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Abstract. First, we derive a representation formula for all cumulant density functions
in terms of the non-negative definite kernel function C(x, y) defining an α-determinantal
point process (DPP). Assuming absolute integrability of the function C0(x) = C(o, x), we
show that a stationary α-DPP with kernel function C0(x) is “strongly” Brillinger-mixing,
implying, among others, that its tail-σ-field is trivial. Second, we use this mixing property
to prove rates of normal convergence for shot-noise processes and sketch some applications
to statistical second-order analysis of α-DPPs.
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1. Introduction

In the last 15 years, determinantal and permanental point processes (DPPs and

PPPs, respectively, for short) have attracted increasing attention in pure and ap-

plied mathematics as well as of mathematical physics. The first steps to implement

this class of point processes were the description of finite random point patterns in

bounded subsets of a Euclidean space Rd of dimension d > 1 in terms of Janossy

densities, see Chapters 5.3 and 5.4 of the monograph [3], which also serves us as the

main reference on point process theory. A crucial step was done by Macchi [21] by

introducing DPPs and PPPs as mathematical models for configurations of fermions

and bosons, respectively. Regarding this physical background, DPPs/PPPs provide

models that can be used to describe point processes with repulsion/attraction forces

between the atoms. From this viewpoint, these PPs are the counterparts to Poisson
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processes which consist of non-interacting atoms. An embedding of DPPs and PPPs

into the theory of Gibbsian PPs can be found in [5].

Next, to avoid ambiguities, we introduce in a rigorous way some definitions and

basic notions from PP theory. For the definition of α-DPPs and an overview on the

state of art of the theory and the diverse applications of DPPs and PPPs we refer

the reader to Camilier & Decreusefond [2] and the list of references therein. The

main part of our paper is focused on stationary α-DPPs and is inspired by the recent

paper [18] and its extended arXiv versions.

Let [N,N ] denote the measurable space of all locally finite counting measures

on Rd (equipped with its σ-algebra Bd of Borel sets), where the σ-algebra N is gen-
erated by the family of sets {ψ ∈ N : ψ(B) = n} for n ∈ N∪{0} and B ∈ Bdb (= ring
of bounded sets in Bd). A PP on Rd is defined to be a measurable mapping Ψ from

a hypothetical probability space [Ω,F ,P] (it always exists!) into [N,N ]. Through-

out this paper we assume that Ψ is simple, i.e. P
(
Ψ({x}) 6 1 ∀x ∈ Rd

)
= 1. We

briefly write Ψ =
∑
i>1

δXi
∼ P with Dirac measure δx(B) = 1B(x) = 1 or 0, if x ∈ B

or x /∈ B, respectively. Here, the countable set {Xi : i > 1} of atoms of Ψ (hav-
ing multiplicity 1) can be considered as locally finite random closed (configuration)

in Rd and the probability measure P = P◦Ψ−1 induced by Ψ on [N,N ] is called the

distribution of Ψ. Thanks to the simplicity of Ψ, the distribution of Ψ is uniquely

determined by the void probabilities P(Ψ(C) = 0) for all compact C ⊂ Rd. Further,

let E and Var denote the expectation and variance, respectively, with respect to P.

If EΨk(B) <∞ for B ∈ Bdb , then there exist the locally finite k-th factorial moment
measure α(k) and the (signed) k-th factorial cumulant measure γ(k) on [Rdk,Bdk]
defined for any B1, . . . , Bk ∈ Bdb by

α(k)

( ką

j=1

Bj

)
:=

∫

N

∑ 6=

x1,...,xk

∈supp(ψ)

k∏

j=1

1Bj
(xj)P (dψ)

= (−1)k lim
z1,...,zk↓0

∂k

∂z1 . . . ∂zk
GP

[
1−

k∑

i=1

zi1Bi

]
,

and by

(1.1) γ(k)
( ką

j=1

Bj

)
:= (−1)k lim

z1,...,zk↓0

∂k

∂z1 . . . ∂zk
logGP

[
1−

k∑

i=1

zi1Bi

]
,

respectively, where the probability generating functional GP [f ] := E
(∏
i>1

f(Xi)
)
of

Ψ =
∑
i>1

δXi
is defined for any measurable f : Rd → [0, 1] such that supp(1−f) ∈ Bdb .
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For a stationary Poisson process with intensity λ it has the simple exponential

shape exp
{
λ
∫
Rd(f(x) − 1) dx

}
. Here and below,

∑ 6=
indicates summation over

tuples consisting of pairwise distinct elements. If α(k) is absolutely continuous

w.r.t. the Lebesgue measure on Bdk, the corresponding Radon-Nikodym den-
sity ̺(k) : Rdk → [0,∞] is called the k-th product density, k-th correlation func-

tion or k-point intensity. These names are motivated by the interpretation that

P(Ψ(dx1) = 1, . . ., Ψ(dxk) = 1) ≈ ̺(k)(x1, . . . , xk) dx1 . . . dxk. The existence

of the product densities ̺(1), . . . , ̺(k) implies the existence of a Lebesgue density

c(k) : Rdk → [−∞,∞] of γ(k) called the k-th cumulant density or the k-th truncated

correlation function. Since γ(k) is a signed measure, the function c(k) may take on

positive and negative values. The evaluation of the logarithmic derivatives in (1.1)

yields the formula (which goes back to the pioneering paper of Leonov & Shiryaev

[20], see also [3], pp. 147–148, or [10])

(1.2) c(k)(x1, . . . , xk) =

k∑

l=1

(−1)l−1(l − 1)!
∑

K1∪...∪Kl

={1,...,k}

l∏

j=1

̺(κj)(xkj ; kj ∈ Kj),

and by inverting the latter relation, we get that

(1.3) ̺(k)(x1, . . . , xk) =

k∑

l=1

∑

K1∪...∪Kl

={1,...,k}

l∏

j=1

c(κj)(xkj ; kj ∈ Kj),

where the sum
∑

K1∪...∪Kl={1,...,k}

is taken over all partitions of the set {1, . . . , k} into

l disjoint nonempty subsets Kj, and κj := #Kj denotes the cardinality of Kj .

