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Local convergence of a one parameter

fourth-order Jarratt-type method in Banach spaces

I.K. Argyros, D. González, S.K. Khattri

Abstract. We present a local convergence analysis of a one parameter Jarratt-
type method. We use this method to approximate a solution of an equation in
a Banach space setting. The semilocal convergence of this method was recently
carried out in earlier studies under stronger hypotheses. Numerical examples

are given where earlier results such as in [Ezquerro J.A., Hernández M.A., New

iterations of R-order four with reduced computational cost, BIT Numer. Math.
49 (2009), 325–342] cannot be used to solve equations but our results can be
applied.

Keywords: Banach space; Newton’s method; local convergence; radius of conver-
gence

Classification: 65D10, 65D99

1. Introduction

Let X, Y be Banach spaces and D be a convex open subset of X.
In this study, we are concerned with the problem of approximating a solution

x⋆ of the nonlinear equation

(1.1) F(x) = 0,

where F : D → Y is a Fréchet-differentiable operator. Many problems can be
formulated as equations like (1.1) using Mathematical Modelling [1]–[22]. The
solutions of such equations can rarely be found in closed form. That is why most
solution methods for such equations are usually iterative. The study about con-
vergence of iterative methods is usually centered on two types: semilocal and local
convergence analysis. The semilocal convergence analysis is based on the informa-
tion around an initial point to give criteria ensuring the convergence of iterative
procedures. While the local analysis is based on the information around a solu-
tion to find estimates of the radii of convergence balls. There exist many studies
which deal with the local and the semilocal convergence analysis of Newton-like
methods such as [1]–[22].
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J.A. Ezquerro and M.A. Hernández in [11] studied the semilocal convergence
of the R-order four method defined for each n = 0, 1, 2, . . . by

(1.2)



































yn = xn −F ′(xn)−1F(xn),

zn = yn +
1

3
F ′(xn)−1F(xn)

Hn = F ′(xn)−1(F ′(zn) −F ′(xn))

xn+1 = yn −
3α

4
(I +

3

2
Hn)−1Hn(yn − xn), α 6= 0

where x0 is an initial point. They assumed that there exist constants β1, β2, β3,
β4 and M such that

(C1):
∥

∥F ′(x0)
−1F(x0)

∥

∥ ≤ β1,

(C2):
∥

∥F ′(x0)
−1F ′′(x)

∥

∥ ≤ β2 for each x ∈ D,

(C3):
∥

∥F ′(x0)
−1F ′′′(x)

∥

∥ ≤ β3 for each x ∈ D,

(C4):
∥

∥F ′(x0)
−1(F ′′′(x) −F ′′′(y))

∥

∥ ≤ β4‖x − y‖ for each x, y ∈ D,

(C5):
∥

∥F ′(x0)
−1F ′(x)

∥

∥ ≤ M.

The assumptions used in [11] were given in non-affine invariant form but we
present them here in an affine invariant form.

The conditions for the local convergence analysis are obtained from the pre-
ceding ones by replacing x0 by x⋆. However some of the (C) conditions may not
be satisfied even for simple scalar functions. As a motivational example, let us
define function f on D = [−1/2, 5/2] by

(1.3) f(x) =

{

x3 lnx2 + x5 − x4, x 6= 0

0, x = 0.

Then, we have

f ′′′(x) = 6 lnx2 + 60x2 − 24x + 22.

Notice that conditions (C3) or (C4) are not satisfied. Hence, the results depending
on (C3) or (C4) cannot be applied in this case.

In the present paper, we drop the conditions (C2)–(C4) to study the local
convergence of method (1.2). This way we expand the applicability of these
methods. The conditions used involve only the first Fréchet-derivative (see (2.8)–
(2.11)).

The rest of the paper is organized as follows. In Section 2, we present the local
convergence analysis for method (1.2). The numerical examples are given in the
concluding Section 3.

2. Local convergence analysis

We present the local convergence analysis of method (1.2) in this section.
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Let L0, L > 0, α 6= 0 and M ≥ 1 be given parameters. It is convenient for
the local convergence analysis of method (1.2) that follows to define functions on
[0, 1/L0) by

g1(r) =
L r

2(1 − L0 r)
,

g2(r) =
1

1 − L0r

(

Lr

2
+

M

3

)

,

g3(r) =
3L0(1 + g2(r))

2(1 − L0r)
,

g4(r) = g3(r)r,

h4(r) = g4(r) − 1,

g5(r) =
1

2

[

L

1 − L0r
+
|α| g3(r)(1 + g1(r))

1 − g3(r)r

]

r

and h5(r) = g5(r) − 1.

Notice that

g2(r) = g1(r) +
M

3(1 − L0r)
=

Lr

2(1 − L0r)
+

M

3(1 − L0r)
.

Suppose that

(2.1) 1 ≤ M < 3.

Then, we get

(2.2) r2 :=
3 −M

3(L

2 + L0)
< rA :=

1
L

2 + L0

.

We have that

(2.3) 0 ≤ g1(r) < 1 and 0 < g2(r) < 1 for each r ∈ [0, r2).

Using the definition of functions g4 and h4, we get that

h4(0) = −1 < 0 and h4(r) → +∞ as r →
1−

L0
.

It follows from the intermediate value theorem that function h4 has zeros in the
interval (0, 1/L0). Denote by r4 the smallest such root. Then, we have that

(2.4) 0 < g4(r) < 1 for each r ∈ (0, r4).

Moreover, we have that

(2.5) h5(0) = −1 < 0 and h5(r) → +∞ as r → r−4 .
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Hence, function h5 has zeros in the interval (0, r4). Denote by r5 the smallest
such zero. Then, we have that

(2.6) 0 < g5(r) < 1 for each r ∈ (0, r5).

Define

(2.7) r⋆ = min(r2, r5).

Notice that functions gi, i = 1, 2, . . . , 5 are increasing.
Denote by U(q, ρ) and U(q, ρ) the open and closed balls in X of center q ∈ X

and radius ρ > 0, respectively.
Next, we present the local convergence analysis of method (1.2).

Theorem 2.1. Let F : D ⊆ X −→ Y be a Fréchet differentiable operator.

Suppose that there exist x⋆ ∈ D and L0 > 0 such that for each x ∈ D

F(x⋆) = 0, F ′(x⋆)−1 ∈ L(Y,X),(2.8)
∥

∥

∥
F ′(x⋆)−1(F ′(x) −F ′(x⋆))

∥

∥

∥
≤ L0‖x − x⋆‖ .(2.9)

Moreover, suppose that there exist parameters L > 0 and M ∈ [1, 3) such that

for all x ∈ D0 := D ∩ U(x⋆, 1/L0)

∥

∥

∥
F ′(x⋆)−1(F(x) −F(x⋆) −F ′(x)(x − x⋆))

∥

∥

∥
≤

L

2
‖x − x⋆‖

2
,(2.10)

∥

∥

∥
F ′(x⋆)−1F ′(x)

∥

∥

∥
≤ M,(2.11)

U(x⋆, r⋆) ⊆ D(2.12)

hold, where the convergence radius r⋆ is defined in equation (2.7). Then, sequence

{xn} generated by method (1.2) for x0 ∈ U(x⋆, r⋆) is well defined, remains in

U(x⋆, r⋆) for each n = 0, 1, 2, . . . and converges to x⋆. Moreover, the following

estimates hold for each n = 0, 1, 2, . . .

‖yn − x⋆‖ ≤ g1(‖xn − x⋆‖)‖xn − x⋆‖ ≤‖xn − x⋆‖ < r⋆,(2.13)

‖zn − x⋆‖ ≤ g2(‖xn − x⋆‖)‖xn − x⋆‖ ≤‖xn − x⋆‖ ,(2.14)

3

2
‖Hn‖ ≤ g3(‖xn − x⋆‖)‖xn − x⋆‖ < 1,(2.15)

‖xn+1 − x⋆‖ ≤ g5(‖xn − x⋆‖)‖xn − x⋆‖ ≤‖xn − x⋆‖ ,(2.16)

where the “g” functions are defined previously. Furthermore, for T ∈ [r⋆, 2/L0),
the limit point x⋆ is the only solution of equation F(x) = 0 in D1 := U(x⋆, T )∩D.

Proof: Using (2.9), the definition of r⋆ and the hypothesis x0 ∈ U(x⋆, r⋆), we
get that

(2.17)
∥

∥

∥
F ′(x⋆)−1(F ′(x0) −F ′(x⋆))

∥

∥

∥
≤ L0‖x0 − x⋆‖ < L0r

⋆ < 1.
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It follows from (2.17) and the Banach lemma on invertible operators [4], [6], [11]
that

(2.18)

F ′(x0)
−1 ∈ L(Y,X) and

∥

∥

∥
F ′(x0)

−1F ′(x⋆)
∥

∥

∥
≤

1

1 − L0‖x0 − x⋆‖
.

Hence, y0 and z0 are well defined. We have from the first sub-step in method
(1.2) for n = 0 that

y0 − x⋆ = x0 − x⋆ −F ′(x0)
−1F(x0)

= F ′(x0)
−1[−F(x0) + F ′(x0)(x0 − x⋆)]

= −F ′(x0)
−1F ′(x⋆)F ′(x⋆)−1[F(x0) −F(x⋆) −F ′(x0)(x0 − x⋆)]

so,

‖y0 − x⋆‖ ≤
∥

∥

∥
F ′(x0)

−1F ′(x⋆)
∥

∥

∥

∥

∥

∥
F ′(x⋆)−1[F(x0) −F(x⋆) −F ′(x0)(x0 − x⋆)]

∥

∥

∥

≤
L‖x0 − x⋆‖

2

2(1 − L0‖x0 − x⋆‖)
= g1(‖x0 − x⋆‖)‖x0 − x⋆‖ ≤‖x0 − x⋆‖ < r⋆,

which shows (2.13) and y0 ∈ U(x⋆, r⋆). Consequently, from the second substep in
method (1.2) for n = 0, we obtain that

‖z0 − x⋆‖ ≤‖y0 − x⋆‖ +
1

3

∥

∥

∥
F ′(x0)

−1F ′(x⋆)
∥

∥

∥

×

∥

∥

∥

∥

∥

∫ 1

0

F ′(x⋆)−1F ′(x⋆ + t(x0 − x⋆))(x0 − x⋆) dt

∥

∥

∥

∥

∥

≤
L‖x0 − x⋆‖

2

2(1 − L0‖x0 − x⋆‖)
+

M‖x0 − x⋆‖

3(1 − L0‖x0 − x⋆‖)

= g2(‖x0 − x⋆‖)‖x0 − x⋆‖ ≤‖x0 − x⋆‖ < r⋆,

which shows (2.14) for n = 0 and z0 ∈ U(x⋆, r⋆).

Next we need an estimate of ‖H0‖. We have by (2.4), (2.9), (2.13) and (2.18)
that

3

2
‖H0‖ ≤

3

2

∥

∥

∥
F ′(x0)

−1F ′(x⋆)
∥

∥

∥

∥

∥

∥
F ′(x⋆)−1(F ′(z0) −F ′(x0))

∥

∥

∥

≤
3

2

∥

∥

∥
F ′(x0)

−1F ′(x⋆)
∥

∥

∥

(
∥

∥

∥
F ′(x⋆)−1(F ′(z0) −F ′(x⋆))

∥

∥

∥

+
∥

∥

∥
F ′(x⋆)−1(F ′(x0) −F ′(x⋆))

∥

∥

∥

)

≤
3L0(‖z0 − x⋆‖ +‖x0 − x⋆‖)

2(1 − L0‖x0 − x⋆‖)
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≤
3L0(1 + g2(‖x0 − x⋆‖))‖x0 − x⋆‖

2(1 − L0‖x0 − x⋆‖)

= g3(‖x0 − x⋆‖)‖x0 − x⋆‖ = g4(‖x0 − x⋆‖) < 1,

which shows (2.15) for n = 0. It follows that (1 + 3/2H0)
−1 exists and

(2.19)

∥

∥

∥

∥

∥

(

I +
3

2
H0

)−1
∥

∥

∥

∥

∥

≤
1

1 − g3(‖x0 − x⋆‖)‖x0 − x⋆‖
.

Hence, x1 is well defined. Then, using the last substep in method (1.2) for n = 0,
(2.13) and (2.19) that

‖x1 − x⋆‖ ≤‖y0 − y⋆‖ +
|α|

2

g3(‖x0 − x⋆‖)‖x0 − x⋆‖ (‖y0 − x⋆‖ +‖x0 − x⋆‖)

1 − g3(‖x0 − x⋆‖)‖x0 − x⋆‖

≤
1

2

[

L

1 − L0‖x0 − x⋆‖
+|α|

g3(‖x0 − x⋆‖)(1 + g1(‖x0 − x⋆‖))

1 − g3(‖x0 − x⋆‖)‖x0 − x⋆‖

]

‖x0 − x⋆‖
2

= g5(‖x0 − x⋆‖)‖x0 − x⋆‖

= c‖x0 − x⋆‖ < r⋆,

where c = g5(‖x0−x⋆‖) ∈ [0, 1), which shows (2.16) for n = 0 and x1 ∈ U(x⋆, r⋆).
By simply replacing y0, z0, x1 by yk, zk, xk+1 in the preceding estimates we arrive
at (2.13)–(2.16). In particular, we have that since function g5 is increasing,

(2.20)
‖x2 − x⋆‖ ≤ g5(‖x1 − x⋆‖)‖x1 − x⋆‖ ≤ g5(‖x0 − x⋆‖)‖x1 − x⋆‖

= c‖x1 − x⋆‖

and by induction for ‖xk − x⋆‖ ≤ c‖xk−1 − x⋆‖

(2.21)

‖xk+1 − x⋆‖ ