c3 ]Ks(r;ψ)
c3−1K(1)

s (r;ψ) dr,

and K̂t,n and K̂s,n are the semi-parametric estimates of Kt and Ks, calculated using

Xt ∩ Tn and Xs ∩Wn, respectively.
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Note that for all n > 1, we use the same temporal projection processXt (projected

from the fixed spatial region W ) to define Un,2 and the same spatial projection

process Xs (projected from the fixed time interval T ) to define Un,3. If, e.g. Tn were

used to define the projection processesX
(n)
s , the resulting asymptotic regime for Un,3

would be a combination of the increasing domain asymptotics and the so-called infill

asymptotics. In particular, the intensity function of X
(n)
s (at any location) would

be an increasing, unbounded function of n. Moreover, the second-order moment

characteristics of X
(n)
s converge to those of a Poisson process and thus in the limit

they provide no information about the clustering parameters.

Following the approach of [21], we approximate the functions Un,2(β
∗, ξ∗) and

Un,3(β
∗, ψ∗) by

Ũn,2(β
∗, ξ∗) = 2c22|Tn|

∫ t1

t0

[K̂t,n(t;β
∗)−Kt(t; ξ

∗)]Kt(t; ξ
∗)2c2−2K

(1)
t (t; ξ∗) dt,

Ũn,3(β
∗, ψ∗) = 2c23|Wn|

∫ r1

r0

[K̂s,n(r;β
∗)−Ks(r;ψ

∗)]Ks(r;ψ
∗)2c3−2K(1)

s (r;ψ∗) dr.

For Ũn,2, this approximation is based on the Taylor series expansion of the function

xc2 , applied on K̂t,n(t;β)
c2 −Kt(t; ξ)

c2 , and similarly for Ũn,3. We further define

Σn,11 = |Wn × Tn|
−1 Var(Un,1(β

∗)),

Σ̃n,22 = |Tn|
−1 Var(Ũn,2(β

∗, ξ∗)),

Σ̃n,33 = |Wn|
−1 Var(Ũn,3(β

∗, ψ∗)),

Jn(β, ξ, ψ) = −
∂

∂(β, ξ, ψ)T
Un(β, ξ, ψ)

= −




∂

∂βT
Un,1(β)

∂

∂βT
Un,2(β, ξ)

∂

∂βT
Un,3(β, ψ)

0
∂

∂ξT
Un,2(β, ξ) 0

0 0
∂

∂ψT
Un,3(β, ψ)




=



Jn,11(β) Jn,12(β, ξ) Jn,13(β, ψ)

0 Jn,22(β, ξ) 0

0 0 Jn,33(β, ψ)


 ,

In,11 =
1

|Wn × Tn|

∫

Wn×Tn

̺(1)(v, s;β∗)T̺(1)(v, s;β∗)

̺(v, s;β∗)
dv ds,

In,12 = −2c22

∫ t1

t0

Hn,2(t;β
∗)Kt(t; ξ

∗)2c2−2K
(1)
t (t; ξ∗) dt,
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In,13 = −2c23

∫ r1

r0

Hn,3(r;β
∗)Ks(r;ψ

∗)2c3−2K(1)
s (r;ψ∗) dr,

I22 = 2c22

∫ t1

t0

Kt(t; ξ
∗)2c2−2K

(1)
t (t; ξ∗)TK

(1)
t (t; ξ∗) dt,

I33 = 2c23

∫ r1

r0

Ks(r;ψ
∗)2c3−2K(1)

s (r;ψ∗)TK(1)
s (r;ψ∗) dr,

where

Hn,2(t;β
∗) = E

∂

∂βT
K̂t,n(t;β)|β=β∗

= − 2

∫

Tn

∫

Tn

I{|s− τ | < t}

|Tn ∩ Tn,s−τ |

̺
(1)
t (s;β∗)

̺t(s;β∗)
gt(s− τ ; ξ∗) ds dτ,

Hn,3(t;β
∗) = E

∂

∂βT
K̂s,n(r;β)|β=β∗

= − 2

∫

Wn

∫

Wn

I{‖u− v‖ < r}

|Wn ∩Wn,u−v|

̺
(1)
s (u;β∗)

̺s(u;β∗)
gs(u − v;ψ∗) du dv.

Now we can formulate the consistency theorem, inspired by [21].