If Ψ ∼ P is stationary with intensity λ = EΨ([0, 1]d) > 0, both the measures

α(k) and γ(k) are invariant on the product set
kŚ

j=1

Bj under diagonal shifts, which

allows to define implicitly the k-th reduced factorial moment measure α
(k)
red and the

k-th reduced factorial cumulant measure γ
(k)
red on [Rd(k−1),Bd(k−1)] by disintegration

w.r.t. the intensity measure λ|·|:

α(k)

( ką

j=1

Bj

)
= λ

∫

Bk

α
(k)
red

(k−1ą

j=1

(Bj − x)

)
dx

and

γ(k)
( ką

j=1

Bj

)
= λ

∫

Bk

γ
(k)
red

(k−1ą

j=1

(Bj − x)

)
dx,
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see [4], p. 238, for more details. If the k-th product density ̺(k)(x1, . . . , xk) ex-

ists then α
(k)
red and γ

(k)
red possesses the Lebesgue densities λ

−1̺(k)(x1, . . . , xk−1, o) and

λ−1c(k)(x1, . . . , xk−1, o), respectively.

The total variation measure |γ(k)red| is defined by |γ
(k)
red|(·) = (γ

(k)
red)

+(·) + (γ
(k)
red)

−(·),
where the measures (γ

(k)
red)

+ and (γ
(k)
red)

− are given by the Jordan decomposition

γ
(k)
red(·) = (γ

(k)
red)

+(·)− (γ
(k)
red)

−(·). The total variation of γ(k)red is defined by the (finite)

number ‖γ(k)red‖TV := |γ(k)red|(Rd(k−1)).

Definition 1. A stationary PP Ψ ∼ P with intensity λ > 0 such that

EΨk([0, 1]d) < ∞ for all k > 2 is said to be Brillinger-mixing if the total varia-

tion ‖γ(k)red‖TV is finite for all k > 2. In the case that the cumulant densities c(k) of

any order k > 2 exist; this means that, for all k > 2,

(1.4) ‖γ(k)red‖TV =
1

λ

∫

Rd(k−1)

|c(k)(x1, . . . , xk−1, o)| d(x1, . . . , xk−1) <∞,

see [15], [12], [9], [10]. Ψ ∼ P is called strongly Brillinger-mixing if ‖γ(k)red‖TV 6 akk!

for some a > 0 and all k > 2, see [8].

Finally, if the PP Ψ ∼ P is stationary and isotropic then its second-order prop-

erties are determined by the intensity λ > 0 and Ripley’s K-function K(r) :=

λ−1α
(2)
red(Bd(r)) with Bd(r) := {x ∈ Rd : ‖x‖ 6 r} or, if ̺(2) exists, by the pair

correlation function g : (0,∞) → [0,∞] defined by g(r) := λ−2̺(2)(x, o) for x ∈ Rd

with Euclidean norm ‖x‖ = r > 0. For non-isotropic PPs we suggest to consider

the multiparameter K-function K(r) := λ−1α
(2)
red(Bd(r)) with symmetric rectangles

Bd(r) =
dŚ

i=1

[−ri, ri] for r = (r1, . . . , rd) ∈ Rd+, see [7].

The remaining part of the paper is organized as follows. Section 2 summarizes the

essential properties of α-DPPs. Theorem 1 provides a comparatively simple repre-

sentation of the cumulant density function in terms of α and kernel C, which forms

the basis to prove the strong Brillinger-mixing property of stationary α-DPPs in

Section 3. An interesting application of this fact to (integrated) shot-noise processes

driven by stationary α-DPPs is formulated in Theorem 3. Section 4 contains further

applications of this mixing property to proving asymptotic Gaussianity of empirical

(reduced) moment measures (on large sampling windows) of stationary α-DPPs with

a special focus on the K-function, the second product density and the pair correla-

tion function. These results enable us, at least in principle, to construct asymptotic

goodness-of-fit tests to check hypotheses concerning the kernel function C0(x).
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2. Definition and properties of α-Determinantal Point Procesess

The definition of an α-DPP is based on three incredients: (i) an admissible real

parameter α > −1, (ii) a Radon measure ν on Bd which is chosen in this paper to
be the Lebesgue measure ν(·) = |·| and (iii) a (complex-valued) covariance function
C : Rd × Rd → C, that is, C is non-negative definite, i.e.

(2.1)

n∑

i,j=1

ziC(xi, xj)zj > 0 ∀x1, . . . , xn ∈ Rd, z1, . . . , zn ∈ C and n > 1.

This implies that C(x, x) > 0, C(x, y) = C(y, x) and |C(x, y)|2 6 C(x, x)C(y, y) for

x, y ∈ Rd.

Definition 2. A simple PP Ψα =
∑
i>1

δXi
∼ Pα on Rd is called α-determinantal

PP for an admissible α > −1 with covariance function C (α-DPP(C) for short) if

for all k > 1, the k-th product density ̺
(k)
α is given by

(2.2) ̺(k)α (x1, . . . , xk) =
∑

π∈P(1,...,k)

αk−n(π)
k∏

i=1

C(xi, xπ(i))

for all x1, . . . , xk ∈ Rd, where the sum is taken over the set P(1, . . . , k) of all per-

mutations of {1, . . . , k}, and n(π) is the number of cycles in the permutation π.
Here, a cycle in the permutation π ∈ P(1, . . . , k) is an ordered subset {i1, . . . , il} of
{1, . . . , k} that is cyclically permuted, i.e., π(i1) = i2, . . . , π(il−1) = il, π(il) = i1 if

the cycle length is l > 2, and π(i1) = i1 for l = 1. Note that any π ∈ P(1, . . . , k) has

a unique decomposition in n(π) pairwise disjoint cycles covering {1, . . . , k}, see [23],
Chapt. 6. The number sgn(π) := (−1)k−n(π) is called the sign of π.

