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Abstract

In this paper, we establish sufficient conditions for the existence of so-
lutions for nonlinear Hadamard-type implicit fractional differential equa-
tions with finite delay. The proof of the main results is based on the
measure of noncompactness and the Darbo’s and Mönch’s fixed point
theorems. An example is included to show the applicability of our results.
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1 Introduction

Fractional calculus has evolved into an important and interesting field of re-
search in view of its numerous applications in technical and applied sciences.
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The mathematical modeling of many real world phenomena based on fractional-
order operators is regarded as relevant and different than the one depending on
integer-order operators. In particular, fractional calculus has played a signifi-
cant role in the recent development of special functions and integral transforms,
signal processing, control theory, bioengineering and biomedical, viscoelasticity,
finance, stochastic processes, wave and diffusion phenomena, plasma physics,
social sciences, etc. For further details and applications, see the monographs
[1, 2, 8, 17, 22, 24]. Fractional differential equations involving Riemann–Liouville
and Caputo type fractional derivatives have extensively been studied by many
researchers such as, for example, in [11, 12, 21]. However, the literature on
Hadamard type fractional differential equations is not enriched yet. The frac-
tional derivative due to Hadamard, introduced in 1892 ([16]), differs from the
aforementioned derivatives in the sense that the kernel of the integral in the
definition of Hadamard derivative contains logarithmic function of arbitrary ex-
ponent. A detailed description of Hadamard fractional derivative and integral
and their applications to differential equations can be found in [4, 5, 13, 17, 18].
For some recent work on the topic, we refer to [23, 26] and the references cited
therein.
In this paper, we establish existence, uniqueness results to the following

nonlinear implicit fractional differential equation with finite delay

Dνy(t) = f(t, yt, D
νy(t)), for each t ∈ J = [1, T ], 0 < ν ≤ 1, (1)

y(t) = ϕ(t), t ∈ [1− r, 1], r > 0, (2)

where Dν is the Hadamard fractional derivative, (E, ‖ · ‖) is a real Banach
space, f : J × C([−r, 0], E) × E → E is a given function, ϕ ∈ C([1 − r, 1], E)
with ϕ(1) = 0. For each function yt defined on [1− r, T ] and for any t ∈ J , we
denote by yt the element of C([−r, 0], E) defined by:

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

yt(.) represents the history of the state from time t− r up to time t.
The rest of this paper is organized as follows. In Section 2, we give some

notations and recall some preliminaries about fractional calculus and the Ku-
ratowski’s measure of noncompactness and auxiliary results. In Section 3, two
results are discussed; the first one is based on Darbo’s fixed point theorem
combined with the technique of measures of noncompactness, the second one
is based on Mönch’s fixed point theorem. In the last section, we present an
example illustrating the presented main results.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper.
Let (E, ‖·‖) be a Banach space. We denote by C(J,E) the space of E-valued

continuous functions on J with the usual supremum norm

‖y‖∞ = sup{‖y(t)‖ : t ∈ J} for any y ∈ C(J,E).
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Also C([−r, 0], E) is endowed with the norm

‖y‖C = sup{‖ϕ(θ)‖ : −r ≤ θ ≤ 0}.

A measurable function y : J → E is Bochner integrable if and only if ‖y‖ is
Lebesgue integrable.
Let L1(J,E) denote the Banach space of measurable functions y : J → E

which are Bochner integrable normed by

‖y‖L1 =

∫ T

1

‖y(t)‖ dt.

For properties of the Bochner integrable, see [25].

Definition 2.1 ([17]) The Hadamard fractional (arbitrary) order integral of
the function h ∈ L1(J,E) of order ν ∈ R+ is defined by

Iνh(t) =
1

Γ(ν)

∫ t

1

(
log

t

s

)ν−1
h(s)

s
ds,

where Γ is the Euler gamma function defined by

Γ(ν) =

∫ ∞

0

tν−1e−t dt, ν > 0

and log(·) = loge(·).

Definition 2.2 ([17]) For a function h : [1,∞) → E, the Hadamard fractional-
order derivative of order ν of h, is defined by

Dνh(t) =
1

Γ(n− ν)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−ν−1
h(s)

s
ds,

where n = [ν] + 1 and [ν] denotes the integer part of the real number ν.