Theorem 1. Apart from the model assumptions formulated above, let the fol-

lowing conditions be met:

(A1) ̺ is twice continuously differentiable as a function of β,

(A2) ∃C1 <∞ such that ‖z1(u)‖ < C1, ‖z2(t)‖ < C1, u ∈ R
2, t ∈ R,

(A3) I22 and I33 are positive definite matrices and lim inf ωn,11 > 0, where ωn,11 is

the smallest eigenvalue of In,11,

(A4) Σ̃n,22 and Σ̃n,33 converge to positive definite matrices Σ̃22 and Σ̃33, respec-

tively,

(A5) Ks(r;ψ),K
(1)
s (r;ψ),K

(2)
s (r;ψ) exist and are continuous functions of (r, ψ),

(A6) Kt(t; ξ),K
(1)
t (t; ξ),K

(2)
t (t; ξ) exist and are continuous functions of (t, ξ),

(A7) t0 > 0 for c2 > 2, otherwise t0 > 0; similarly, r0 > 0 for c3 > 2, otherwise

r0 > 0,

(A8) ̺0,2 and ̺0,3 exist and are bounded, and the second-order reduced factorial

cumulant measure of X0 has finite total variation,

(A9) ∃C2 <∞ such that for all u1, u2 ∈ R
2:

∫

R2

|̺0,s,4(0, u1, v, u2 + v)− ̺0,s,2(0, u1) ̺0,s,2(0, u2)| dv < C2,

(A10) ∃C3 <∞ such that for all s1, s2 ∈ R:

∫

R

|̺0,t,4(0, s1, τ, s2 + τ) − ̺0,t,2(0, s1) ̺0,t,2(0, s2)| dτ < C3.

398



Then there is a sequence {(β̂n, ξ̂n, ψ̂n)}n>1 for which Un(β̂n, ξ̂n, ψ̂n) = 0 with prob-

ability tending to 1 and the sequence

Mn = (|Wn × Tn|
1/2(β̂n − β∗), |Tn|

1/2(ξ̂n − ξ∗), |Wn|
1/2(ψ̂n − ψ∗))

is bounded in probability, i.e. ∀ ε > 0 ∃ δ > 0: P(‖Mn‖ > δ) 6 ε for n sufficiently

large.

Concerning the assumptions of Theorem 1, condition (A1) is not restrictive. It

covers, among others, the log-linear model for ̺, which is the most popular in appli-

cations. Assumption (A2) of bounded covariates can be easily justified in practice.

Regarding (A3), it is sufficient for I22 to be a positive definite matrix that there

are distinct values t0 < τ1 < τ2 < . . . < τq < t1 (q is the number of elements of the

vector ξ∗) such that the matrix with rows K
(1)
t (τi; ξ

∗) has full rank. For a detailed

example see [21], Sec. 3.3. The smallest eigenvalue of In,11 depends on all the values

of the covariates in R
2 × R, making it difficult to discuss the condition on ωn,11 in

the general setting. The same applies to condition (A4) on the limiting behaviour of

the matrices Σ̃n,22 and Σ̃n,33.

Conditions (A5) and (A6) in fact impose restrictions on the kernels k1 and k2,

respectively. For example, Gaussian kernels satisfy these conditions. For the uniform

(Matérn-type) kernels the dimension comes into play. Namely, a short calculation

shows that for a uniform circular kernel k1 in R
2, (A5) is fulfilled. On the other

hand, for a uniform kernel k2 in R, (A6) does not hold.

Assumption (A7) is only technical. In applications one can use very small positive

values of t0 and r0 without hesitation.

Condition (A8) relates to the stationary (unthinned) version X0 of the process.

It follows from [10], Sec. 4, that if the kernel k is bounded and
∫∞

0
rmV (dr) < ∞

for some m ∈ N, then ̺0,m is bounded and all reduced factorial cumulant measures

up to order m have finite total variation. Thus, (A8) holds if these conditions are

fulfilled for m = 3.

A sufficient condition for (A9) can be formulated in terms of the second- and

fourth-order intensity functions of the space-time process X0. It suffices if there is

a constant C̃2 such that for all u1, u2 ∈ R
2 and s1, s2, s3 ∈ R we have:

∫

R2

|̺0,4((0, 0), (u1, s1), (v, s2), (u2 + v, s3))

− ̺0,2((0, 0), (u1, s1)) ̺0,2((0, 0), (u2, s3 − s2))| dv < C̃2.

For (A10) a similar sufficient condition can be formulated.

We now proceed to the formulation of the asymptotic normality results for the

estimators considered above. First, we discuss the properties of the estimator β̂n

399



based on the space-time process X . For a Borel set A ∈ B(R2 × R), denote by

FX(A) the σ-algebra generated by X ∩ A.

For general σ-algebras F1 and F2, let α(F1,F2) = sup{|P(A ∩ B) − P(A)P(B)|,

A ∈ F1, B ∈ F2} denote the standard strong mixing coefficient [4]. For h > 0 let

Aijk = [ih, (i+ 1)h)× [jh, (j + 1)h)× [kh, (k + 1)h), (i, j, k) ∈ Z
3, and

αF
p1,p2

(m) = sup
{
α(FX(S1),F

X(S2)) : S1 =
⋃

M1

Aijk , S2 =
⋃

M2

Aijk,

|M1| 6 p1, |M2| 6 p2, d(M1,M2) > m, M1,M2 ⊂ Z
3
}
,

where |M | is the cardinality of the set M ⊆ Z
3 and d(M1,M2) denotes the minimal

distance between M1 and M2 in the grid Z
3.