Using the sign sgn(π) of a permutation π and the usual (Leibniz) definition of

a determinant, see e.g. [23], p. 221, we get from (2.2) the representations

(2.3) ̺
(k)
−1(x1, . . . , xk) = det

(
C(xi, xj)

)k
i,j=1

=

∣∣∣∣∣∣∣

C(x1, x1) ·· C(x1, xk)
... ··

...

C(xk, x1) ·· C(xk, xk)

∣∣∣∣∣∣∣

of any order k > 1 defining the determinantal PP with kernel function C (DPP(C)

for short). For α = 1, the corresponding PP with k-th product density

(2.4) ̺
(k)
1 (x1, . . . , xk) = per

(
C(xi, xj)

)k
i,j=1

:=
∑

π∈P(1,...,k)

k∏

i=1

C(xi, xπ(i))

for k > 1 is called the permanental PP with kernel function C (PPP(C) for short).
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Notice that a real parameter α is admissible if there exists a covariance function C

such that the functions ̺
(k)
α defined by (2.2) turn out to be product densities of

some PP Ψα ∼ Pα. For example, α < −1 is not admissible since ̺
(2)
α (x, y) =

α|C(x, y)|2 + C(x, x)C(y, y) takes on negative values on the diagonal. Notice that

it is still a nontrivial problem to determine the set of admissible parameters, see

e.g. [19], [24], [2]. To avoid technical problems, we assume throughout that the

covariance function C is continuous on (Rd)2. Below we will show that Ψ ∼ P (if

it exists) is uniquely determined by its factorial moments α(k)(Bk) =
∫
Bk ̺

(k)
α (x) dx

for all B ∈ Bdb and k > 1. In [2], the set of admissible parameters α ∈ {2/m : m ∈
N} ∪ {−1/m : m ∈ N} is discussed in connection with fractional powers −1/α of

certain Fredholm determinants expressing the Laplace functional GP [exp{−h}] of
α-DPPs for positive, compactly supported h on Rd. The best understood cases are

DPPs and PPPs, see e.g. [2] for details. The crucial role is played by the selfadjoint

integral operator (CDf)(·) =
∫
D
C(x, ·)f(x) dx mapping from L2(D) into L2(D),

which turns out to be a Hilbert-Schmidt operator for any compact D ⊂ Rd (locally

trace-class operator) with norm ‖CD‖2 :=
( ∫

D×D
|C(x, y)|2 d(x, y)

)1/2
. In particular,

a DPP(C), i.e. α = −1, with continuous C exists if and only if for each compact D,

all real, non-negative eigenvalues of CD belong to [0, 1], see [18]. For a stationary

DPP(C), this spectral condition can be expressed more explicitly, see Section 3.

Lemma 1. For an admissible α > −1 let Ψα ∼ Pα be an α-DPP(C) on Rd with

covariance function C such that ‖CB‖ :=
∫
B
C(x, x)dx < ∞ for B ∈ Bdb . Then for

any B ∈ Bdb there exists a number s = s(α,B,C) > 0 such that EesΨα(B) < ∞. In
other words, Ψα(B) possesses an exponential moment, which implies the uniqueness

of the distribution Pα.

P r o o f. We may assume the existence of at least one PP Ψα ∼ Pα with product

densities defined by (2.2) for a certain covariance function C. Let Bk denote the k-

fold cartesian product of B. Then α(k)(Bk) coincides with the k-th factorial moment

E
[
Ψα(B)(Ψα(B)− 1) . . . (Ψα(B)−k+1)

]
of Ψα(B). On the other hand, (2.2) yields

that

α(k)(Bk) =

∫

Bk

̺(k)α (x) dx

6 k!(α ∨ 1)k−1 max
π∈P(1,...,k)

∫

B

. . .

∫

B

k∏

i=1

|C(xi, xπ(i))| dx1 . . . dxk.

By the inequality |C(x, y)|2 6 C(x, x)C(y, y) with C(x, x) > 0 for all x ∈ Rd, it

follows that

k∏

i=1

|C(xi, xπ(i))| 6
k∏

i=1

C(xi, xi) for each π ∈ P(1, . . . , k).
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Hence, applying Fubini’s theorem leads to α(k)(Bk) 6 k!(α∨1)k−1‖CB‖k. Using the
factorial moment generating function of Ψα(B), we arrive at

E(1+s)Ψα(B) = 1+

∞∑

k=1

α(k)(Bk)
sk

k!
6

1

1− s‖CB‖(α ∨ 1)
for 0 6 s <

1

‖CB‖(α ∨ 1)
.

Finally, the elementary estimate es 6 1 + 2s for 0 6 s 6 2/3 yields

EesΨα(B)
6

1

1− ‖CB‖(α ∨ 1)
for 0 6 s <

2

3
∧ 1

2‖CB‖(α ∨ 1)
,

which completes the proof of Lemma 1. �

R em a r k 1. It should be mentioned that in the case of DPPs, uniqueness has

been stated in [24], Theorem 3, and the existence of exponential moments is shown

in [13], Lemma 4.2.6. Further, note that for a DPP(C) Ψ−1 the above bounds of

the factorial moments α(k)(Bk) can be improved. The positive definiteness of the

Hermitian matrix (C(xi, xj))
k
i,j=1 defining ̺

(k)
−1 in (2.3) allows to show, see [23], The-

orem 9.4.10, that ̺
(k)
−1(x1, . . . , xk) 6 ̺

(k−1)
−1 (x1, . . . , xk−1)C(xk, xk) 6

k∏
i=1

C(xi, xi),

which implies that α(k)
( kŚ

i=1

Bi

)
6

k∏
i=1

‖CBi
‖k for all k > 1 and B1, . . . , Bk ∈ Bdb .

