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On τ-extending modules

Y. Talebi, R. Mohammadi

Abstract. In this paper we introduce the concept of τ -extending modules by τ -
rational submodules and study some properties of such modules. It is shown
that the set of all τ -rational left ideals of RR is a Gabriel filter. An R-module M
is called τ -extending if every submodule of M is τ -rational in a direct summand
of M . It is proved that M is τ -extending if and only if M = RejM E(R/τ(R))⊕N ,
such that N is a τ -extending submodule of M . An example is given to show that
the direct sum of τ -extending modules need not be τ -extending.

Keywords: torsion theory; τ -rational submodules; τ -closed submodules; τ -exten-
ding modules

Classification: 16D10, 16D80 16D99

1. Introduction

Throughout this paper, R is an associative ring with identity and M is a unital
left R-module. A subfunctor ρ is called a preradical if it satisfies the following
properties:

(1) ρ(M) is a submodule of an R-module M ;
(2) if f : M −→ N is an R-homomorphism, then f(ρ(M)) ⊆ ρ(N) and

ρ(f) : f(M) −→ f(N) is the restriction of f to ρ(M).

A preradical ρ is idempotent if ρ(ρ(M)) = ρ(M), and radical when ρ(M/ρ(M)) =
0 for all M ∈ R-Mod.

For a preradical ρ, let Tρ = {N |ρ(N) = N} and Fρ = {N |ρ(N) = 0}, Tρ is
called the torsion class of ρ and Fρ the torsion free class of ρ. ρ is called left
exact if ρ(N) = N ∩ ρ(M) for every module M and every submodule N of M .
A preradical ρ is left exact if and only if ρ is idempotent and Tρ is closed under
submodules. A preradical ρ is called cohereditary if ρ(M/N) = (ρ(M) + N)/N
for every module M and every submodule N of M . ρ is cohereditary if and only
if ρ is radical and Fρ is closed under homomorphic images.

A pair (T ,F) of classes of modules is called a torsion theory if the following
conditions hold:

(i) HomR(A, B) = 0 for every A ∈ T and every B ∈ F ;
(ii) T and F are maximal classes having property (i).
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The modules in T are called torsion modules of τ and the modules in F are
torsion-free of τ . There is a 1-1 correspondence between torsion theories and
idempotent radicals. In particular preradicals are connected to torsion theory as
follows. If ρ is an idempotent radical in R-Mod, then (Tρ, Fρ) is a torsion theory,
where Tρ = {M ∈R−Mod| ρ(M) = M} and Fρ = {M ∈R−Mod| ρ(M) = 0}.
Now for any torsion theory (T ,F), there is an associated idempotent radical
τt (simply denoted by τ), called the torsion radical associated to torsion theory
(T ,F). Here for every module N , τ(N) will be the unique maximal submodule of
N such that τ(N) ∈ T . Then τ is uniquely determined and T is exactly the set
{M | τ(M) = M} and F = {M | τ(M) = 0}. Therefore we can denote this torsion
theory by τ = (T ,F), where τ is an idempotent radical associative to (T ,F).
A torsion theory τ = (T ,F) is called hereditary if T is closed under submodules.
A torsion theory τ = (T ,F) is hereditary if and only if F is closed under injective
hulls if and only if t is a left exact radical. Thus there is a 1-1 correspondence
between hereditary torsion theories and left exact radicals.

A module M is extending if every submodule of M is essential in a direct
summand of M . In recent years, torsion-theoretic analogues of extending modules
have been studied by many authors (see [4], [15], [5], [7], [16], [10], [8]).

In 2007, Charalambides and Clark [5] generalized extending modules to torsion
theories. They defined that a module M is τ -extending if every τ -dense, closed
submodule of M is a direct summand of M . In 2008, [15] the authors also studied
τ -CS (extending) modules under the name of type 2-τ -extending modules. In
[8] s-t-CS modules and CS modules were studied under the name of type 1 τ -
extending modules and type 2 τ -extending modules respectively.