Theorem 2. Apart from the model assumptions formulated above and (A1)–

(A10), suppose there exist δ > 0 and ν ∈ N, 0 < δ < ν, such that

(B1) ̺0,2+ν((u1, t1), . . . , (u2+ν , t2+ν)) <∞,

(B2) there exist h > 0 and d > 3(2 + δ)/δ such that αF
2,∞(m) = O(m−d),

(B3) the matrix Σn,11 converges to a positive definite matrix Σ11.

Then |Wn×Tn|
1/2(β̂n−β

∗)In,11Σ
−1/2
n,11

d
−→ N(0,1), where

d
−→ denotes convergence

in distribution and 1 is the identity matrix of appropriate dimension.

Now we focus on the properties of the estimator ξ̂n based on the temporal pro-

jection process Xt. For a Borel set B ∈ B(R), denote by FXt(B) the σ-algebra

generated by Xt ∩B. For h > 0 let Bi = [ih, (i+ 1)h), i ∈ Z, and

αF
t,p1,p2

(m) = sup
{
α(FXt(S1 ⊕ t1),F

Xt(S2 ⊕ t1)) : S1 =
⋃

M1

Bi, S2 =
⋃

M2

Bi,

|M1| 6 p1, |M2| 6 p2, d(M1,M2) > m, M1,M2 ⊂ Z

}
,

where |M | is the cardinality of the set M ⊆ Z and d(M1,M2) denotes the minimal

distance between M1 and M2 in the grid Z. Also, Si ⊕ t1 denotes the set Si di-

lated by the distance t1, where t1 is the upper limit used in the minimum contrast

criterion (5.1).

Theorem 3. Apart from the model assumptions formulated above and (A1)–

(A10), suppose there exist δ > 0 and ν ∈ N, 0 < δ < ν, such that

(C1) ̺0,4+2ν((u1, t1), . . . , (u4+2ν , t4+2ν)) <∞,

(C2) there exist h > 0 and d > (2 + δ)/δ such that αF
t,2,∞(m) = O(m−d).

Then |Tn|
1/2(ξ̂n − ξ∗)I22Σ̃

−1/2
n,22

d
−→ N(0,1).
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Finally, we discuss the properties of the estimator ψ̂n based on the spatial pro-

jection process Xs. For a Borel set C ∈ B(R2), denote by FXs(C) the σ-algebra

generated by Xs ∩ C. For h > 0 let Cij = [ih, (i + 1)h)× [jh, (j + 1)h), (i, j) ∈ Z
2,

and

αF
s,p1,p2

(m) = sup
{
α(FXs(S1 ⊕ r1), F

Xs(S2 ⊕ r1)) : S1 =
⋃

M1

Cij , S2 =
⋃

M2

Cij ,

|M1| 6 p1, |M2| 6 p2, d(M1,M2) > m, M1,M2 ⊂ Z
2
}
,

where |M | is the cardinality of the set M ⊆ Z
2 and d(M1,M2) denotes the minimal

distance between M1 and M2 in the grid Z
2. Also, Si ⊕ r1 denotes the set Si

dilated by the distance r1, where r1 is the upper limit used in the minimum contrast

criterion (5.2).

Theorem 4. Apart from the model assumptions formulated above and (A1)–

(A10), suppose there exist δ > 0 and ν ∈ N, 0 < δ < ν, such that

(C1) ̺0,4+2ν((u1, t1), . . . , (u4+2ν , t4+2ν)) <∞,

(D2) there exist h > 0 and d > 2(2 + δ)/δ such that αF
s,2,∞(m) = O(m−d).

Then |Wn|
1/2(ψ̂n − ψ∗)I33Σ̃

−1/2
n,33

d
−→ N(0,1).

It is possible to formulate sufficient conditions for the mixing assumptions above

in terms of conditions on the tail behaviour of the kernels k1 and k2. They are

generally easier to verify than the original mixing conditions (B2), (C2), and (D2).

The proofs follow the one given in Appendix C of the recent paper [5].

Lemma 1. Let X0 be a stationary shot-noise Cox process in R
2 × R with well-

defined first-order moment measure and smoothing kernel k(u, t) = k1(u)k2(t), u ∈

R
2, t ∈ R, satisfying

(6.1) sup
(u,t)∈[−m/2,m/2]3

{∫

R3\[−m,m]3
k1(v − u)k2(s− t) d(v, s)

}
= O(m−d−3).

Then X0 satisfies condition (B2).

Furthermore, if k2 satisfies sup
s∈[−m/2,m/2]

{∫
R\[−m,m]

k2(s − τ) dτ
}

= O(m−d−1),

then X0,t satisfies condition (C2). Also, condition (D2) holds for X0,s if k1 satisfies

sup
u∈[−m/2,m/2]2

{∫
R2\[−m,m]2 k1(v − u) dv

}
= O(m−d−2).

The inhomogeneous process X , formed by location-dependent thinning of the sta-

tionary process X0, inherits the mixing properties of X0. Thus, (6.1) ensures that
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(B2) holds also for X , and similarly for the other conditions and the assumptions

(C2) and (D2), respectively.