Thus, Ψ−1 turns out to be a so-called sub-Poisson process with an entire factorial

moment generating function

MB(z) := E(1 + z)Ψ−1(B) = 1 +

∞∑

k=1

α(k)(Bk)
zk

k!
for z ∈ C, B ∈ Bdb

providing the void probabilities P(Ψ−1(B) = 0) =MB(−1) and the bound |MB(z)| 6
exp{|z|‖CB‖}.

The following result is crucial for proving the strong Brillinger-mixing property of

stationary α-DPPs in the next section.

Theorem 1. For any admissible α > −1 and k > 2, the k-th cumulant density

c
(k)
α (x1, . . . , xk) defined by (1.2) with product densities ̺

(1)
α , . . . , ̺

(k)
α given in (2.2)

can be expressed as

c(k)α (x1, . . . , xk)(2.5)

= αk−1
∑

π∈P({2,...,k})

C(x1, xπ(2))C(xπ(2), xπ(3)) . . . C(xπ(k), x1)

= αk−1
∑

π∈P({1,...,k}\{j})

C(xj , xπ(1)) . . . C(xπ(j−1), xπ(j+1)) . . . C(xπ(k), xj)(2.6)
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for any x1, . . . , xk ∈ Rd and j = 2, . . . , k, where the set P(k1, . . . , kl) contains all l!

permutations of the distinct numbers k1, . . . , kl. (In (2.6) set π(k+1) := k for j = k.)

P r o o f. For notational ease we put Cij = C(xi, xj) for x1, . . . , xk ∈ Rd. To

begin with we show that each summand on the r.h.s. of (2.5) occurs in the sum (2.6)

and vice versa. For fixed π ∈ P({2, . . . , k}) and j ∈ {2, . . . , k} there exists an
i ∈ {2, . . . , k} such that π(i) = j. This gives

C1π(2)Cπ(2)π(3) . . . Cπ(i−1)jCjπ(i+1) . . . Cπ(k)1

= Cjπ(i+1)Cπ(i+1)π(i+2) . . . Cπ(k)1C1π(2) . . . Cπ(i−2)π(i−1)Cπ(i−1)j .

Obviously, the numbers 1, π(2), . . . , π(i − 1), π(i + 1), . . . , π(k) form a permutation

of the set {1, . . . , k} \ {j}, confirming the first part. With the same argument it
follows that every summand in the sum (2.6) shows up on the r.h.s. of (2.5). The

representation (2.5) can be verified by induction on k > 2.

For k = 2 the formulae (1.2) and (2.2) combined with ̺
(1)
α (xi) = C(xi, xi) yield

(2.7) c(2)α (x1, x2) = ̺(2)α (x1, x2)− ̺(1)α (x1)̺
(1)
α (x2) = αC(x1, x2)C(x2, x1).

This coincides with (2.5) for k = 2. Together with the trivial relation c
(1)
α (x) =

C(x, x) we now assume the validity of (2.5) for cumulant densities c
(κ)
α of order

κ = 2, . . . , k − 1. For k > 3, an obvious rearrangement of (1.3) gives the relation

(2.8) c(k)α (x1, . . . , xk) = ̺(k)α (x1, . . . , xk)−
k∑

l=2

∑

K1∪...∪Kl

={1,...,k}

l∏

j=1

c(κj)
α (xkj ; kj ∈ Kj)

for any x1, . . . , xk ∈ Rd, where the sum on the r.h.s. and the κj ’s are the same as

in (1.3).

For j = 1, . . . , l, let Kj = {kj1, kj2, . . . , kjκj
} with kj1 < kj2 < . . . < kjκj

, and

πj ∈ P(Kj \ {kj1}) runs over all (κj − 1)! permutations of the set Kj \ {kj1} (which
is empty if κj = 1). If l > 2, the above assumption enables us to write

(2.9) c(κj)
α (xq ; q ∈ Kj)

= ακj−1
∑

πj∈P(Kj\{kj1})

Ckj1πj(kj2)Cπj(kj2)πj(kj3) . . . Cπj(kjκj
)kj1 ,

for j = 1, . . . , l. Here, the sum stretches over all cyclic permutations of the cycle

kj1, kj2, . . . , kjκj
of the length κj > 2 which begins and ends with the smallest

element kj1 and the remaining elements are permuted. Let us denote such cycle

by σ(kj1, kj2, . . . , kjκj
). We put c

(1)
α (xkj1 ) = Ckj1kj1 if κj = 1, in accordance with

a cycle of length 1.
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Next we make use of the fact that each permutation π ∈ P(1, . . . , k) can be written

in a unique way as a union of cyclic permutations of pairwise disjoint cycles (ordered

according to ascending smallest cycle elements). To obtain all π ∈ P(1, . . . , k) we de-

compose {1, . . . , k} into nonempty, pairwise disjoint sets K1, . . . ,Kl for l = 1, . . . , k,

and take the union of the k-tuples
l⋃

j=1

σ(kj1, πj(kj2), . . . , πj(kjκj
)) over all cyclic

permutations πj of the cycles Kj = {kj1, . . . , kjκj
} for j = 1, . . . , l. With the above

notation this can be formally expressed by

P(1, . . . , k) =
k⋃

l=1

⋃

K1∪...∪Kl

={1,...,k}

⋃

πj∈P(Kj\{kj1})
j=1,...,l

l⋃

j=1

σ(kj1, πj(kj2), . . . , πj(kjκj
)),

implying the following alternative representation of (1.3):

(2.10)

̺(k)α (x1, . . . , xk) =
∑

π∈P(1,...,k)

αk−n(π)
k∏

i=1

Ciπ(i)

=

k∑

l=1

∑

K1∪...∪Kl

={1,...,k}

αk−l
l∏

j=1

∑

πj∈P(Kj\{kj1})

Ckj1πj(kj2)Cπj(kj2)πj(kj3) . . . Cπj(kjκj
)kj1 .