Corollary 2.3 ([17]) Let ν > 0 and n = [ν] + 1. The equality Dνh(t) = 0 is
valid if and only if

h(t) =
n∑
j=1

cj (log t)
ν−j for each t ∈ J,

where cj ∈ R (j = 1, . . . , n) are arbitrary constants.
In particular, when 0 < ν ≤ 1, the relation Dνh(t) = 0 holds if, and only if

h(t) = c(log t)ν−1 for any c ∈ R.

Moreover, for a given set V of functions v : J → E let us denote by

V (t) = {v(t), v ∈ V }, t ∈ J
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and
V (J) = {v(t) : v ∈ V, t ∈ J}.

Next we give the definition of the concept of a measure of noncompactness
and some auxiliary result; see for more details [6, 9, 10] and the references
therein.

Definition 2.4 ([9]) Let E be a Banach space and ΩE the bounded subsets
of E. The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞]
defined by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE ,

where diam(Bi) = sup{||x− y|| : x, y ∈ Bi}.

The Kuratowski measure of noncompactness satisfies the following proper-
ties.

Lemma 2.5 ([6, 9, 10]) Let A and B bounded sets.

(a) α(B) = 0 ⇔ B is compact (B is relatively compact), where B denotes the
closure of B.

(b) nonsingularity: α is equal to zero on every one element-set.

(c) α(B) = α(B) = α(convB), where convB is the convex hull of B.

(d) monotonicity: A ⊂ B ⇒ α(A) ≤ α(B).

(e) algebraic semi-additivity: α(A+B) ≤ α(A) + α(B), where

A+B = {x+ y : x ∈ A, y ∈ B}.

(f) semi-homogencity: α(λB) = |λ|α(B); λ ∈ R, where λB = {λx : x ∈ B}.
(g) semi-additivity: α(A ∪B) = max{α(A), α(B)}.
(h) invariance under translations: α(B + x0) = α(B) for any x0 ∈ E.

For our purpose we will only need the followings fixed point theorems, and
the important Lemma.

Theorem 2.6 (Darbo’s Fixed Point Theorem) ([14]) Let X be a Banach
space and C be a bounded, closed, convex and nonempty subset of X. Suppose
a continuous mapping N : C → C is such that for all closed subsets D of C,

α(N(D)) ≤ kα(D), (3)

where 0 ≤ k < 1. Then N has a fixed point in C.

Remark 2.7 Mappings satisfying the Darbo-condition (3) have subsequently
been called k-set contractions.
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Theorem 2.8 (Mönch’s Fixed Point Theorem) ([3, 20]) Let D be a bound-
ed, closed and convex subset of a Banach space such that 0 ∈ D, and let N be
a continuous mapping of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.

Lemma 2.9 ([15]) If V ⊂ C(J,E) is a bounded and equicontinuous set, then

(i) the function t→ α(V (t)) is continuous on J , and

αc(V ) = sup
1≤t≤T

α(V (t)).

(ii)

α

(∫ T

1

x(s) ds : x ∈ V

)
≤
∫ T

1

α(V (s)) ds,

where V (s) = {x(s) : x ∈ V }, s ∈ J .

Theorem 2.10 (Ascoli–Arzela) ([14]) Let A ⊂ C(J,E), A is relatively com-
pact (i.e. A is compact) if:

1. A is uniformly bounded i.e., there exists M > 0 such that

‖f(t)‖ < M for every f ∈ A and t ∈ J.

2. A is equicontinuous i.e., for every ε > 0, there exists δ > 0 such that for
each t, t ∈ J,

∣∣t− t
∣∣ ≤ δ implies ‖f(t)− f(t)‖ ≤ ε, for every f ∈ A.

3. The set {f(t) : f ∈ A; t ∈ J} is relatively compact in E.

Lemma 2.11 ([19]) Let υ : [1, T ] −→ [0,+∞) be a real function and ω(·) is a
nonnegative, locally integrable function on [1, T ] and there are constants a > 0
and 0 < α ≤ 1 such that

υ (t) ≤ ω (t) + a

∫ t

1

(
log

t

s

)α−1
υ(s)

s
ds,

then

υ (t) ≤ ω (t) + a

∫ t

1

(
log

t

s

)α−1
ω(s)

s
ds, for every t ∈ [1, T ] .
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3 Existence of solutions

Let us defining what we mean by a solution of problem (1)–(2).