7. Discussion

The estimation method for space-time shot-noise Cox processes, proposed in [16]

and based on projections of the process to the spatial and temporal domain, proved to

be practically applicable but lacking theoretical foundations. In the present paper we

remedy this flaw by providing a set of sufficient conditions under which the estimates

of the parameters governing the inhomogeneity and clustering can be proved to be

consistent and asymptotically normally distributed.

The reason for presenting the asymptotic normality results in Section 6 as three

separate theorems is that due to the different normalization required for each esti-

mation step, we cannot prove joint asymptotic normality for the vector (β̂n, ξ̂n, ψ̂n)

using the current methodology. The crucial point is that the variances of Un,1(β
∗),

Un,2(β
∗, ξ∗), and Un,3(β

∗, ψ∗) grow with different orders. In particular, they grow

as |Wn × Tn|, |Tn|, and |Wn|, respectively. In an attempt to prove joint asymptotic

normality, depending on the normalization factors used, we either encounter singular

limiting variance matrices or fail to check the uniform integrability condition (see

condition (b) at the end of Appendix B). This is one of the main differences from

the purely spatial case discussed in [21].

The other important difference is that we use different mixing coefficients which

are more suitable in this context and enable us to establish in Lemma 1 sufficient

conditions for the required mixing properties in terms of the tail behaviour of the

kernels k1 and k2. For more detailed discussion on the different choice of the mixing

coefficient, see [17].

Finally, we remark that the practical application of the theoretical results pre-

sented in Section 6 lies e.g. in the construction of confidence regions for the param-

eters β, ξ, and ψ. This can be done by using a plug-in approach, as discussed in

Sec. 3.2 and App. B of [21]. The construction is based on computing the estimates of

Σn,11, Σ̃n,22, and Σ̃n,33, together with In,11, I22, and I33, using the estimated values

β̂n, ξ̂n, and ψ̂n.

Appendix A. Proof of Theorem 1

The proof is based on the general asymptotic result given in [21], App. C. We

formulate here only the statement of the result, for the proof see [21], App. C.

Consider a parametrized family of probability measures Pθ, θ ∈ R
p, and a sequence

of estimating functions un : R
p → R

p, n > 1. The distribution of {un(θ)}n>1 is
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governed by P = Pθ∗ , where θ∗ denotes the true parameter value. For a matrix

A = (aij), let ‖A‖M = max
ij

|aij | and let Jn(θ) = −∂un(θ)/∂θ
T.

Lemma 2. Assume that there is a sequence of invertible symmetric matrices Vn
such that

(a) ‖V −1
n ‖M → 0,

(b) there exists l > 0 such that P
(

inf
‖ϕ‖=1

{ϕV −1
n Jn(θ

∗)V −1
n ϕT} < l

)
→ 0,

(c) for any d > 0, γnd = sup
‖(θ−θ∗)Vn‖6d

[‖V −1
n {Jn(θ)− Jn(θ

∗)}V −1
n ‖M ] → 0 in proba-

bility under P = Pθ∗ ,

(d) the sequence un(θ
∗)V −1

n is bounded in probability, i.e., for each ε > 0 there

exists d such that P(‖un(θ
∗)V −1

n ‖ > d) 6 ε for n sufficiently large.

Then for each ε > 0 there exists d > 0 such that

P
(
∃ θ̃n : un(θ̃n) = 0 and ‖(θ̃n − θ∗)Vn‖ < d

)
> 1− ε

whenever n is sufficiently large.

To prove Theorem 1 we apply Lemma 2 succesively as follows. In the first step

we apply it to un = Un,1 with Vn = |Wn × Tn|
1/2 · 1, where 1 is the identity matrix

of the appropriate dimension. It follows that there is a sequence {β̂n}n>1 such that

|Wn × Tn|
1/2‖β̂n − β∗‖ is bounded in probability and Un,1(β̂n) = 0 with probability

tending to 1. This also implies β̂n → β∗ in probability as n→ ∞.

In the second step we use Lemma 2 on un(·) = Un,2(β̂n, ·) with Vn = (|Tn|Σ̃n,22)
1/2

to show that there is a sequence {ξ̂n}n>1 such that Un,2(β̂n, ξ̂n) = 0 with probability

tending to 1 and |Tn|
1/2‖ξ̂n − ξ∗‖ is bounded in probability. The difficult part in

using this lemma is to show boundedness in probability of |Tn|
−1/2Un,2(β̂n, ξ

∗)Σ̃
−1/2
n,22

in condition (d). To do this, we use a Taylor series expansion

(A.1) |Tn|
−1/2Un,2(β̂n, ξ

∗)Σ̃
−1/2
n,22 = |Tn|

−1/2Un,2(β
∗, ξ∗)Σ̃

−1/2
n,22

− |Tn|
−1/2(β̂n − β∗)Jn,12(β̃, ξ

∗)Σ̃
−1/2
n,22 ,

where ‖β̃ − β∗‖ 6 ‖β̂n − β∗‖. In this way we can show boundedness in prob-

ability of the two terms on the right-hand side which are easier to handle than

|Tn|
−1/2Un,2(β̂n, ξ

∗)Σ̃
−1/2
n,22 .

