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Abstract. The pure and modified Bayesian methods are applied to the estimation of
parameters of the Neyman-Scott point process. Their performance is compared to the fast,
simulation-free methods via extensive simulation study. Our modified Bayesian method is
found to be on average 2.8 times more accurate than the fast methods in the relative mean
square errors of the point estimates, where the average is taken over all studied cases. The
pure Bayesian method is found to be approximately as good as the fast methods. These
methods are computationally affordable today.
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1. Introduction

The Neyman-Scott point process [12] is a statistical model which often serves in

practice as a model for spatially aggregated points, such as trees in a forest, fish in

a reservoir, etc. It represents a class of models which belongs to a wider class of

models called shot noise Cox processes defined, e.g., in [8]. Since the Neyman-Scott

point processes have been often used in practice, many methods were developed to

estimate their parameters. First, the minimum contrast methods [2], second, the

composite likelihood method [5], third, the Palm likelihood method [14]. These

simulation-free methods used to be preferred for their simplicity and speed. But

nowadays, with the growing speed of computers, it has become less time-consuming

to use methods based on the likelihood of the spatial point process. The Bayesian

method became especially popular in recent years, e.g. in works [9], [11], [10] and [6].

This work was funded by the Grant Agency of the Czech Republic (Project No. 16-
03708S).
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An extensive simulation study was conducted in [4] comparing all simulation-free,

faster-to-compute methods of estimating the parameters of the stationary Neyman-

Scott point process. The authors in [4] concluded that the minimum contrast method

using the pair correlation function g as a contrast function provides the best estimates

in the majority of their simulated cases. Also, this method is the most frequently

used method.

In the present paper, we follow the simulation study in [4] and we make an effort

to extend their comparison of the performance of estimation methods with the pure

Bayesian method. Since we have found surprising inaccuracy of the pure Bayesian

method when compared to the simulation-free methods, we slightly modified the

pure Bayesian method and compare the performance of this new, modified Bayesian

method with other methods.

In the next section we introduce briefly the Neyman-Scott point process and we

describe both Bayesian methods used in the study. Then we present the details of

the simulation study and its results. Finally, we summarize these results and discuss

the suitability of the Bayesian method for parameter estimation of the Cox process.

2. Neyman-Scott point process

The Neyman-Scott process X is a union of clusters
⋃

c∈C

Xc, where the mother

process C is a Poisson process of cluster centers with intensity κ > 0. Given C,

the clusters Xc, c ∈ C, are independent Poisson processes with an intensity function

αk(·− c, ω), where k(·, ω) is a probability density function parametrized by ω, which

determines the spread of daughter points around their mother and α is the expected

number of daughters per cluster. If the kernel k(·, ω) is the density of a symmetric

normal distribution with mean 0 and variance ω2 > 0, then the process is called

a modified Thomas process [13] with intensity λ = κα.

The Neyman-Scott point process can be seen also as a Cox process [13]. The

driving intensity function [7], p. 379, of the Cox process is then

λ̃(u) =
∑

c∈C

αk(u− c, ω).

A detailed introduction to the theory of point processes and Neyman-Scott pro-

cesses can be found for example in [7] or [13]. Two samples can be seen in Figure 1.

For the definition of the pair correlation function and K-function see [7], p. 214.
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Figure 1. Two samples of the Neyman-Scott process in unit windows with strong and weak
clustering in parameter settings α = 6, ω = 0.02, κ = 25 (left) and α = 4,
ω = 0.04, κ = 50 (right).

3. Bayesian methods

The pure Bayesian inference for stationary Neyman-Scott point processes is con-

sidered in [9], [6], and [10]. It is considered for non-stationary Neyman-Scott point

processes in [11]. This approach requires numerical computation of the likelihood

function in each step of the MCMC algorithm.

3.1. Pure Bayesian method. In the Bayesian approach for Neyman-Scott point

processes, the mother process of cluster centers C with intensity κ is considered an

unknown parameter along with the original parameters α, ω and κ of the Neyman-

Scott point process X to simplify the computations.