Finally, inserting the latter expression of ̺
(k)
α (x1, . . . , xk) (with k − l =

l∑
j=1

(κj − 1))

and the formula (2.9) to the r.h.s. of (2.8), we recognize that c
(k)
α (x1, . . . , xk) is just

equal to the first summand (for l = 1) of (2.10), which coincides with (2.5). This

completes the proof of Theorem 1. �

R em a r k 2. Let C be a covariance function and m > 2 an integer such that

the DPP (Ψm)−1 with covariance function C/m exists. According to (2.5), its k-th

cumulant density (cm)
(k)
−1(x1, . . . , xk) satisfies the relation

m(cm)
(k)
−1(x1, . . . , xk)

=
(
− 1

m

)k−1 ∑

π∈P({2,...,k})

C(x1, xπ(2))C(xπ(2), xπ(3)) . . . C(xπ(k), x1)

for every k ∈ N. Obviously, the expression on the r.h.s. is exactly the k-th cumulant

density of an α-DPP(C) with α = −1/m. This PP can be obtained by superposition

of m independent copies of the DPP (Ψm)−1. An analogous construction holds for

α = 1/m using a PPP (Ψm)1 with covariance function C/m.
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3. Strong Brillinger-mixing property of stationary α-DPPs with

applications to shot-noise processes

An α-DPP(C) Ψα ∼ Pα (with an admissible α > −1 and covariance function C)

turns out to be (strictly) stationary if C(x, y) = C(o, y − x) = C0(y − x) for all

x, y ∈ Rd, where C0(x) is a complex-valued, non-negative-definite function on Rd,

i.e.
n∑

i,j=1

ziC0(xi − xj)zj > 0 for all x1, . . . , xn ∈ Rd, z1, . . . , zn ∈ C, and n > 1

implying that C0(o) > 0, C0(−x) = C0(x) and |C0(x)| 6 C0(o) for x ∈ Rd. Note

that the stationarity of Ψα ∼ Pα implies that |C(x, y)|2 = |C(o, y− x)|2, which does
not necessarily mean that C(x, y) = C(o, y − x), as the Ginibre kernel C(x, y) =

π
−2 exp{2xy− |x|2 − |y|2} (regarding x, y as complex numbers) reveals, see e.g. [13].
For stationary α-DPPs with covariance function C0(x) we write α-DPP(C0) for

short. We assume in addition that C0(x) is continuous at the origin o (and hence ev-

erywhere) such that C0(o) > 0 and ‖C0‖1 :=
∫
Rd |C0(x)| dx <∞ implying ‖C0‖22 :=∫

Rd |C0(x)|2 dx 6 C0(o)‖C0‖1.
Under these conditions, a famous result by Bochner & A.Ya. Khintchine, see [18]

for references, ensures that there exists a finite (spectral) measure µ on [Rd,Bd]
having even bounded, continuous and (square) integrable Lebesgue density ϕ on Rd

such that

C0(x) =

∫

Rd

e2πi〈x,y〉ϕ(y)dy and ϕ(y) =

∫

Rd

e−2πi〈x,y〉C0(x)dx,

where 〈·, ·〉 denotes the scalar product in Rd. These Fourier representations show

immediately that C0(o) =
∫
Rd ϕ(y)dy and sup

x∈Rd

ϕ(x) 6 ‖C0‖1. A remarkable result
proved in [18] for DPPs is as follows: Provided that the covariance function C0 is

continuous and square integrable on Rd, there exists a stationary DPP(C0) if the

corresponding spectral density ϕ satisfies the condition 0 6 ϕ(y) 6 1 for all y ∈ Rd.

A suitable way to find pairs (C0, ϕ) is to consider the characteristic function C0 of

a random vector having a bounded (symmetric or unimodal) probability density ϕ,

see e.g. [22].

We give two examples: Let S be a positive definite d× d matrix with det(S) > 0.

Gaussian distribution:

C0(x) = exp{−2π
2〈x, Sx〉}, ϕ(y) =

exp{− 1
2 〈y, S−1y〉}√

(2π)d det(S)
;

Cauchy distribution:

C0(x) = exp{−2π

√
〈x, Sx〉}, ϕ(y) =

Γ(12 (d+ 1))/π
d+1

det(S)(1 + 〈y, S−1y〉)(d+1)/2
.
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The conditions on det(S) to ensure the existence of a DPP(C0) can be easily

found. Each rotation-invariant characteristic function has a canonical Schoen-

berg representation which for d = 2 is as follows: C0(x) =
∫∞

0
J0(2π‖x‖t) dF (t)

with some distribution function F on [0,∞) and the Bessel function J0(y) =

2π
−1

∫ 1

0 cos(ys)/
√
1− s2 ds.

Next we give the second-order characteristics for a stationary α-DPP(C0) with

intensity λ = C0(o):

(i) (reduced) second product density ̺α(x):

(3.1) ̺α(x) := λ−1̺(2)α (x, o) = C0(o) + α
|C0(x)|2
C0(o)

> 0 for x ∈ Rd, α > −1,

(ii) pair correlation function gα(r): If the α-DPP(C0) is motion-invariant, i.e.

c(‖x‖) = C0(x) for some function c(·) on [0,∞), we define

(3.2) gα(r) := λ−2̺(2)α (x, o) = 1 + α
|c(r)|2
C0(o)2

> 0 for r = ‖x‖ > 0, α > −1.

(iii) Ripley’s and multiparameter K-function: K(r) := K(Bd(r)) and K(r) :=

K(Bd(r)), where

(3.3) K(B) := λ−1α
(2)
red(B)

= |B|+ α

C0(o)2

∫

B

|C0(x)|2 dx > 0 for B ∈ Bdb , α > −1.

Theorem 2. For an admissible α > −1, let Ψα ∼ Pα be a stationary α-DPP(C0)

defined by the product densities (2.2) with an absolutely integrable covariance func-

tion C0 and intensity λ = C0(o). Then Ψα ∼ Pα is strongly Brillinger-mixing.