Following J. L. Gomez Pardo [10], a submodule N of an R-module M is called
τ -large in M if, for W ≤ M, N ∩ W ⊆ τ(M) implies W ⊆ τ(M).

In [4] the authors say that M is τ -extending module if every submodule is
τ -large in a direct summand of M . They showed that every τ -torsion module is
τ -extending and they also proved that a τ -torsion free module is τ -extending if
and only if it is extending. In this paper, we generalize extending modules by
using hereditary torsion theories. We say that a submodule N of M is τ -rational
in M if Hom(M/N, E(R/τ(R))) = 0, where E(R/τ(R)) is the injective hull of
R/τ(R). We say that an R-module M is τ -extending if for every submodule
X , there exists a direct summand D of M such that X is τ -rational in D, i.e,
Hom(D/X, E(R/τ(R))) = 0. We prove that a module M is τ -extending if and
only if every τ -closed submodule of M is a direct summand of M . We show that
M is τ -extending if and only if M = RejME(R/τ(R))⊕N , and N is a τ -extending
submodule of M . We also prove that the class of τ -extending modules is closed
under direct summands. It is proved that if M is a τ -extending module and
RejT (E(R/τ(R))) = T for a module T , then M ⊕ T is τ -extending. Moreover,
we prove that M = M1 ⊕ M2 is τ -extending if and only if Mi are τ -extending
and every τ -closed submodule K of N1 ⊕ N2 with K ∩ N1K ∩ N2 = 0 is a direct
summand of M , where Mi = RejMi

(E(R/τ(R))) ⊕ Ni.
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2. τ-rational modules

Throughout this paper τ is a hereditary preradical associative to a hereditary
torsion theory.

Definition 2.1. We say that a submodule N of an R-module M is τ -rational
in M , denoted by N ≤τ−r M , if Hom(M/N, E(R/τ(R))) = 0. If M ∈ Tτ , then
every submodule of M is τ -rational.

Let U be a class of modules. A module M is (finitely) cogenerated by U (or
U (finitely) cogenerates M), in case there is an (a finite) indexed set (Uα)α∈A

in U and a monomorphism

0 −→ M −→
∏

A

Uα.

An R-module RC is said to be a cogenerator if RC cogenerates every R-module.

It is recalled that a submodule N of M is dense in M if HomR(M/N, E(M)) =
0, where E(M) denotes the injective envelope of M .

Lemma 2.2. Let R/τ(R) be an injective cogenerator in RM and N ≤τ−r M .
Then N is dense in M .

Proof: As N ≤τ−r M , then HomR(M/N, E(R/τ(R))) = 0. Since R/τ(R) is
an injective cogenerator, there is a set A for which E(M) can be embedded in∏

A R/τ(R).
Thus

∏
A HomR(M/N, R/τ(R)) ≃ HomR(M/N,

∏
A R/τ(R)) = 0. It follows

that Hom(M/N, E(M)) = 0 and so N is dense in M . �

A ring R is called a left Kasch ring (or simply left Kasch) if every simple left
module K embeds in RR, equivalently if RR cogenerates K. Every semisimple
artinian ring is right and left Kasch, and a local ring R is left Kasch if and only
if Socl(R) 6= 0, because R has only one simple left module up to isomorphism.

Corollary 2.3. Consider the trivial torsion theory τ = 0. If R is a left Kasch
ring and N ≤τ−r M , for R-modules M and N , then N is a dense submodule
of M .

Proof: This follows from the fact that RR is a left Kasch ring if and only if
E(RR) is a cogenerator in RM and applying Lemma 2.2. �

Definition 2.4. A non-empty set D(R) of left ideals of R is called a filter radical
if the following hold:

(i) for every I ∈ D(R) and every a ∈ R, we have (I : a) ∈ D(R), where
(I : a) is the ideal {r ∈ R| ra ∈ I};

(ii) for every J ∈ D(R) and every left ideal I of R with (I : a) ∈ D(R) for
each a ∈ J , we have I ∈ D(R).
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Proposition 2.5. Let F(R) be the set of all left ideals I such that RI is τ -rational
in RR. Then F(R) is a filter radical.