Let p(C|κ) denote the probability density of the point process C, in an observation

window W , under the knowledge of κ with respect to the homogeneous unit Poisson

point process. And let p(X |C,α, ω) denote the probability density of the point

process X with respect to the homogeneous unit Poisson point process in |W |, under

the knowledge of the point process C and all the parameters. Thus

p(X |C,α, ω) = exp

(

|W | −

∫

W

λ̃(u) du

)

∏

x∈X

λ̃(u),

where λ̃(u) = α
∑

c∈C

k(u − c, ω). The joint posterior distribution of the process C

and the parameters is then obtained from the probability density p(X |C,α, ω) of the

point process X , from the probability density p(C|κ) and from the prior probability

densities p(κ), p(α), and p(ω) in the form

p(C, κ, α, ω|X) ∝ p(X |C,α, ω)p(C|κ)p(κ)p(α)p(ω).
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Our MCMC simulation algorithm uses the Birth-Death-Move algorithm [8] for

updating C and the Metropolis-Hastings algorithm for updating parameters κ, α,

and ω in every step.

The Bayesian point estimates of κ, α, and ω are then the expected values of the

estimated posterior distribution.

3.2. Modified Bayesian method. Since the pure Bayesian method overesti-

mates the parameter κ (see Table 1), we modified the procedure by fixing the pa-

rameter κ. First, we estimated the intensity λ of point process X by the classical

estimator λ̂ = X(W )/|W |, where X(W ) denotes the number of points of X in W

and |W | denotes the area of W . Second, we updated α and ω in every step of the

MCMC chain. Finally, κ is calculated in every step by the formula κ = λ̂/α.

The joint posterior distribution of the process C is then

p(C,α, ω|X) ∝ p(X |C,α, ω)p(C|α)p(α)p(ω),

where p(C|α) denotes the probability density of the point process C under the knowl-

edge of α with respect to the homogeneous unit Poisson point process.

Three different samples of resultant various posterior distributions for the modified

Bayesian method from the simulated study are in Figure 2.

4. Simulation study

Our study compares the results of the two Bayesian methods mentioned above

with the results of the minimum contrast method based on the pair correlation func-

tion g. The latter method performed best in the simulation study in [4]. The authors

in [4] conducted a comparison of the performance of the minimum contrast estima-

tion based on the K-function and on the pair correlation function g, the composite

likelihood estimation in different settings, and the Palm likelihood estimation method

also with different choices of the tuning parameter.

They assessed the performance of the estimators in middle-sized to large point

patterns exhibiting different degrees of clustering. They estimated the parameters

of the Thomas process for eight different combinations of parameters using the three

moment estimation methods. They considered also the log-Gaussian Cox process.

The results are summarized in [3] in the tables of the relative mean biases and relative

mean squared errors (MSEs) of these methods.

The minimum contrast method using the pair correlation function g provides the

best estimates in the majority of cases in their study and it is also the most frequently

used method. To facilitate the comparison of the Bayesian methods, we chose the
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Figure 2. Examples of chosen posterior distributions from the simulation study calculated
by the modified Bayesian method for three different parameter combinations. The
true parameter values α, κ, ω of the first sample are 25, 4, 0.02 (left column),
25, 4, 0.04 for the second sample (middle column), and 50, 4, 0.04 for the third
sample (right column).

minimum contrast method based on the pair correlation function g as a benchmark.

Note that we follow [8] in the notation. I.e., the parameters α and ω correspond to

the parameters µ and σ in [4] and [3].

4.1. Tuning parameters of the Bayesian methods. Like other estimating

methods, the Bayesian method has some tuning parameters. Here it is especially the

choice of the priors and the standard deviation h of the Gaussian distributions which

suggest new parameter values when updating them inside the Metropolis-Hastings

algorithm.

Since the posterior distribution of a parameter is highly sensitive to its prior

distribution, we used the completely flat proper prior as in [9] (e.g., uniform prior on

a bounded interval) for all parameters, i.e., p(α) ∼ 1[0.03,20](α), p(ω) ∼ 1[0.001,0.2](ω)

and in the case of the pure Bayesian method p(κ) ∼ 1[1,300](κ) as well.

In order to compare the two Bayesian methods, we had to use the same proposal

variances for both of them. Proper values have to be chosen more carefully when

using flat priors instead of the usual vague or informative priors. Especially for the
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pure Bayesian method, it is important to maintain sufficient parameter mixing, i.e.,

to allow the model parameters to explore the whole domain of possible values. If the

proposal variances hκ and hα are too small, the algorithm becomes unstable and the

estimate of parameters can run into meaningless values as seen in Figure 3, where

the limited parameter changes defined by h in each individual step are not able to

reverse the wrong trend of estimation.
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Figure 3. Sample run of the pure Bayesian method MCMC algorithm with insufficient pa-
rameter mixing. The estimation of parameter κ rises disregarding the true value
of 25, while the estimation of parameter α = 4 decreases too much. For numerical
reasons the algorithm was stopped after 100,000 steps.

