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Abstract. It is known that a local equatorial characterization of zonoids does not exist.
The question arises: Is there a subclass of zonoids admitting a local equatorial characteriza-
tion. In this article a sufficient condition is found for a centrally symmetric convex body to
be a zonoid. The condition has a local equatorial description. Using the condition one can
define a subclass of zonoids admitting a local equatorial characterization. It is also proved
that a convex body whose boundary is an ellipsoid belongs to the class.

Keywords: integral geometry; convex body; zonoid; support function

MSC 2010 : 53C45, 52A15, 53C65

1. Introduction

Zonotopes are convex bodies that are composed (in the sense of Minkowski addi-

tion) of line segments in Rn and so have a number of interesting symmetry properties.

Zonoids are limits of zonotopes in the Hausdorff metric. Zonoids form a particularly

important family of centrally symmetric convex bodies. Interest in zonoids arose

from surprising connection between zonoids and analysis (positive definite functions,

spherical Radon transforms), functional analysis (vector measures, subspaces of L1),

and stochastic and integral geometry (point processes, Crofton measures, stable laws)

(see [9]).

We denote by R
n (n > 2) the Euclidean n-dimensional space. Let Sn−1 be the

unit sphere in Rn centered at the origin of Rn and let λn−1 (λ1 ≡ λ) be the spherical

Lebesgue measure on S
n−1 (λk(S

k) = σk). Denote by Sω ⊂ S
2 the great circle with

pole at ω ∈ S
2.

The most useful analytic description of a convex body (nonempty compact convex

set) K ⊂ R
n is the support function. The support function H : R

n → (−∞,∞] of K
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is defined as

H(x) = sup
y∈K

〈y, x〉, x ∈ R
n.

Here and below 〈·, ·〉 denotes the Euclidean scalar product in R
n. The support

function of K is positively homogeneous and convex. From now on we consider the

support function H of a convex body as a function on the unit sphere Sn−1 (because

of the positive homogeneity of H , the values on S
n−1 determine H completely).

It is well known (see [4]) that a convex body K is determined uniquely by its

support function.

A convex body K is k-smooth if its support functionH belongs to Ck(Sn−1), where

C
k(Sn−1) denotes the space of k times continuously differentiable functions defined

on S
n−1.

The class of origin-symmetric convex bodies K in R
n symmetric with respect to

the origin will be denoted by Kn
0 (so called centred bodies).

It is known that (see [7]) the support function H of a sufficiently smooth origin-

symmetric convex body K ∈ Kn
0 has the following representation

(1.1) H(ξ) =

∫

Sn−1

|〈ξ,Ω〉|h(Ω)λn−1(dΩ), ξ ∈ S
n−1,

with an even continuous function h(·), not necessarily nonnegative, called the gen-
erating density of K. Such bodies (whose support functions have the integral repre-

sentation (1.1) with a signed even measure) are called generalized zonoids. If h is

a positive function on S
n−1, the centrally symmetric convex body K is a zonoid.

The problem of geometric characterization of zonoids was posed by W.Blaschke.

Later the problem was posed repeatedly (see [8] for the history of the problem).

W.Weil showed [10] that a local characterization of zonoids does not exist. Thus,

no characterization of zonoids that involves only arbitrarily small neighborhoods of

boundary points is possible. In 1977, W.Weil (see [10]) proposed the following con-

jecture about local equatorial characterization of zonoids. Let K ∈ Kn
0 be an origin-

symmetric convex body and assume that for any equator Sω, there exists a zonoid Zω

and a neighborhood Eω of Sω such that the boundaries of K and Zω coincide at all

points where the exterior unit vector belongs to Eω ; then K is a zonoid. Affirmative

answers for even dimensions were given independently by G.Panina [6] in 1988 and

P.Goodey and W.Weil [3] in 1993. Recently, in 2008 F. Nazarov, D.Ryabogin, and

A. Zvavitch (see [5]) showed that the answer to the conjecture in odd dimensions is

negative.

The following question arises: Is there a subclass of zonoids admitting a local

equatorial characterization?
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Our main results are the following. In this article we find a new representation for

the support function of a sufficiently smooth origin-symmetric convex body. Using

the representation we propose a sufficient condition for an origin-symmetric convex

body to be a zonoid. The condition has a local equatorial description. Using the

condition, one can define a subclass of zonoids admitting a local equatorial charac-

terization. It is also proved that a convex body whose surface is an ellipsoid belongs

to the class.

LetK be an origin-symmetric convex body in R3 with sufficiently smooth boundary

and with positive Gaussian curvature at every point of ∂K (to guarantee the existence

of the expressions appearing below).

We need some notations. For Ω,Φ ∈ S
2 (Ω 6= Φ), we denote by ω the unit vector

perpendicular to Ω and Φ in the direction given by the right-hand rule (the direction

of the cross product). Further, assuming that s(ω) is the point on ∂K, the outer

normal of which is ω, we denote by k1(ω), k2(ω) the principal normal curvatures of

∂K at s(ω) and let k(ω,Ω) be the normal curvature at s(ω) in the direction Ω.

Theorem 1.1. The support function H of a 2-smooth origin symmetric convex

body K ∈ K3
0 has the following representation

(1.2) H(ξ) =
1

4π
2

∫

S2

|〈ξ,Ω〉|
∫

Sξ

√
k1(ω)k2(ω)

k2(ω,Ω)
λ(dΦ)λ2(dΩ), ξ ∈ S

2,

where ω is the unit vector in the direction of the cross product of Ω and Φ.

Note that for any Ω ∈ S
2 the expression

(1.3) h(Ω, ξ) =

∫

Sξ

√
k1(ω)k2(ω)

k2(ω,Ω)
λ(dΦ)

has a local equatorial description. This means that for any Ω ∈ S
2 the expression

h(Ω, ξ) depends on boundary of K which consists of points where the exterior unit

vector belongs to a neighborhood of the equator SΩ, since for each Φ ∈ Sξ the unit

vector ω which is the direction of the cross product of Ω and Φ belongs to SΩ.

The last statement allows to propose a sufficient condition for a centrally symmetric

convex body to be a zonoid (see Theorem 4.1 below). Using the condition we define

a subclass of zonoids admitting a local equatorial characterization (see Definition 4.1

below).
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2. Preliminary results

We need more notations. Let K be an origin-symmetric convex body in R
3. For

ω, ξ ∈ S
2 we denote by (ξ̂, ω) the angle between ξ and ω, by e(ω, ξ) we denote the

plane containing the origin of R3 and the directions ω and ξ, ξ 6= ω. Denote by

K(ω, ξ) the projection of K onto e(ω, ξ) and let R(ω, ξ) be the curvature radius of

∂K(ω, ξ) at the point whose outer normal direction is ω. Since R(ω, ξ1) = R(ω, ξ2),

where ω, ξ1, ξ2 ∈ S
2 and ξ2 ∈ e(ω, ξ1), if necessary we will assume that ξ is orthogonal

to ω.

We need the following result from [2]: for any 2-smooth origin-symmetric convex

body K, ω ∈ S
2, and ψ ∈ Sω,

(2.1) R(ω, ψ) =
1

π

∫

Sω

cos2 (ψ − ν)

√
k1k2

k2(ω, ν)
λ(dν),

where ki, i = 1, 2 (k1 > k2) are the main normal curvatures of ∂K at the point

with normal ω and k(ω, ν) is the normal curvature at the same point in the direction

ν ∈ Sω. Here for a given reference direction on Sω each ν ∈ Sω determines an angle

which we also denote by ν.

We will also need the following result, which corresponds to Theorem 2 from [1]

with n = 3: The support function of a 2-smooth origin-symmetric convex body

K ∈ K3
0 has the following representation. For ξ ∈ S

2 (we choose ξ for the North

Pole)

(2.2) H(ξ) =
1

4π

∫

S2

R(ω, ξ)λ2(dω).