Proof: (i) Let I ∈ F(R) and a ∈ R. Then HomR(R/I, E(R/τ(R))) = 0 and
by the injectivity of E(R/τ(R)), HomR((Ra + I)/I, E(R/τ(R))) = 0. As R/(I :
a) ≃ (Ra + I)/I then we get HomR(R/(I : a), E(R/τ(R))) = 0. Hence for every
I ∈ F(R) and a ∈ R, we get (I : a) ∈ F(R).

(ii) Assume that J ∈ F(R) and there exists a left ideal I of R, such that
(I : a) ∈ F(R) for every a ∈ J , so that, HomR(R/(I : a), E(R/τ(R))) = 0. If
f ∈ HomR(R/I, E(R/τ(R))) then (Ra + I)/I ≃ R/(I : a) ⊆ ker(f) for every
a ∈ J . Hence HomR((Ra + I)/I, E(R/τ(R))) = 0 for every a ∈ J and so

HomR((J + I)/I, E(R/τ(R))) = 0. Thus f factors through f ∈ HomR(R/(I +
J), E(R/τ(R))). However J ∈ F(R) implies I + J ∈ F(R). Hence f = 0 and so
f = 0. This shows that I ∈ F(R). �

Corollary 2.6. Let I, J be left ideals of R. Then

(i) if J ∈ F(R) and J ⊆ I, then I ∈ F(R);
(ii) if I, J ∈ F(R), then I ∩ J ∈ F(R);
(iii) if I, J ∈ F(R), then IJ ∈ F(R).

Proof: This follows by [3]. �

Lemma 2.7. If RI is τ -rational in RR, then (I + τ(R))/τ(R) ≤es R/τ(R).

Proof: Suppose that there exists a nonzero left ideal L/τ(R) of R/τ(R) such
that L/τ(R) ∩ (I + τ(R))/τ(R) = 0. As I ⊆ I + L, by Corollary 2.6(i), we have
I + L ∈ F(R). Hence HomR(R/(L + I), E(R/τ(R))) = 0.

Since HomR(R/I, E(R/τ(R))) = 0, then HomR((L + I)/I, E(R/τ(R))) = 0.
Thus Hom(L/(L ∩ I), E(R/τ(R))) = 0, and since I ∩ L ⊆ τ(R),

Hom(L/τ(R), E(R/τ(R))) = 0,

a contradiction. �

The following examples show that Lemma 2.7 need not be true, for R-modules.

Example 2.8. Consider the torsion theory (0,R M) with associative radical τ =
0, where R = Z. Let M = Z6 and N = 3Z6, then 3Z6 �e Z6, however N ≤τ−r M
because HomZ(Z6/3Z6, Q) = 0. �

Example 2.9. Consider the torsion theory (RM, 0) with associative radical τ =
id, where R = Z. Then for every R-module M , we have HomZ(M/N, 0) = 0, for
every Z-submodule N of M , which implies that N ≤τ−r M . �

For each M ∈ R-Mod we define
δτ (M) = {x ∈ M | (0 : x) is a τ -rational left ideal in R}.

Proposition 2.10. For an arbitrary ring R and a left R-module M the following
assertions hold:

(1) δτ (M) is a submodule of M ;
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(2) δτ (M/δτ (M)) = 0;
(3) for every R-homomorphism f : M −→ N , f(δτ (M)) ⊆ δτ (N);
(4) for every K ≤ M we have δτ (K) = δτ (M) ∩ K.

Proof: (1) This is clear.
(2) Let m = m + δτ (M) ∈ M/δτ (M). Then m ∈ δτ (M/δτ (M)) iff (0 : m) is

τ -rational in R. As (0 : m) = {r ∈ R| rm ∈ δτ (M)} and (0 : rm) = ((0 : m) : r),
then (0 : m) = {r ∈ R| ((0 : m) : r) ≤τr

R} is τ -rational in R. Since the set of all
τ -rational left ideals of R is a Gabriel filter, we get (0 : m) ≤τr

R and this shows
that m ∈ δτ (M), i.e; m = 0.