The proposal distributions were set to be symmetric normal distributions with

standard deviations hκ = 2.5, hα = 0.25, and hω = 0.005. Note that in using the

modified Bayesian method there were no problems for a large percentage of tested

settings that failed with the pure method. More effects of standard deviations on

the posterior distribution will be discussed in the conclusion.

Another tuning parameter is the length of the MCMC chain which is discarded

and the total length of the chain. Initially we discarded 50,000 of 150,000 steps, since

the MCMC chain appeared to be stationary then as seen in Figure 4. However, the

study results and the subsequent analysis of posteriors revealed that some “difficult”

parameter combinations (i.e., κ = 50, α = 4, and ω = 0.04) could yield even better

results if we extend the length of the MCMC chain. This may be indicated by com-

paring histograms in Figures 2 and 5. Finally, we set the total length of the MCMC

chain to 250,000 steps and the discard step to 100,000. The posterior characteristics

were calculated from every tenth step of the chain to avoid substantial dependencies.

4.2. Design. In our simulation study we generated 200 independent realizations

of the Thomas process in unit square observation windows for eight combinations of

parameter values identically as in [4]: κ = 25 or 50, α = 4 or 6 and ω = 0.02 or 0.04.

These different sets of parameters represent relatively strong and weak clustering.

The intensity of the process ranges from 100 to 300.

Realizations were simulated using the package spatstat for R (for reference see [1]).

Using the same package we re-estimated the parameters of all processes by the mini-
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Figure 4. Convergence of two runs of the Metropolis-Hastings algorithm on the selected
sample with different initial values of the parameters (α—left, ω—right). The
black starts at a very high value and the grey takes off with a too low value
relative to the equilibrium. The discard step is illustrated by a vertical dashedline.

mum contrast method using the pair correlation function g. Note that the results

are consistent with [4].

For each realization we also estimated the parameters by the pure Bayesian method

and the modified Bayesian method described above. The algorithm was implemented

in the software Mathematica 8, see [15].

4.3. Results. The results of the simulation study are presented in Table 1 and

Table 2. The tables show relative mean squared error and relative bias (rel. MSE

was obtained by dividing by the square of the true parameter value while the rel.

bias was obtained by dividing by the true parameter value). All the statistics were

obtained from the middle 95% of the estimated values as in [4].

The mean square error of the modified Bayesian method is smaller than the mean

square error of the simulation-free moment estimation. In our simulated cases, the

modified Bayesian method outperforms the moment method for all parameter combi-

nations. We have calculated from the result table that the modified Bayesian method

is on average 2.8 times more accurate than the minimum contrast estimation based

on the pair correlation function g if comparing mean square errors. Here the average

was calculated over all studied cases and over all estimated parameters. Specifically,

the result for parameter κ was 2.77 times more accurate, the result for α was 2.74

times more accurate and the result for ω was 3.02 times more accurate.

Considering the pure Bayesian method, it was less accurate than the modified

Bayesian method especially for parameter κ. Specifically, the result for parameter κ

of the modified Bayesian method was 12 times more accurate on average than the

result for the pure Bayesian method. This huge number was caused by two extreme

cases where α = 4 and ω = 0.04. The other parameters seem to be estimated with

similar precision.
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κ α ω MCEg Bpur Bmod

κ̂ 25 4 .02 .059 .048 .034

.04 .202 1.31 .060

6 .02 .073 .050 .033

.04 .177 .130 .057

50 4 .02 .069 .050 .024

.04 .198 3.23 .054

6 .02 .046 .023 .021

.04 .181 .497 .062

α̂ 25 4 .02 .040 .013 .013

.04 .124 .098 .074

6 .02 .044 .009 .010

.04 .095 .042 .049

50 4 .02 .046 .018 .016

.04 .112 .201 .105

6 .02 .037 .008 .007

.04 .106 .087 .053

ω̂ 25 4 .02 .015 .005 .005

.04 .039 .027 .019

6 .02 .014 .003 .003

.04 .033 .009 .010

50 4 .02 .016 .005 .005

.04 .040 .043 .024

6 .02 .012 .003 .003

.04 .032 .014 .010

Table 1. Summary of simulation results—relative mean square errors for the pure Bayesian
method (Bpur) and the modified Bayesian method (Bmod) estimation compared
with the minimum contrast estimation based on the pair correlation function g

(MCEg).