The last statement follows from the following result for planar convex figures: The

support function of a 2-smooth origin-symmetric convex figure K has the following

representation

(2.3) H(ξ) =
1

2

∫
π

0

R(ψ) sin(ξ̂, ψ) dψ, ξ ∈ S
1,

where R(ψ) is the radius of curvature of ∂K at the point with normal ψ. Any ψ ∈ S
1

determines an angle with respect to ξ which we also denote by ψ.
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3. Proof of Theorem 1.1

P r o o f. Applying Fubini’s theorem to (1.2), we obtain

(3.1) H(ξ) =
1

4π
2

∫

Sξ

∫

S2

|〈ξ,Ω〉|
√
k1(ω)k2(ω)

k2(ω,Ω)
λ2(dΩ)λ(dΦ).

For fixed Φ ∈ Sξ we use the usual spherical coordinates ν, u on S
2 for points Ω = (ν, u)

based on the choice of Φ as the North Pole and ξ as the reference direction (u = 0)

on the equator SΦ. We have

(3.2) H(ξ) =
1

4π
2

∫

Sξ

∫ 2π

0

∫
π/2

−π/2

|〈ξ,Ω〉|
√
k1(ω)k2(ω)

k2(ω, (ν, u))
cos ν dν du λ(dΦ).

Applying the spherical cosine rule for the right spherical triangle (the vertices of the

right spherical triangle are ξ, Ω and the direction (0, u)) we have

(3.3) |〈ξ,Ω〉| = |cosu||cos ν|.

Substituting the formula (3.3) into (3.2), we get

(3.4) H(ξ) =
1

4π
2

∫

Sξ

∫ 2π

0

|cosu|
∫

π/2

−π/2

cos2 ν

√
k1(ω)k2(ω)

k2(ω, (ν, u))
dν du λ(dΦ).

It follows from (2.1) that

(3.5)

∫
π/2

−π/2

cos2 ν

√
k1(ω)k2(ω)

k2(ω, (ν, u))
dν =

π

2
R(ω, (0, u)) =

π

2
R(ω, ξ).

Substituting (3.5) into (3.4), we get

(3.6) H(ξ) =
1

8π

∫

Sξ

∫ 2π

0

|cosu|R(ω, ξ) du λ(dΦ).

Taking into account the symmetry of K, we have

(3.7)

∫ 2π

0

|cosu|R(ω, ξ) du = 2

∫ 3π/2

π/2

|cosu|R(ω, ξ) du.

Assume that ω has the usual spherical coordinates (0, ψ) with respect to Φ as the

North Pole and ξ as the reference direction on SΦ. After a change of variable ψ =

u− π/2 in (3.7) and taking into account (2.2), we obtain

(3.8)

∫ 3π/2

π/2

|cosu|R(ω, ξ) du =

∫
π

0

R(ω, ξ) sinψ dψ = 2H(ξ),

since the values of the support functions in direction ξ are the same for K and the

projection of K onto the plane perpendicular to Φ. Substituting (3.8) and (3.7)

into (3.6), we obtain an identity and the Theorem 1 is proved. �
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4. A sufficient condition for a convex body to be a zonoid

Note that for any ξ ∈ S
2 the value H(ξ) does not depend on the values of the

inner integral of (1.2) for Ω perpendicular to ξ (see also (1.3)). Below we will assume

that ξ is not perpendicular to Ω.

Theorem 4.1. Let K be an origin-symmetric 2-smooth convex body in R
3.

If for any Ω ∈ S
2 the expression (see (1.2))

(4.1) h(Ω, ξ) =

∫

Sξ

√
k1(ω)k2(ω)

k2(ω,Ω)
λ(dΦ),

where ω is the unit vector in the direction of the cross product of Ω and Φ, does not

depend on ξ then K is a zonoid.