(3) Let m ∈ δτ (M). Then (0 : m) ≤τr
R. As (0 : m) ⊆ (0 : f(m)) we get

(0 : f(m)) ≤τr
R.

(4) This is clear. �

Corollary 2.11. Let (T, F), where T = {M | δτ (M) = M}, F = {M | δτ (M) = 0}.
Then (T, F) is a hereditary torsion theory.

Proposition 2.12. If δτ (M/N) = M/N then N is τ -rational in M .

Proof: To the contrary assume that δτ (M/N) = M/N but

Hom(M/N, E(R/τ(R))) 6= 0.

Then we have Hom((Rm+N)/N, E(R/τ(R))) 6= 0, for some m ∈ M . As R/(N :
m) ≃ (Rm + N)/N for any m ∈ M , this gives

Hom(R/(N : m), E(R/τ(R))) 6= 0,

a contradiction to the fact that (N : m) ≤τ−r R. �

Corollary 2.13. Let N ≤τ−r M and K a submodule of M . Then N∩K ≤τ−r K.

Corollary 2.14. δτ (M) = M iff HomR(M, E(R/τ(R))) = 0.

Proposition 2.15. Let M be an R-module and N, L ≤ M . If N ⊆ L ⊆ M , then
N ≤τ−r L ≤τ−r M iff N ≤τ−r M .

Proof: If N ≤τ−r M , then obviously N ≤τ−r L ≤τ−r M .
Conversely, let N ≤τ−r L ≤τ−r M . Consider the exact sequence

0 −→ L/N −→ M/N −→ M/L −→ 0.

Then, since Hom(−, E(R/τ(R))) is an exact functor we get the exact sequence

0 −→ Hom(M/N, E(R/τ(R))) −→ 0.

Thus Hom(M/N, E(R/τ(R))) = 0 and so N ≤τ−r M . �

Corollary 2.16. N is τ -rational in M if and only if C is τ -rational in M , where
C/N = τ(M/N).
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Lemma 2.17. Let N be a submodule of M and suppose that every homomorphic
image of M has a non-zero τ -torsion submodule. Then N ≤τ−r M .

Proof: On the contrary, assume 0 6= f ∈ Hom(M/N, E(R/τ(R))). Then

f factors through a monomorphism 0 6= f : M/kerf −→ E(R/τ(R)). As
τ(M/ker(f)) 6= 0 we get 0 6= τ(M/kerf) ⊆ kerf , a contradiction. �

Corollary 2.18. If M/N is a τ -torsion module, then N is τ -rational in M .

The following example shows that the converse of Corollary 2.18 need not be
true.

Example 2.19. Consider the trivial torsion theory (0,R M) on ZM. Then
HomZ(Z/4Z, Q) = 0 while τ(Z/4Z) 6= Z/4Z.

Definition 2.20. Let M be a module and K ≤ M . We say that K is a τ -closed
submodule of M , denoted by K ≤τc M , if whenever for any submodule L of M,
Hom(L/K, E(R/τ(R))) = 0 implies K = L. If N is a submodule of M such that
K ≤τ−r N and N is τ -closed in M then N is called a τ -closure of K in M . Note
that N ≤τc M if and only if for all N < K ≤ M , RejK/N (E(R/τ(R))) = 0.

Proposition 2.21. Let N ′ ≤ N ≤ M . Then the following are true:

(1) if N ′ is τ -closed in M , then N ′ is τ -closed in N ;
(2) RejM (E(R/τ(R))) ≤τc M and N ≤τc M , moreover RejM (E(R/τ(R))) ⊆

N . Besides, RejM (E(R/τ(R))) is the intersection of all τ -closed submod-
ules of M ;

(3) if K ≤τc M , then M/K is a τ -torsion free module. Clearly the converse
is not true;

(4) if N ′ is τ -closed in N and N is τ -closed in M , then N ′ is τ -closed in M ;
(5) the class of τ -closed submodules of M is closed under intersections.