Finally, in the third step we use Lemma 2 in a similar way on un(·) = Un,3(β̂n, ·)

with Vn = (|Wn|Σ̃n,33)
1/2 to show that there is a sequence {ψ̂n}n>1 such that

|Wn|
1/2‖ψ̂n − ψ∗‖ is bounded in probability and Un,3(β̂n, ψ̂n) = 0 with probabil-

ity tending to 1. To verify condition (d) of the lemma we use a similar Taylor series

expansion as above.
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Thus, Theorem 1 will be proved, once we check the conditions of Lemma 2 for the

three cases described above.

First step. Condition (a) of Lemma 2 follows from the fact that |Wn × Tn| → ∞

as n→ ∞.

To verify condition (b), first note that |Wn × Tn|
−1Jn,11(β

∗) is a real symmetric

matrix and inf
‖ϕ‖=1

{ϕJn,11(β
∗)|Wn × Tn|

−1ϕT} is equal to the smallest eigenvalue of

|Wn × Tn|
−1
Jn,11(β

∗) [9]. Since the eigenvalues of a matrix are in fact the roots

of a certain polynomial, [12], Sec. 2 gives uniform continuity of the mapping g :

A 7→ inf
‖ϕ‖=1

{ϕAϕT}.

Lemma 5 below shows that |Wn × Tn|
−1
Jn,11(β

∗) − In,11 converges to 0 in prob-

ability as n → ∞. Taking advantage of the uniform continuity, it is easy to show

that also g(|Wn × Tn|
−1
Jn,11(β

∗))−g(In,11) converges to 0 in probability as n→ ∞.

This and assumption (A3) verify condition (b), where we take l = 1
2 lim inf ωn,11 > 0.

Regarding condition (c), it is sufficient to show that

γijnd = sup
‖(θ−θ∗)|Wn×Tn|1/2‖6d

|J ij
n,11(θ)− J ij

n,11(θ
∗)|

|Wn × Tn|

converges in probability to 0 as n → ∞, where J ij
n,11 is the (i, j)-th element of the

matrix Jn,11. To do this, we need to control the differences of the type |̺
(2)(u, t;β)−

̺(2)(u, t;β∗)|, where the arguments (u, t) are the same in both terms. Such differences

can be uniformly bounded from above by assumptions (A1) and (A2). The required

convergence follows.

Using the Campbell theorem and assumptions (A2) and (A8), it is easy to show

for each element of the vector |Wn × Tn|
−1/2Un,1(β

∗) that its mean is 0 and its

variance is bounded from above by the same constant for all n. This implies that

|Wn ×Tn|
−1/2Un,1(β

∗) is bounded in probability and hence condition (d) is verified.

Second step. Condition (a) of Lemma 2 follows easily from the fact that |Tn| → ∞,

n→ ∞, and Σ̃n,22 → Σ̃22 as n→ ∞ by assumption (A4). It also secures invertibility

of Σ̃n,22, at least for n large enough.

Regarding condition (b), we show in Lemma 5 that |Tn|
−1
Jn,22(β̂n, ξ

∗)− I22 → 0

in probability as n→ ∞, and thus

|Tn|
−1

Σ̃
−1/2
n,22 Jn,22(β̂n, ξ

∗)Σ̃
−1/2
n,22 − Σ̃

−1/2
n,22 I22Σ̃

−1/2
n,22 → 0

in probability as n→ ∞.

By assumption (A3), I22 is a positive definite matrix and hence all its eigenval-

ues are positive. This implies that lim inf of the smallest eigenvalue of the matrix

Σ̃
−1/2
n,22 I22Σ̃

−1/2
n,22 is positive. Now, one can use the same argument as in the first step.
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To verify condition (c), we need to check that for any d > 0, γnd → 0 in probability

as n→ ∞, where

γnd = sup
‖(ξ−ξ∗)|Tn|1/2Σ̃

1/2
n,22‖6d

∥∥∥∥
Σ̃

−1/2
n,22 (Jn,22(β̂n, ξ)− Jn,22(β̂n, ξ

∗))Σ̃
−1/2
n,22

|Tn|

∥∥∥∥
M

.

By assumption (A4), Σ̃n,22 converges to a deterministic positive definite matrix and

thus it is sufficient to verify the convergence in probability for

γ̃nd = sup
‖(ξ−ξ∗)|Tn|1/2‖6d

∥∥∥∥
Jn,22(β̂n, ξ)− Jn,22(β̂n, ξ

∗)

|Tn|

∥∥∥∥
M

.

As in the first step, we verify the convergence for each element of γ̃nd separately. Us-

ing the continuity assumptions in (A6), the difference in γ̃nd can be made arbitrarily

small by choosing n large enough and thus the required convergence is obtained and

condition (c) is verified.