More precisely, the corresponding total variations (1.4) expressed by the cumulant

densities (2.5) possess the bounds

(3.4) ‖γ(k)red‖TV 6
|α|k−1

C0(o)
(k− 1)!‖C0‖k−2

1 ‖C0‖22 6 (k− 1)!(|α|‖C0‖1)k−1 for k > 2.

P r o o f. From (2.6) with j = k, xk = o and C(x, y) = C0(y − x) we see that

c
(k)
α (x1, . . . , xk−1, o) takes on the form

αk−1
∑

π∈P({1,...,k−1})

C0(xπ(1))C0(xπ(2)−xπ(1)) . . . C0(xπ(k−1)−xπ(k−2))C0(−xπ(k−1)),
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whence together with |C0(x1)C0(−xk−1)| 6 1
2 |C0(x1)|2 + 1

2 |C0(xk−1)|2 and ‖C0‖22 6

λ‖C0‖1 it follows that

λ‖γ(k)red‖TV =

∫

(Rd)k−1

|c(k)α (x1, . . . , xk−1, o)| d(x1, . . . , xk−1)

6
1

2
|α|k−1(k − 1)!

∫

(Rd)k−1

(
|C0(x1)|2 + |C0(xk−1)|2

)

×
k−1∏

j=2

|C0(xj − xj−1)| d(x1, . . . , xk−1)

= |α|k−1(k − 1)!

∫

Rd

|C0(x)|2 dx
(∫

Rd

|C0(x)| dx
)k−2

6 λ(k − 1)!|α|k−1‖C0‖k−1
1 .

The last line is equivalent to the asserted estimate (3.4). Thus, Theorem 2 is proved.

�

Corollary 1. Under the assumptions of Theorem 2, the stationary α-DPP(C0)

Ψα ∼ Pα has a trivial tail-σ-algebra FΨα
∞ :=

⋂
r>0

FΨα
r , where FΨα

r := σ
(
{Ψα(B ∩

Bd(r)
c) = n} : n ∈ N, B ∈ Bdb

)
.

The proof of Corollary 1, which holds true for any strongly Brillinger-mixing PP,

can be found in [8].

To the best of the author’s knowledge, strongly Brillinger-mixing PPs (without

using this name) have been first considered in [12] in order to study rates of conver-

gence in the central limit theorem (CLT for short) for so-called shot-noise processes

driven by stationary independently marked Brillinger-mixing PPs on Rd.

Let Ψα =
∑
i>1

δXi
∼ Pα be a stationary α-DPP(C0) with intensity λ = C0(o)

satisfying the assumptions of Theorem 2. Further, let {Mi : i > 1} be a sequence
(independent of Ψα) on [Ω,F ,P] of independent copies of a generic (or typical)
random mark M0 taking values in a Polish mark space [M,M] having the mark

distribution Q onM. A shot-noise process (SNP for short) driven by the α-DPP(C0)

and a mark distribution Q with a measurable response function fn : Rd ×M → R1

is defined by the random sum

(3.5) S(fn,Ψα) :=
∑

i>1

fn(Xi,Mi) for n > 1.

Here, the markMi can be interpreted as a random effect, e.g. the strength of a shot,

connected by the response function fn with the location Xi. Formula (3.5) expresses

the total effect generated by the atoms Xi of Ψα in some window set Wn ⊂ Rd.
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For example, Mi could be the radius of a ball centered at Xi and fn(Xi,Mi) =

|(Xi + Bd(Mi)) ∩Wn|, where the sequence (Wn)n∈N consists of increasing, convex

and compact sets in Rd with inball radius r(Wn) −→
n→∞

∞, see, e.g. [7].
The cumulants Cumk(S(fn,Ψα)) := i−k lim

t→0
(dk/dtk) logE exp{itS(fn,Ψα)} of any

order k > 1 can be calculated by means of generalized versions of the Campbell

theorem, see [3], and expressed and estimated in terms of the cumulant densities

(2.5) (with C(xi, xj) replaced by C0(xj − xi)) and the moment quantities u
(n)
k (x) :=∫

M
fn(x,m)kQ(dm) and v

(n)
k (x) :=

∫
M
|fn(x,m)|kQ(dm) for k ∈ N.

For example, the mean E(S(fn,Ψα)) equals C0(o)
∫
Rd u

(n)
1 (x) dx and the variance

of (3.5) takes on the form

Var
(
S(fn,Ψα)

)
= C0(o)

∫

Rd

u
(n)
2 (x) dx + α

∫

(Rd)2
u
(n)
1 (x)u

(n)
1 (x+ y)|C0(y)|2 d(x, y).

Now we are able to formulate the results on rates of convergence in the CLT for

the standardized SNP Z(fn,Ψα) :=
(
S(fn,Ψα) − E(S(fn,Ψα))

)
/
√
Var(S(fn,Ψα))

driven by an α-DPP(C0).

Theorem 3. Let (An)n∈N be an unboundedly increasing sequence as n → ∞
such that for a, b > 0 and all k > 2,

(3.6) Var
(
S(fn,Ψα)

)
/An > a, sup

x∈Rd

v
(n)
k (x) 6 bkk!,

∫

Rd

v
(n)
k (x) dx 6 Anb

kk!.