The comparison of biases is shown in Table 2. The table shows significant positive

bias of the estimates of κ both for the pure Bayesian method and for the minimum

contrast method.

Finally, we also observed correlations between estimated parameters and we have

found that α and κ are usually strongly negatively correlated for both pure and

modified Bayesian method, whereas the parameters α and ω are usually positively

correlated. The parameters ω and κ show only weak negative correlation. The size

of the correlation is slightly smaller for the modified Bayesian method.
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κ α ω MCEg Bpur Bmod

κ̂ 25 4 .02 .070 .113 −.003

.04 .175 .492 −.028

6 .02 .060 .121 .020

.04 .163 .204 −.009

50 4 .02 .072 .140 .012

.04 .222 1.22 −.015

6 .02 .004 .045 −.044

.04 .194 .471 .011

α̂ 25 4 .02 −.023 .007 .029

.04 −.070 −.078 .125

6 .02 −.013 .013 .026

.04 −.084 −.028 .072

50 4 .02 −.039 −.011 .036

.04 −.085 −.282 .167

6 .02 −.004 .003 .029

.04 −.103 −.168 .071

ω̂ 25 4 .02 −.060 .008 .017

.04 −.099 −.049 .054

6 .02 −.057 −.003 .001

.04 −.081 −.004 .036

50 4 .02 −.066 −.008 .015

.04 −.098 −.122 .074

6 .02 −.054 −.005 .003

.04 −.087 −.056 .034

Table 2. Summary of simulation results—the relative bias of the estimates for the pure
Bayesian method (Bpur) and the modified Bayesian method (Bmod) estimation
compared with the minimum contrast estimation based on the pair correlation
function g (MCEg).

5. Discussion and conclusion

In this paper we described two Bayesian methods for parameter estimation of the

Neyman-Scott point process and we made a comparative study of their results with

the results of the minimum contrast estimation method based on the pair correlation

function g.

The extensive simulation study shows that the pure Bayesian method is on average

more precise (comparing mean square errors) than the simulation-free methods but

in some cases it is much worse. On the other hand, it was shown that the introduced

modified Bayesian method produces much more accurate results than other methods.
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It improves the estimation of all parameters compared to the minimum contrast

method, but it only improves the estimation of parameter κ compared to the pure

Bayesian method.

Both methods are easily applicable for more general processes such as for the

inhomogeneous [11] and shot noise Cox processes. Also it is possible to use the

Bayesian estimation method for the log-Gaussian Cox processes [8], p. 200. Since

the pure Bayesian method was the core procedure of the methods described in works

[6] and [10], it would improve these methods if the modified Bayesian method was

used.

The main advantages of the Bayesian methods include the fact that the posterior

distribution is calculated together with the point estimates of the parameters and

they are more precise than simulation-free methods. Furthermore, modifying the

pure Bayesian method brings benefits to tuning the algorithm. It is more stable

than the pure Bayesian method when choosing prior distributions and variances.

Subsequent analysis of posteriors indicates that there were no significant differ-

ences in the variance of the posterior distribution between the two methods, except

for the parameter κ which the pure method is unable to deal with satisfactorily. No

significant differences were detected when increasing the standard deviation h of each

step. The analysis considered long chains of 500,000 steps. The comparison on one

sample is in Figure 5.
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Figure 5. Posterior probability density histograms with the mean values and standard devi-
ations of the pure method (first row) and the modified Bayesian method (second
row) applied to the same sample.

Nevertheless, this approach is time-consuming. All the simulations were run on

a computer with Intel Core i5 3.20 GHz. The average time of estimating a process

ranges from 1 to 5 hours depending on the number of points and the type of the
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process. It is assumed that the total time required for estimation would be greatly

reduced by implementing algorithms in C++.

We find interesting the problem of the inaccuracy of the pure Bayesian method

and its improvement with the elimination of the estimation of the parameter κ in

the algorithm. We explain this by the fact that the likelihood cannot easily identify

a combination of the parameters α and κ, but it can easily identify one parameter

when α·κ is fixed. Further, the estimate of α·κ used in the modified Bayesian method

seems to be more efficient than the procedure contained in the pure Bayesian method.

A c k n ow l e d g em e n t. We would like to thank Anonymous Referee for useful

comments and detailed corrections, which we found very constructive and helpful to

improve the quality of our paper.
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