In view of equation (A.1), it is sufficient for condition (d) to be satisfied that

the following quantities are bounded in probability (note that |Tn|
1/2(β̂n − β∗) is

bounded in probability from the first step):

|Tn|
−1/2Un,2(β

∗, ξ∗)Σ̃
−1/2
n,22 , |Tn|

−1Jn,12(β̃, ξ
∗)Σ̃

−1/2
n,22 ,

where ‖β̃ − β∗‖ 6 ‖β̂n − β∗‖. Regarding the first term, consider the approximation

|Tn|
−1/2Un,2(β

∗, ξ∗) = |Tn|
−1/2Ũn,2(β

∗, ξ∗) + |Tn|
−1/2Vn,2(β

∗, ξ∗),

where Ũn,2 is defined in Section 6. We argue below that |Tn|
−1/2Vn,2(β

∗, ξ∗) con-

verges to 0 in probability. By the Campbell theorem, |Tn|
−1/2Ũn,2(β

∗, ξ∗)Σ̃
−1/2
n,22 has

mean 0 and its variance is the identity matrix. It follows that |Tn|
−1/2Ũn,2(β

∗, ξ∗)

and hence also |Tn|
−1/2Un,2(β

∗, ξ∗) is bounded in probability.

Regarding the second term, i.e. |Tn|
−1Jn,12(β̃, ξ

∗)Σ̃
−1/2
n,22 , it can be checked that

it is bounded in probability by using Lemmas 3 and 4, assumptions (A1), (A2),

(A4), (A6), and (A7), and the Cauchy-Schwarz inequality and the Fubini theorem

in appropriate places.

It remains to verify that |Tn|
−1/2Vn,2(β

∗, ξ∗) converges to 0 in probability but this

can be checked using the same methods and assumptions. Combining these results

with (A4), we get condition (d) for the second step.

Third step. For verifying conditions (a)–(d) of Lemma 2, the same arguments can

be used as in the second step. The only difference is that |Wn| appears instead of

|Tn| and Ks instead of Kt. Thus, the details are omitted here.

We conclude the proof with three technical lemmas. The first is a version of

Lemma 1 in [21], App. C.
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Lemma 3. Under assumptions (A2), (A8), and (A9), the variance of

6=∑

u,v∈Xs∩Wn

I(‖u− v‖ 6 r)h(u, v)

|Wn|λs(u;β∗)λs(v;β∗)

is O(|Wn|
−1) for any bounded function h(u, v) symmetric in its arguments and for

any r > 0.

Under assumptions (A2), (A8), and (A10), the variance of

6=∑

t,s∈Xt∩Tn

I(|s− t| 6 τ)h(t, s)

|Tn|λt(t;β∗)λt(s;β∗)

is O(|Tn|
−1) for any bounded function h(t, s) symmetric in its arguments and for

any τ > 0.

P r o o f. The two parts of this lemma can be proved using the same arguments.

We focus here on the first part (spatial projection process).

Let ϕ(u, v) = I(‖u − v‖ 6 r)h(u, v)/{λs(u;β
∗)λs(v;β

∗)}. Assumption (A2) en-

sures that λs is bounded from below by a positive constant and hence ϕ is bounded

from above. Also, ϕ is a symmetric function. By the Campbell theorem, the variance

of the sum above is equal to

|Wn|
−2

∫

W 4
n

ϕ(u, v)ϕ(w, z)[λs,4(u, v, w, z)− λs,2(u, v)λs,2(w, z)] du dv dw dz

+ 4|Wn|
−2

∫

W 3
n

ϕ(u, v)ϕ(v, w)λs,3(u, v, w) du dv dw

+ 2|Wn|
−2

∫

W 2
n

ϕ(u, v)2λs,2(u, v) du dv.

It then follows by direct calculation that each of the three terms is O(|Wn|
−1). �

The second lemma is a generalized version of Lemma 2 in [21], App. C.

Lemma 4. Consider a sequence {β̆n}n>1 such that β̆n → β∗ in probability as

n → ∞. Under the assumptions of Theorem 1, sup
t∈[t0,t1]

|K̂t,n(t; β̆n)
c − Kt(t; ξ

∗)c| is

oP (1) for any 0 < t0 < t1 < ∞ and for any c ∈ R. If c > 0, we may take t0 = 0.

A similar statement holds also for sup
r∈[r0,r1]

|K̂s,n(r; β̆n)
c −Ks(r;ψ

∗)c|.

P r o o f. Let us first remark that the condition t0 > 0 if c < 0 is needed to avoid

division by 0, since K(0; ξ∗) = 0.
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Due to (A1) and (A2), the intensity function λt is bounded and continuous

as a function of β. Thus, it is possible to show the convergence K̂t,n(t; β̆n) −

K̂t,n(t;β
∗) → 0 in probability as n → ∞ for any t > 0. By Lemma 3 we get

K̂t,n(t;β
∗) → Kt(t; ξ

∗) in probability for any t > 0 and hence also K̂t,n(t; β̆n) →

Kt(t; ξ
∗) in probability as n → ∞ for any t > 0. Using monotonicity of K̂t,n(t; β̆n)

c

and Kt(t; ξ
∗)c as functions of t, the result follows by arguments similar to those in

the proof of the Glivenko-Cantelli theorem, see, e.g. [20], p. 266.