Proof: (1) This is clear.
(2) Clearly RejM (E(R/τ(R))) ≤τc M . Now, on the contrary, assume that

N ≤τc M and N + RejM (E(R/τ(R))). Then there is an

x ∈ RejM (E(R/τ(R)))\N

and so Hom((Rx + N)/N, E(R/τ(R))) ≃ Hom(Rx/(Rx ∩ N), E(R/τ(R))) = 0,
a contradiction.

(3) Assume that K ≤τc M and τ(M/K) = C/K 6= 0. Then since C/K ∈ Tτ

and E(R/τ(R)) ∈ Fτ , we get Hom(C/K, E(R/τ(R))) = 0, a contradiction. Thus
C/K = 0.

(4) If Hom(L/N ′, E(R/τ(R))) = 0 for some N ′ � L ≤ M , then we have L * N
and N ′ ⊆ L ∩ N . Therefore, HomR((L ∩ N)/N ′, E(R/τ(R))) = 0. Since N ′ is
τ -closed in N , we get (L ∩ N) = N ′. Hence Hom((L + N)/N, E(R/τ(R))) = 0
and so N = N + L because N ≤τc M . From N = N + L we have L ⊆ N ,
a contradiction.
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(5) Let Ni ≤τc M for every i ∈ I. Then RejM/Ni
(E(R/τ(R))) = 0, for every

i ∈ I. Thus we have
⊕

i∈I RejM/Ni
(E(R/τ(R))) = Rej⊕

i∈I
M/Ni

(E(R/τ(R))) =

0. Since there is a monomorphism f : M/∩i∈I Ni −→
⊕

i∈I M/Ni, the injectivity
of E(R/τ(R)) implies RejM/∩i∈INi

(E(R/τ(R))) = 0 and so ∩i∈INi ≤τc M . �

Proposition 2.22. For a module M , every submodule N of M has a τ -closure.

Proof: If Hom(M/N, E(R/τ(R))) = 0, then there is nothing to prove. Hence
suppose that Hom(M/N, E(R/τ(R))) 6= 0, D/N = RejM/N (E(R/τ(R))), for
some submodule N of M . Then Hom(D/N, E(R/τ(R))) = 0 and

Hom(D′/D, E(R/τ(R))) 6= 0

for every D < D′ ≤ M . In this case D is a τ -closure of N in M . �

Example 2.23. Consider the Goldie torsion theory, where T = {M | Z2(M) =
M}, F = {M | Z2(M) = 0}. It is not hard to see that the idempotent radical
associated to Goldie torsion theory is Z2. If we take Z as a Z-module, then we
can easily check that Z2(Z) = 0 and E(Z) = Q. Since HomZ(nZ, Q) 6= 0, for
every nonzero integer n, the Z2-closure of zero submodule is itself. Since for every
nonzero integer m we have HomZ(Z/mZ, Q) = 0, the Z2-closure of every nonzero
Z-submodule is Z.

3. τ-extending modules

In this section we introduce the concept of τ -extending modules and give an
example to show that the direct sum of τ -extending modules may not be τ -
extending.

Definition 3.1. A module M is called τ -extending if every submodule of M is
τ -rational in a direct summand of M .

From Example 2.23, it follows that Z is Z2-extending module.

Proposition 3.2. A module M is τ -extending if and only if every τ -closed sub-
module of M is a direct summand of M .

Proof: Suppose that M is τ -extending and N a τ -closed submodule of M . By
hypothesis, N is τ -rational in a direct summand D of M , so D = N .
Conversely, assume that every τ -closed submodule of M is a direct summand
of M . Let N be a submodule of M . Also, let RejM/N (E(R/τ(R))) = C/N .
Since C is τ -closed in M , then by assumption C is a direct summand of M . As
N is τ -rational in C, M is τ -extending. �

Lemma 3.3. The class of τ -extending modules is closed under direct summands.