Definition 3.1 A function y ∈ C([1− r, T ], E), is said to be a solution of (1)–
(2) if y satisfies the equation Dνy(t) = f(t, yt, D

νy(t)) on J, and the condition
y(t) = ϕ(t) on [1− r, 1].

To prove the existence of solutions to (1)–(2), we need the following auxiliary
Lemma.

Lemma 3.2 Let 0 < ν ≤ 1 and let σ : J → E be a continuous function. The
linear problem

Dνy(t) = σ(t), t ∈ J, (4)

y(t) = ϕ(t), t ∈ [1− r, 1], (5)

has a unique solution which is given by:

y(t) =

⎧⎪⎪⎨⎪⎪⎩
1

Γ(ν)

∫ t

1

(
log

t

s

)ν−1
σ(s)

s
ds, if t ∈ J

ϕ(t), if t ∈ [1− r, 1].

(6)

First we list the following hypotheses:

(H1) The function f : J × C([−r, 0], E)× E → E is continuous.

(H2) There exist constants K > 0 and 0 < L < 1 such that

||f(t, u, v)− f(t, ū, v̄)|| ≤ K||u− ū||C + L||v − v̄||

for any u, ū ∈ C([−r, 0], E), v, v̄ ∈ E and t ∈ J.

We are now in a position to state and prove our existence result for the problem
(1)–(2) based on concept of measures of noncompactness and Darbo’s fixed
point theorem.

Remark 3.3 ([7]) The condition (H2) is equivalent to the inequality

α
(
f(t, B1, B2)

)
≤ Kα(B1) + Lα(B2),

for any bounded sets B1 ⊆ C([−r, 0], E), B2 ⊆ E, for each t ∈ J.

Theorem 3.4 Assume (H1)–(H2) hold. If

K (log T )
ν

(1− L)Γ(ν + 1)
< 1 (7)

then the IVP (1)–(2) has at least one solution on J .
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Proof Transform the problem (1)-(2) into a fixed point problem. Consider
the operator N : C([1− r, T ], E) → C([1− r, T ], E) defined by

Ny(t) =

⎧⎪⎨⎪⎩
1

Γ(ν)

∫ t

1

(
log

t

s

)ν−1

g(s)
ds

s
, t ∈ [1, T ]

ϕ(t), t ∈ [1− r, 1],

(8)

where g ∈ C(J,E) be such that

g(t) = f(t, yt, g(t)).

Clearly, the fixed points of operator N are solutions of problem (1)–(2). We
shall show that N satisfies the assumption of Darbo’s fixed point Theorem.
The proof will be given in several claims.

Claim 1: N is continuous.
Let {un} be a sequence such that un → u in C([1− r, T ], E). If t ∈ [1− r, 1],

then
‖N(un)(t)−N(u)(t)‖ = 0.

For t ∈ J, we have

‖N(un)(t)−N(u)(t)‖ ≤ 1

Γ(ν)

∫ t

1

(
log

t

s

)ν−1

‖gn(s)− g(s)‖ds
s
, (9)

where gn, g ∈ C(J,E) such that

gn(t) = f(t, unt, gn(t)), and g(t) = f(t, ut, g(t)).

By (H2), we have

‖gn(t)− g(t)‖ = ‖f(t, unt, gn(t))− f(t, ut, g(t))‖
≤ K‖unt − ut‖C + L‖gn(t)− g(t)‖.

Then

‖gn(t)− g(t)‖ ≤ K

1− L
‖unt − ut‖C .

Since un → u, then we get gn(t) → g(t) as n→ ∞ for each t ∈ J . And let η > 0
be such that, for each t ∈ J , we have ‖gn(t)‖ ≤ η and ‖g(t)‖ ≤ η. Then, we
have

1

s

(
log

t

s

)ν−1

‖gn(s)− g(s)‖ ≤ 1

s

(
log

t

s

)ν−1

[‖gn(s)‖+ ‖g(s)‖] ≤ 2η

s

(
log

t

s

)ν−1

.