Then

(3.7) sup
x∈Rd

|P(Z(fn,Ψα) 6 x)− Φ(x)
∣∣ 6 const(a, b, α, C0)A

−1/2
n ,

where Φ(x) := (2π)−1/2
∫ x
−∞ e−y

2/2 dy denotes the standard normal distribution

function. Further, large deviations relations in the sense of H.Cramér hold: There is

a positive constant ε depending on a, b, α, C0 such that in the interval 0 6 x 6 ε
√
An

the asymptotic relation

(3.8)
P(Z(fn,Ψα) > x)

1− Φ(x)
= exp

{ ∞∑

k=3

Λ
(n)
k xk

}(
1 +O

(1 + x√
An

))
as n→ ∞

holds, where the so-called Cramér series in the exponent converges absolutely for

x ∈ [0, ε
√
An] with coefficients Λ

(n)
k depending on the cumulants Cumj(Z(fn,Ψα)),

j = 3, . . . , k, see [12], p. 724 for an explicit formula. The corresponding relation is

also valid for the ratio P(Z(fn,Ψα) 6 −x)/Φ(−x).
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P r o o f. The proof of (3.7) and (3.8) is based on sharp bounds of the cumu-

lants Cumk(S(fn,Ψα)). To obain them we have only to mimic the proof of The-

orem 5 in [12]. From (3.6) we immediately find that aAn 6 Var(S(fn,Ψα)) 6

2b2(C0(o)+|α|‖C0‖22)An. Further, we find a constant B depending on a, b, α, C0 such

that |Cumk(S(fn,Ψα))| 6 AnB
kk! for k > 2, which implies |Cumk(Z(fn,Ψα))| 6

aB2k!/∆k−2
n with∆n = a

√
An/B. Now we are in a position to apply a famous lemma

due to Statulevičius, see [26], which provides the optimal Berry-Esseen bound (3.7)

as well as the large deviations relation (3.8) completing the proof of Theorem 3. �

Corollary 2. In the particular case of an unmarked stationary α-DPP(C0) satis-

fying assumptions of Theorem 2 with response function fn(x,m) = 1Wn
(x), assump-

tions (3.6) are fulfilled (due to (3.4)) for An = |Wn|. Hence, the Berry-Esseen bounds
(3.7) and (3.8) are valid for the total number of atoms S(fn,Ψα) = Ψα(Wn) in an

increasing domain Wn as defined above.

A similar result can be obtained for an integrated SNP

S(fn,Ψα) =

∫

Wn

∑

i>1

g(y −Xi,Mi) dy

with response function fn(x,m) =
∫
Wn

g(y − x,m) dy for some weight function g :

Rd ×M → R1 satisfying
∫
M

(∫
Rd |g(x,m)| dx

)k
Q(dm) 6 bkk! for k > 2.

4. Some applications to statistical second-order analysis of

stationary α-DPPs

At the beginning of this final section, we generalize a CLT proved in [7] for sta-

tionary Poisson processes on Rd with the aim to establish a goodness-of-fit tests

for the K-functions of stationary α-DPPs defined by (3.3). For this purpose, let

Ψα =
∑
i>1

δXi
∼ Pα be a stationary α-DPP(C0) with intensity λ = C0(o) satisfying

the assumptions of Theorem 2. We assume that Ψα can be observed in an expand-

ing observation window Wn as defined in Section 3. We introduce the empirical set

function

(4.1) (λ̂2K)n(B) :=
∑ 6=

i,j>1

1Wn
(Xi)1Wn

(Xj)1B(Xj −Xi)

|(Wn −Xi) ∩ (Wn −Xj)|
for B ∈ Bdb ∩ [−R,R]d,

where the sum
∑6= runs over pairwise distinct indices. It turns out that (4.1) is

an unbiased and strongly consistent estimator (since Ψα is ergodic thanks to Corol-

lary 1) for λ2K(B) := λα
(2)
red(B) = C0(o)

2|B|+α
∫
B
|C0(x)|2 dx, see (3.3). Estimators
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of this type are known as edge-corrected, Horvitz-Thompson or Ohser-Stoyan esti-

mators. For a detailed discussion of such estimators and K-functions we refer to the

monograph [14], Chapt. 4.3.

In what follows, we consider estimator (4.1) only on the family Bdsym(R) of centrally
symmetric sets B, i.e. B = −B contained in [−R,R]d, in particular d-balls Bd(r) for
r ∈ [0, R] and cuboids Bd(r) =

dŚ

i=1

= [−ri, ri] for r = (r1, . . . , rd) ∈ [0, R]d.

Furthermore, we formulate a multivariate CLT for the sequence random vectors

(Xn(B1), . . . , Xn(Bk)) for B1, . . . , Bk ∈ Bdsym(R), where

(4.2) Xn(Bi) =
√

|Wn|
(
(λ̂2K)n(Bi)− λ2K(Bi)

)
for i = 1, . . . , k.

Theorem 4. For an admissible α > −1, let Ψα =
∑
i>1

δXi
∼ Pα be a station-

ary α-DPP(C0) with intensity λ = C0(o) satisfying the assumptions of Theorem 2.

Then (Xn(B1), . . . , Xn(Bk)) converges in distribution to a mean zero Gaussian vec-

tor (X(B1), . . . , X(Bk)) with covariance matrix (E(X(Bi)X(Bj))
k
i,j=1, where for any

B,B′ ∈ Bdsym(R) we have

E(X(B)X(B′)) = 2λ2K(B ∩B′)

+ 4αλ

∫

B

∫

B′

(
|C0(x)|2 + |C0(y)|2 + |C0(x− y)|2

)
dxdy

+ 4αλ2|B||B′|
∫

Rd

|C0(u)|2du + 8α2

∫

B

∫

B′

Re
(
C0(x)C0(y)C0(x+ y)

)
dxdy

+ 4λ3|B ∩B′|+ 2α2

∫

B

∫

B′

∫

Rd

|C0(u)|2|C0(u+ x+ y)|2 du dxdy

+ 4α2λ

∫

B

∫

B′

∫

Rd

Re
(
C0(x)C0(u)C0(x+ u) + C0(y)C0(u)C0(y + u)

)
du dxdy

+ 4α3

∫

B

∫

B′

∫

Rd

Re
(
C0(x)C0(y)C0(u)C0(x+ y + u)

)
du dxdy

+ 2α3

∫

B

∫

B′

∫

Rd

Re
(
C0(u)C0(u+ x+ y)C0(u+ x)C0(u + y)

)
du dxdy.