Proof: Let M = M1 ⊕ M2 and N1 ≤τc M1. We show that N1 ⊕ M2 ≤τc

M1 ⊕ M2. Let there be a submodule K such that N1 ⊕ M2 ≤ K ≤ M and
Hom(K/(N1 ⊕ M2), E(R/τ(R))) = 0. By modularity K = M2 ⊕ (K ∩ M1) and
so Hom((K ∩ M1)/N1, E(R/τ(R))) = 0. This gives K ∩ M1 = N1, because
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N1 ≤τc M1. Thus K = N1 ⊕ M2 and so N1 ⊕ M2 ≤τc M . As M is τ -extending,
then N1 ⊕ M2 ⊕ L = M . Therefore M1 = N1 ⊕ (M1 ∩ (M2 ⊕ L)), so M1 is
τ -extending. �

Lemma 3.4. Let M be τ -extending and K a module for which RejK(E(R/τ(R)))
= K. Then M ⊕ K is τ -extending.

Proof: We may assume that RejM (E(R/τ(R))) = 0. Let D be a τ -closed
submodule of M ⊕ K. Then RejM⊕K(E(R/τ(R))) = RejK(E(R/τ(R))) = K
and by Proposition 2.21, we get K ⊆ D. This shows that D = (M ∩ D) ⊕ K.
If Hom(L/(M ∩ D), E(R/τ(R))) = 0, for some submodule L of M that contains
M ∩ D, then Hom((L + K)/D, E(R/τ(R))) = 0. Since D is τ -closed in M ⊕ K,
we get L + K = D and so M ∩ D = L. This shows that M ∩ D is τ -closed in
M and since M is τ -extending M = (M ∩ D) ⊕ N , for some N ≤ M . Thus
M ⊕K = (M ∩D)⊕N ⊕K = D⊕N , which implies that D is a direct summand
of M ⊕ K. �

Corollary 3.5. Let M be a τ -extending module and K a τ -torsion module. Then
M ⊕ K is τ -extending.

Lemma 3.6. The following statements are equivalent for a module M :

(i) M is τ -extending;
(ii) M = RejME(R/τ(R)) ⊕ N , and N is a τ -extending submodule of M .

Proof: (i)=⇒(ii). As RejME(R/τ(R)) ≤τc M and M is τ -extending, we get
M = RejME(R/τ(R)) ⊕ N , where N is a τ -extending submodule of M , by
Lemma 3.3.

(ii)=⇒(i). This follows by Lemma 3.4. �

The following example shows that a direct sum of τ -extending modules need
not be τ -extending.

Example 3.7. Let R = Z and τ = 0. Then M1 = M2 = Z are τ -extending,
because HomZ(Z/mZ, Q) = 0, for every nonzero ideal mZ of Z. Next we show
that M1⊕M2 is not τ -extending. For, let K be the Z-submodule of Z⊕Z generated
by (2, 3), i.e, K = {(2n, 3n)| n ∈ Z}. Then f : Z ⊕ Z −→ Q defined by f(1, 0) =
1/2, f(0, 1) = −1/3, is a Z-homomorphism with ker(f) = {(m, n)| f(m, n) =
f(m, 0)+ f(0, n) = mf(1, 0)+nf(0, 1) = m/2−n/3 = 0}. Therefore K = ker(f)
and so HomZ((Z ⊕ Z)/K, Q) 6= 0. This shows that Z ⊕ Z is not τ -extending.

Theorem 3.8. Let Mi (i = 1, 2) be τ -extending modules and Ni a submodule of
Mi such that Mi = RejMi

E(R/τ(R))⊕Ni for each i = 1, 2. Then M = M1⊕M2

is τ -extending if and only if every τ -closed submodule K of N1⊕N2 with K∩N1 =
K ∩ N2 = 0 is a direct summand of M .