The same type of argument can be used to prove the second part of the lemma. �

Lemma 5. Under the conditions of Theorem 1, the following assertions hold:

(a) |Wn × Tn|
−1
Jn,11(β

∗)− In,11 → 0 in probability as n→ ∞,

(b) |Tn|
−1Jn,22(β̂n, ξ

∗)− I22 → 0 in probability as n→ ∞,

(c) |Wn|
−1
Jn,33(β̂n, ψ

∗)− I33 → 0 in probability as n→ ∞.

P r o o f. (a) By the Campbell theorem, |Wn × Tn|
−1
Jn,11(β

∗)−In,11 has mean 0.

Using assumptions (A2) and (A8), one can show that the variance of each element

of the matrix in question is O(|Wn × Tn|
−1). This implies the required convergence

in probability.

(b) Note that |Tn|
−1
Jn,22(β̂n, ξ

∗) = I22 − Vn, where

Vn = 2c2

∫ t1

t0

[K̂t,n(t; β̂n)
c2 −Kt(t; ξ

∗)c2 ]

× [(c2 − 1)Kt(t; ξ
∗)c2−2K

(1)
t (t; ξ∗)TK

(1)
t (t; ξ∗) +Kt(t; ξ

∗)c2−1K
(2)
t (t; ξ∗)] dt.

It is now sufficient to show that Vn → 0 in probability. Denote

sn(c) = sup
t∈[t0,t1]

|K̂t,n(t; β̂n)
c −Kt(t; ξ

∗)c|.

Then we can write (using any matrix norm)

‖Vn‖ 6 2c2sn(c2)

∫ t1

t0

‖(c2 − 1)Kt(t; ξ
∗)c2−2K

(1)
t (t; ξ∗)TK

(1)
t (t; ξ∗)

+Kt(t; ξ
∗)c2−1K

(2)
t (t; ξ∗)‖ dt 6 const. (t1 − t0)sn(c2),

since the integrand can be bounded from above by assumptions (A2), (A6), and

(A7). By Lemma 4, sn(c2) → 0 in probability and thus ‖Vn‖ → 0 in probability as

n→ ∞. This concludes the proof.

(c) The proof follows the arguments in (b), starting with |Wn|
−1
Jn,33(β̂n, ψ

∗) =

I33− Ṽn, where Ṽn is the remainder term, and finishing with the use of Lemma 4. �
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Appendix B. Proof of Theorem 4

The proofs of Theorems 2–4 follow the same lines of reasoning. Hence, we give

the details of the proof only for Theorem 4—it is more technically complicated than

the proof of Theorem 2 and essentially equivalent to the proof of Theorem 3. At the

same time it illustrates the necessity of using the central limit theorem for random

fields.

Consider the Taylor series expansion

(Un,1(β
∗), Un,3(β

∗, ψ∗)) = (Un,1(β̂n), Un,3(β̂n, ψ̂n))

+ {(β̂n, ψ̂n)− (β∗, ψ∗)}

(
Jn,11(β̃n) Jn,13(β̃n, ψ̃n)

0 Jn,33(β̃n, ψ̃n)

)
,

where (β̃n, ψ̃n) is between (β̂n, ψ̂n) and (β
∗, ψ∗). We focus on the second part of the

vector equation:

Un,3(β
∗, ψ∗) = Un,3(β̂n, ψ̂n) + (β̂n − β∗)Jn,13(β̃n, ψ̃n) + (ψ̂n − ψ∗)Jn,33(β̃n, ψ̃n).

We multiply both sides of the equation from the right by |Wn|
−1/2Σ̃

−1/2
n,33 and discuss

each term separately.

On the left-hand side, the term |Wn|
−1/2Un,3(β

∗, ψ∗)Σ̃
−1/2
n,33 depends only on the

true parameter values and we will show below that it has asymptotically a standard

normal distribution. Moving on to the right-hand side, |Wn|
−1/2Un,3(β̂n, ψ̂n)Σ̃

−1/2
n,33

equals 0 with probability tending to 1 by Theorem 1.

We rewrite the remaining terms as follows:

|Wn|
−1/2(β̂n − β∗)Jn,13(β̃n, ψ̃n)Σ̃

−1/2
n,33 = |Wn|

1/2(β̂n − β∗)
Jn,13(β̃n, ψ̃n)

|Wn|
Σ̃

−1/2
n,33 ,

|Wn|
−1/2(ψ̂n − ψ∗)Jn,33(β̃n, ψ̃n)Σ̃

−1/2
n,33 = |Wn|

1/2(ψ̂n − ψ∗)
Jn,33(β̃n, ψ̃n)

|Wn|
Σ̃

−1/2
n,33 .

Under the assumptions of the theorem, one can show that

⊲ |Wn|
1/2(β̂n − β∗) converges to 0 in probability, since |Wn × Tn|

1/2(β̂n − β∗) is

bounded in probability by Theorem 1;

⊲ |Wn|
−1Jn,13(β̃n, ψ̃n) − In,13 converges to 0 in probability, by using similar conti-

nuity arguments as in the proof of Theorem 1;

⊲ the elements of the matrix In,13 are bounded.