The proof of Theorem 4 is based on the Brillinger-mixing property for α-DPP(C0)

and a CLT for empirical higher-order moment measures of stationary (not necessarily

strongly) Brillinger-mixing PPs first proved by E. Jolivet in [15], see also [16], [17]

for similar results. The covariance E(X(B)X(B′)) could be derived from a general

formula for the covariance of two second-order statistics in [6], p. 97. Theorem 4 can

be extended to a functional CLT for the random processes Yn(r) := Xn(Bd(r)) in the

Skorokhod space D[0, R]d of càdlàg functions on the cube [0, R]d. It is a hard and
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tedious work to verify the tightness conditions in detail but the continuity of C0(x)

on [0, R]d is indeed sufficient. The limiting Gaussian process Y (r) := X(Bd(r)) is

(P-a.s.) continuous with a covariance function γ(s, t) := E(Y (s)Y (t)) completely

determined by α and C0. A simulation of Y (r) on [0, R]d seems to be possible and

would provide the quantiles of sup- and L2-norms for testing the goodness-of-fit in

analogy to a Poisson process, see [7]. This could be a challenge for future research.

To conclude, we mention two possible goodness-of-fit tests for stationary (and

isotropic) α-DPPs(C0) Ψα =
∑
i>1

δXi
with intensity λ = C0(o) satisfying the assump-

tions of Theorem 2. For this purpose we define kernel-type estimators for λ̺α(x)

and λ2gα(r), see (3.1) and (3.2),

(λ̺̂α)n(x) :=
1

bdn

∑ 6=

i,j>1

1Wn
(Xi)1Wn

(Xj)Kd((Xj −Xi − x)/bn)

|(Wn −Xi) ∩ (Wn −Xj)|
, x 6= o,(4.3)

(λ̂2gα)n(r) :=
1

dωdbn

∑ 6=

i,j>1

1Wn
(Xi)1Wn

(Xj)K1((‖Xj −Xi‖ − r)/bn)

‖Xj −Xi‖d−1|(Wn −Xi) ∩ (Wn −Xj)|
, r > 0,(4.4)

where ωd := |Bd(1)|, Wn is expanding as defined in Section 3, Ks is a symmetric,

bounded and boundedly supported function such that
∫
Rs Ks(x)dx = 1, and bn ↓ 0

such that bsn|Wn| −→
n→∞

∞ for s = 1, d.

For Brillinger-mixing PPs, various CLTs have been proved in [9], [10] for both

the estimators (4.3) and (4.4). These results permit us to establish asymptotic χ2-

tests to check hypotheses about the second product densities and pair correlation

functions. In our situation, these tests can be reformulated for testing hypotheses

about the function |C0(x)| or its isotropic counterpart |c(r)| = |C0(x)| for r = ‖x‖.
The following limit theorem (formulated as Theorems 3.3 and 4.1 in [10] in a more

general setting) provide the basis for these tests.

Theorem 5. In addition to the above assumptions, let bd+2
n |Wn| −→

n→∞
0 and

let |C0(·)|2 be Lipschitz-continuous at x1, . . . , xq 6= o (xi 6= ±xj , i 6= j) and

in the isotropic case, let b3n|Wn| −→
n→∞

0 and let |c(·)|2 be Lipschitz-continuous at
r1, . . . , rq > 0 (ri 6= rj , i 6= j). Further, let ‖Ks‖22 =

∫
Rs K

2
s (x)dx for s = 1, d. Then

each of the test statistics

4bdn|Wn|
‖Kd‖22

q∑

i=1

(√
(λ̺̂α)n(xi)−

√
λ2 + α|C0(xi)|2

)2

and
2dωdbn|Wn|

‖K1‖22

q∑

i=1

rd−1
i

(√
(λ̂2gα)n(ri)−

√
λ2 + α|c(ri)|2

)2
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converges in distribution to a chi-square-distributed random variable χ2
q with q de-

grees of freedom. Furthermore, λ̂n := Ψα(Wn)/|Wn|P-a.s.−→
n→∞

λ = C0(o) (by Corollary 1)

and
√
|Wn|(λ̂n − C0(o)) is asymptotically normally distributed with mean zero and

variance σ2 = C0(o) + α
∫
Rd |C0(x)|2 dx (by Corollary 2), see also [25] for α = −1.

The variance σ2 can be consistently estimated, see [11], so that a hypothetical inten-

sity λ = C0(o) can be checked by an asymptotically standard normally distributed

test statistic.

A detailed proof of Theorem 5 is omitted. We only remark that the assumptions

of Theorem 5 imply all the conditions formulated in Theorems 3.3 and 4.1 in [10]. In

particular, condition γ(u,∞) can be easily verified (with arguments used in the proof

of Theorem 2) due to our assumption ‖C0‖1 < ∞. In [1], the weaker assumption
‖C0‖2 < ∞ is shown to be also sufficient to obtain asymptotic normality of (4.3)

and (4.4) at least in the special case of DPPs, however, under slightly different

conditions on bn and Wn.

R em a r k 3. The essential parts of this paper have been presented at the 18th

SGSIA-Workshop in Lingen, March 22–27, 2015. Meanwhile, the arXiv paper [1]

appeared, concerning the usual (not strong) Brillinger-mixing property of DPPs

(α = −1) with a variety of statistical applications. In contrast to paper [1] which

is focused on DDPs (α = −1) satisfying ‖C0‖2 < ∞, the present paper deals with
a larger class of α-DPPs (α > −1) under the stronger condition ‖C0‖1 < ∞. The
latter condition leads to stronger results with rates of convergence, see Theorem 3,

but on the other hand, it excludes some interesting covariance functions C0. In

summary, a precise comparison of both papers reveals that there is only a minor

overlap due to different methods, generality and aims. In conclusion, the two papers

supplement each other.

A c k n ow l e d g em e n t s. The author would like to thank the referees for their

critical remarks and helpful comments on the original manuscript, which led to an

improved version of the paper.
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