Proof: Assume that M = M1 ⊕ M2 is τ -extending. Then

RejM1⊕M2
(E(R/τ(R))) = RejM1

(E(R/τ(R))) ⊕ RejM2
(E(R/τ(R)))
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is a direct summand of M , by Lemma 3.6. Thus there exists N ≤ M1 ⊕M2 such
that

M1 ⊕ M2 = RejM1
(E(R/τ(R))) ⊕ RejM2

(E(R/τ(R))) ⊕ N.

By modularity we get

Mi = RejMi
(E(R/τ(R))) ⊕ ((N ⊕ RejMj

(E(R/τ(R)))) ∩ Mi)

for i, j = 1, 2 with i 6= j. Suppose that Ni = (N ⊕ RejMj
(E(R/τ(R)))) ∩ Mi.

Then N = N1 ⊕ N2 is τ -extending, and hence every τ -closed submodule of N is
a direct summand of N and so a direct summand of M .

Conversely, assume that for each i = 1, 2, the module Mi = RejMi
E(R/τ(R))⊕

Ni is τ -extending, such that every τ -closed submodule K of N1⊕N2 with K∩N1 =
K∩N2 = 0 is a direct summand of M . We will show that every τ -closed submodule
of M1 ⊕M2 is a direct summand of M1 ⊕M2. Let K be a τ -closed submodule of
M1 ⊕ M2 and K ∩ Mi = Ki, for i = 1, 2.

Note that Hom((Mi + K)/K, E(R/τ(R))) = 0 iff Mi ⊆ K, for i = 1, 2. Thus
Hom(Mi/Ki, E(R/τ(R))) = 0 iff Mi = Ki, for i = 1, 2. It follows that Ki are τ -
closed submodule of Mi, for i = 1, 2 and by Proposition 2.21(2), RejMi

E(R/τ(R))
⊆ Ki. Hence Ki = RejMi

E(R/τ(R))⊕(Ki∩Ni). It is not hard to see that Ki∩Ni

is a τ -closed submodule of Ni, for i = 1, 2.
Since N1 and N2 are τ -extending, Ni = (Ki ∩ Ni) ⊕ Li, for some Li ⊆ Ni.

This shows that K = K1 ⊕ K2 ⊕ (K ∩ (L1 ⊕ L2)). We can easily check that
K∩(L1⊕L2) is a τ -closed submodule of N1⊕N2 with K∩(L1⊕L2)∩Ni = 0, for
i = 1, 2. By assumption K ∩ (L1 ⊕ L2) is a direct summand of M . Assume that
(K ∩ (L1 ⊕L2))⊕ S = M . Then L1 ⊕L2 = (K ∩ (L1 ⊕L2))⊕ ((L1 ⊕L2)∩S). It
follows that M = K1⊕K2⊕(K∩(L1⊕L2))⊕((L1⊕L2)∩S) = K⊕((L1⊕L2)∩S),
which implies that every τ -closed submodule of M is a direct summand of M .
Thus M is a τ -extending module, by Proposition 3.2. �

Lemma 3.9. Let M1 be an M2-injective module. Then M = M1 ⊕ M2 is τ -
extending if and only if M1, M2 are τ -extending.

Proof: Let Mi be τ -extending, for i = 1, 2. Then by Lemma 3.6, there exist
Li ≤ Mi such that Mi = RejMi

(E(R/τ(R))) ⊕ Li. Applying Theorem 3.8, it
suffices to show that every τ -closed submodule K of L1 ⊕ L2, with K ∩ L1 =
K ∩ L2 = 0, is a direct summand of L1 ⊕ L2. As M1 is an M2-injective, then by
[9, Lemma 7.5], there exists a submodule L′ of L1 ⊕ L2 for which K ⊆ L′ and
L1 ⊕ L′ = L1 ⊕ L2. As L2 is τ -extending and L′ ≃ L2, then by Proposition 3.2,
L′ is τ -extending. Hence K is a direct summand of L′ and so a direct summand
of L1 ⊕ L2. By Proposition 3.2, M1 ⊕ M2 is τ -extending. �
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Corollary 3.10. Let M = M1 ⊕ M2 be an injective module. Then M is τ -
extending if and only if M1, M2 are τ -extending modules.
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