P r o o f. Let for any Ω ∈ S
2 the expression

(4.2) h(Ω, ξ) =

∫

Sξ

√
k1(ω)k2(ω)

k2(ω,Ω)
λ(dΦ) = h(Ω),

does not depend on ξ. It follows from Theorem 1.1 that (1.2) becomes (1.1). Hence,

the support function of K admits the zonoid representation (1.1) with positive gen-

erating density h(Ω) > 0. �

Note that the converse statement is not true, otherwise there would exist a local

equatorial characterization of zonoids which is not the case (see [5]).

We define the following subclass EZ of zonoids.

Definition 4.1. We say that a zonoid K ∈ K3
0 belongs to the subclass EZ if for

any Ω ∈ S
2 the expression

(4.3) h(Ω, ξ) =

∫

Sξ

√
k1(ω)k2(ω)

k2(ω,Ω)
λ(dΦ),

where ω is the unit vector in the direction of the cross product of Ω and Φ (see (1.3)),

does not depend on ξ ∈ S
2.

The condition (4.3) has a local equatorial description: for Ω ∈ S
2 it depends on

the boundary of K which consists of points where the exterior unit vector belongs to

a neighborhood of the equator SΩ.

Let a zonoid K ∈ K3
0 belong to the subclass EZ. Then h(Ω, ξ) = h(Ω), that has

a local equatorial description, becomes the generating density of K and determines K,
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since a zonoid is determined uniquely by its generating density. Thus the following

statement is valid.

The subclass EZ of zonoids has the local equatorial description (4.3).

Also it follows from Definition 4.1 that the following statement is valid.

Let K be an origin-symmetric 2-smooth convex body and assume that for any

equator SΩ (Ω ∈ S
2), there exists a ZΩ ∈ EZ and a neighborhood EΩ of SΩ such

that the boundaries of K and ZΩ coincide at all points where the exterior unit vector

belongs to EΩ. Then K ∈ EZ.

5. A representation equivalent to (1.2)

Now we are going to show that a convex body whose boundary is an ellipsoid

belongs to the subclass EZ. First we find a representation for the support function
of a smooth origin-symmetric convex body equivalent to (1.2). For a given Ω ∈ S

2

and a reference direction on SΩ ⊂ S
2 each Φ1 ∈ SΩ determines an angle which we

denote by φ1.

Theorem 5.1. The support function H(·) of a 2-smooth origin symmetric convex
body K ∈ K3

0 has the following representation. For ξ ∈ S
2,

(5.1) H(ξ) =
1

4π
2

∫

S2

|〈ξ,Ω〉|

×
∫

SΩ

√
k1(ω)k2(ω)

k2(ω,Ω)

|〈ξ,Ω〉|
cos2 φ1 + cos2 (ξ̂,Ω) sin2 φ1

λ(dΦ1)λ2(dΩ),

where ω is the unit vector in the direction of the cross product of Ω and Φ1. On SΩ

we choose the direction perpendicular to ξ for the reference direction.

P r o o f. We consider the following correspondence Φ → Φ1, where Φ1 ∈ SΩ,

Φ ∈ Sξ and the plane containing Φ and ξ is perpendicular to the plane containing

Φ1 and Ω. Using the rule for the right spherical triangle, we have

(5.2) cos(ξ̂,Ω) tanφ1 = tanφ,

and the corresponding Jacobian is

(5.3) J =
|〈ξ,Ω〉|

cos2φ1 + cos2 (ξ̂,Ω) sin2 φ1
.

After change of variables in (1.2) using (5.3), we obtain (5.1). �
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Also note that one can change the variables in (4.3)

(5.4) h(Ω, ξ) =

∫

Sξ

√
k1(ω)k2(ω)

k2(ω,Ω)
λ(dΦ)

=

∫

SΩ

√
k1(ω)k2(ω)

k2(ω,Ω)

|〈ξ,Ω〉|
cos2 φ1 + cos2 (ξ̂,Ω) sin2 φ1

λ(dΦ1).

6. A convex body whose boundary is an ellipsoid belongs

to the class EZ

Let K ∈ K3
0 be a convex body whose boundary is an ellipsoid with semi-principal

axes of length a, b, c. The standard equation of ∂K centered at the origin of a Carte-

sian coordinate system and aligned with the coordinate axes is

(6.1)
x2

a2
+
y2

b2
+
z2

c2
= 1.

Later for a fixed Ω ∈ S
2 we use the usual spherical coordinates ν, ϕ on S

2 based on

the choice of the z-axis direction as the zenith direction and the choice of the ξ axis

direction as the azimuth reference:

Ω = (sin ν cosϕ, sin ν sinϕ, cos ν).

Now for Φ1 ∈ SΩ determined by the angle φ1 (as the reference direction on SΩ we

choose the direction of the trace of the plane containing SΩ and the plane containing

the z-axis and Ω) we have

Φ1 = (− cosφ1 cos ν cosϕ+sinφ1 sinϕ,− cosφ1 cos ν sinϕ− sinφ1 cosϕ, cosφ1 sin ν).

For ω which is the unit vector in the direction of the cross product of Ω and Φ1 we

have

ω = (sinφ1 cos ν cosϕ+ cosφ1 sinϕ, sinφ1 cos ν sinϕ− cosφ1 cosϕ,− sinφ1 sin ν),

which coordinates we denote by ω = (n1, n2, n3).

Now we are going to calculate the expression (4.3) (see also (5.4)) for the el-

lipsoid ∂K. Let s(n1, n2, n3) be the point on ∂K, the outer normal of which is

ω = (n1, n2, n3). It is known that the Gauss curvature of the ellipsoid ∂K with the

semi-principal axes of length a, b, c at s(n1, n2, n3) is

(6.2) k1(ω)k2(ω) =
(n2

1a
2 + n2

2b
2 + n2

3c
2)2

a2b2c2
.
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One can calculate that the normal curvature in the direction Ω of the ellipsoid ∂K

with the semi-principal axes of length a, b, c at s(n1, n2, n3) ∈ ∂K is (note that Ω is

perpendicular to ω)

(6.3) k2(ω,Ω) = (n2

1a
2 + n2

2b
2 + n2

3c
2)

(
sin2 ν cos2 ϕ

a2
+

sin2 ν sin2 ϕ

b2
+

cos2 ν

c2

)2
.

Substituting (6.3) and (6.2) into (5.4), we get

(6.4) h(Ω, ξ) =

∫

SΩ

|〈ξ,Ω〉|(abc)−1

cos2 φ1 + cos2 (ξ̂,Ω) sin2 φ1

×
(
sin2 ν cos2 ϕ

a2
+

sin2 ν sin2 ϕ

b2
+

cos2 ν

c2

)−2

λ(dΦ1)

which does not depend on ξ since (we assume ξ is not perpendicular to Ω)

(6.5)

∫ 2π

0

|〈ξ,Ω〉|
cos2 φ1 + cos2 (ξ̂,Ω) sin2 φ1

dφ1 = 2π.

Thus we have proved that for the ellipsoid ∂K the expression h(Ω, ξ) (see (5.4)) does

not depend on the polar angle of ξ measured from Ω. It is clear that for the azimuth

angle of orthogonal projection of ξ on the reference plane that passes through the

origin and is orthogonal to Ω, measured from a fixed reference direction on that

plane, one can find

(6.6) h(Ω, ξ) =

∫

SΩ

|〈ξ,Ω〉|(abc)−1

cos2 (φ1 − φ0) + cos2 (ξ̂,Ω) sin2 (φ1 − φ0)

×
(
sin2 ν cos2 ϕ

a2
+

sin2 ν sin2 ϕ

b2
+

cos2 ν

c2

)−2

dΦ1

which does not depend on φ0. Thus a convex body K ∈ K3
0 whose boundary is an

ellipsoid belongs to the subclass EZ.
The following question is open: is there a zonoid whose boundary is not an ellipsoid

and which belongs to the class EZ?
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