Also, by assumption (A4), Σ̃n,33 converges to a positive definite matrix Σ̃33. We con-

clude that the whole term |Wn|
1/2(β̂n−β

∗)Jn,13(β̃n, ψ̃n)|Wn|
−1

Σ̃
−1/2
n,33 converges to 0
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in probability as n → ∞. Hence, this term does not affect the limiting distribution

of |Wn|
1/2(ψ̂n − ψ∗).

The next step is to show that |Wn|
−1Jn,33(β̃n, ψ̃n)− I33 converges to 0 in proba-

bility. This can be done by showing that |Wn|
−1(Jn,33(β̃n, ψ̃n)− Jn,33(β

∗, ψ∗)) → 0

in probability by using continuity arguments similar to those used above for checking

condition (c) of Lemma 2, and then showing that |Wn|
−1Jn,33(β

∗, ψ∗)− I33 → 0 in

probability as n→ ∞, similarly to part (c) of Lemma 5.

It remains to show asymptotic normality for |Wn|
−1/2Un,3(β

∗, ψ∗)Σ̃
−1/2
n,33 . Consider

the approximation

|Wn|
−1/2Un,3(β

∗, ψ∗) = |Wn|
−1/2Ũn,3(β

∗, ψ∗) + |Wn|
−1/2Vn,3(β

∗, ψ∗),

where Ũn,3 is defined at the beginning of Section 6. Under the assumptions of the

theorem, it can be shown that |Wn|
−1/2Vn,3(β

∗, ψ∗) converges to 0 in probability

and hence the limiting distribution of |Wn|
−1/2Un,3(β

∗, ψ∗)Σ̃
−1/2
n,33 is the same as the

limiting distribution of |Wn|
−1/2Ũn,3(β

∗, ψ∗)Σ̃
−1/2
n,33 . We will focus on the latter.

Let h > 0 be as in assumption (D2) and define Aij = [ih, (i+1)h)× [jh, (j+1)h),

(i, j) ∈ Z
2. In Ũn,3(β

∗, ψ∗) we may replace K̂s,n(r;β
∗) by

1

|Wn|

∑

u∈Xs∩Wn

∑

v∈Xs

I(0 < ‖u− v‖ 6 r)

λs(u;β∗)λs(v;β∗)

and denote

Yij = 2c23
∑

u∈Xs∩Aij

∫ r1

r0

∑

v∈Xs

I(0 < ‖u− v‖ 6 r)

λs(u;β∗)λs(v;β∗)

×Ks(r;ψ
∗)2c3−2K(1)

s (r;ψ∗) dr − 2c23h
2

∫ r1

r0

Ks(r;ψ
∗)2c3−1K(1)

s (r;ψ∗) dr.

Then it can be shown that

|Wn|
−1/2Ũn,3(β

∗, ψ∗) = |Wn|
−1/2

∑

(i,j)∈Z2 : Aij⊆Wn

Yij + oP (1).

The remainder term corresponds to those Aij which hit the boundary of Wn. By

our assumption, the size of the boundary grows at a slower rate than the volume of

Wn. This is the key ingredient for showing that the remainder term is in fact oP (1),

i.e. converges to 0 in probability.

We aim at using the Cramér-Wold theorem. To do this, we take an arbitrary

non-zero vector y of the appropriate dimension and set

Zij = Yijy
T, σ2

n = |Wn|
−1 Var

( ∑

(i,j)∈Z2 : Aij⊆Wn

Zij

)
= yΣ̃n,33y

T + o(1).
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In this way we construct a random field {Zij} defined on the integer lattice Z
2.

We will show below that (σ2
n|Wn|)

−1/2
∑

(i,j)∈Z2 : Aij⊆Wn

Zij is asymptotically standard

normal. Together with (A4) this implies that |Wn|
−1/2

∑
(i,j)∈Z2 : Aij⊆Wn

Zij converges

in distribution to a normally distributed random variable with mean 0 and vari-

ance yΣ̃33y
T. Assumption (A4) and the Cramér-Wold theorem then imply that

|Wn|
−1/2Ũn,3(β

∗, ψ∗)Σ̃
−1/2
n,33 is asymptotically standard normal.

To show that (σ2
n|Wn|)

−1/2
∑

(i,j)∈Z2 : Aij⊆Wn

Zij is asymptotically standard normal we

use the classical central limit theorem for random fields on a lattice [8], Thm. 3.3.1,

with the additional assumption of uniform integrability, see also the discussion in

[11]. Namely, the following conditions must be satisfied for some δ > 0:

(a) lim inf σ2
n > 0,

(b) |Zij |
2+δ are uniformly integrable,

(c)
∞∑

m=1

mαF
s,2,∞(m)δ/(2+δ) <∞.

Condition (a) is fulfilled by assumption (A4) and condition (b) follows from the

moment assumption (C1). Finally, the mixing condition (c) is implied by (D2). This

completes the proof.
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