For each t ∈ J , the function s → 2η
s

(
log t

s

)ν−1
is integrable on [1, t], then the

Lebesgue Dominated Convergence Theorem and (9) imply that

‖N(un)(t)−N(u)(t)‖ → 0 as n→ ∞,
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and hence
‖N(un)−N(u)‖[1−r,T ] → 0 as n→ ∞.

Consequently, N is continuous.
Let the constant R such that:

R ≥ max

{
f∗ (log T )ν

(1− L)Γ(ν + 1)−K (log T )
ν , ‖ϕ‖C

}
(10)

where f∗ = supt∈J ‖f(t, 0, 0)‖.
Define

DR = {u ∈ C([1− r, T ], E) : ‖u‖[1−r,T ] ≤ R}.
It is clear that DR is a bounded, closed and convex subset of C([1− r, T ], E).

Claim 2: N(DR) ⊂ DR.
Let u ∈ DR we show that Nu ∈ DR.
If t ∈ [1− r, 1] then ‖N(u)(t)‖ ≤ ‖ϕ‖C ≤ R. And if t ∈ J , we have

‖N(u)(t)‖ ≤ 1

Γ(ν)

∫ t

1

(
log

t

s

)ν−1

‖g(s)‖ds
s
. (11)

By (H2) we have for each t ∈ J,

||g(t)|| ≤ ‖f(t, ut, g(t))− f(t, 0, 0)‖+ ‖f(t, 0, 0)‖ ≤ K‖ut‖C + L‖g(t)‖+ f∗

≤ K‖u‖[1−r,T ] + L||g(t)||+ f∗ ≤ KR + L||g(t)||+ f∗.

Then

||g(t)|| ≤ f∗ +KR

1− L
:=M.

Thus, (10) and (11) imply that

||Nu(t)|| ≤ M

Γ(ν)

∫ t

1

(
log

t

s

)ν−1
ds

s
≤ M(log T )ν

Γ(ν + 1)
≤ R

from which it follows that for each t ∈ [−r, T ], we have ‖Nu(t)‖ ≤ R, which
implies that ‖Nu‖[1−r,T ] ≤ R. Consequently, N(DR) ⊂ DR.

Claim 3: N(DR) is bounded and equicontinuous.
By Claim 2 we have N(DR) = {N(u) : u ∈ DR} ⊂ DR. Thus, for each

u ∈ DR we have ‖N(u)‖[1−r,T ] ≤ R which means that N(DR) is bounded. Let
t1, t2 ∈ [1, T ], t1 < t2, and let u ∈ DR. Then

‖N(u)(t2)−N(u)(t1)‖ ≤

≤ 1

Γ(ν)

∥∥∥∥∥
∫ t1

1

[(
log

t2
s

)ν−1

−
(
log

t1
s

)ν−1
]
g(s)

ds

s
+

∫ t2

t1

(
log

t2
s

)ν−1

g(s)
ds

s

∥∥∥∥∥
≤ M

Γ(ν)

∫ t1

1

[(
log

t2
s

)ν−1

−
(
log

t1
s

)ν−1
]
ds

s
+

M

Γ(ν)

∫ t2

t1

(
log

t2
s

)ν−1
ds

s
.
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As t1 → t2, the right-hand side of the above inequality tends to zero. The
equicontinuity for the cases t1 < t2 ≤ 1 and t1 ≤ 1 ≤ t2 is obvious.

Claim 4: The operator N : DR → DR is a strict set contraction.
Let V ⊂ DR. If t ∈ [1− r, 1], then

α(N(V )(t)) = α(N(y)(t), y ∈ V ) = α(ϕ(t), y ∈ V ) = 0.

And if t ∈ J , we have

α(N(V )(t)) = α((Ny)(t), y ∈ V ) ≤ 1

Γ(ν)

{∫ t

1

(
log

t

s

)ν−1

α(g(s))
ds

s
, y ∈ V

}
.

Then Remark 3.3 and Lemma 2.5 imply that, for each s ∈ J,

α({g(s), y ∈ V }) = α({f(s, y(s), g(s)), y ∈ V })
≤ Kα({y(s), y ∈ V }) + Lα({g(s), y ∈ V }).

Thus

α ({g(s), y ∈ V }) ≤ K

1− L
α{y(s), y ∈ V }.

Then

α(N(V )(t)) ≤ K

(1− L)Γ(ν)

{∫ t

1

(
log

t

s

)ν−1

{α(y(s))}ds
s
, y ∈ V

}
≤ K (log T )ν

(1− L)Γ(ν + 1)
αc(V ).

Therefore

αc(NV ) ≤ K (log T )
ν

(1− L)Γ(ν + 1)
αc(V ).

So, by (7), the operator N is a set contraction. As a consequence of Theorem
2.6, we deduce that N has a fixed point which is solution to the problem (1)–(2).
This completes the proof. �

Our next existence result for the problem (1)–(2) is based on concept of
measures of noncompactness and Mönch’s fixed point theorem.

Theorem 3.5 Assume (H1)–(H4) and (7) hold. Then the IVP (1)–(2) has at
least one solution.

Proof Consider the operator N defined in (8). We shall show that N satisfies
the assumption of Mönch’s fixed point theorem. We know that N : DR → DR

is bounded and continuous, we need to prove that the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of DR. Now let V be a subset of DR such that
V ⊂ conv(N(V ) ∪ {0}). V is bounded and equicontinuous and therefore the
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function t→ v(t) = α(V (t)) is continuous on [1− r, T ]. By Remark 3.3, Lemma
2.9 and the properties of the measure α we have for each t ∈ J

v(t) ≤ α(N(V )(t) ∪ {0}) ≤ α(N(V )(t)) ≤ α{(Ny)(t), y ∈ V }

≤ K

(1− L)Γ(ν)

{∫ t

1

(
log

t

s

)ν−1

{α(y(s))}ds
s
, y ∈ V

}
=

K

(1− L)Γ(ν)

∫ t

1

(
log

t

s

)ν−1

v(s)
ds

s
.

Then

v(t) ≤ K

(1− L)Γ(ν)

∫ t

1

(
log

t

s

)ν−1

v(s)
ds

s
.

Lemma 2.11 implies that v(t) = 0 for each t ∈ J .
For t ∈ [1− r, 1] we have v(t) = α(ϕ(t)) = 0, then V (t) is relatively compact

in E. In view of the Ascoli-Arzelà theorem, V is relatively compact in DR.
Applying now Theorem 2.8 we conclude that N has a fixed point y ∈ DR. Hence
N has a fixed point which is solution to the problem (1)–(2). This completes
the proof. �

4 An example

Consider the following infinite system

D
1
2 yn(t) =

1

200
(t sin (ynt

)− ynt
cos(t)) +

1

100
sin

(
D

1
2 yn(t)

)
+

1

2
,

for each t ∈ [1, e]. (12)

yn(t) = ϕ(t), t ∈ [1− r, 1], r > 0, (13)

where ϕ ∈ C ([1− r, 1], E) , and ϕ(1) = 0.
Set

E = l1 =

{
y = (y1, y2, . . . , yn, . . .),

∞∑
n=1

|yn| <∞
}
,

and

f(t, u, v) =
1

200
(t sinu− u cos(t)) +

1

100
sin v +

1

2
,

t ∈ [1, e], u ∈ C ([−r, 0], E) and v ∈ E.

Clearly, the function f is jointly continuous. E is a Banach space with the norm

||y|| =
∞∑
n=1

|yn|.
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For any u, ū ∈ C ([−r, 0], E), v, v̄ ∈ E and t ∈ [1, e]:

‖f(t, u, v)− f(t, ū, v̄)‖ ≤

≤ 1

200
|t|‖ sin u− sin ū‖+ 1

200
| cos t|‖u− ū‖+ 1

100
‖ sin v − sin v̄‖

≤ e

200
‖u− ū‖+ 1

200
‖u− ū‖+ 1

100
‖v − v̄‖

=
e+ 1

200
‖u− ū‖+ 1

100
‖v − v̄‖.

Hence condition (H2) is satisfied with

K =
e+ 1

200
and L =

1

100
.

And the conditions

K (log T )
ν

(1− L)Γ(ν + 1)
=

e+ 1

200
(1− 1

100 )Γ(
3
2 )

=
e+ 1

99
√
π
< 1,

are satisfied with

T = e and ν =
1

2
.

It follows from Theorem 3.4 that the problem (12)–(13) has a at least one
solution on J .
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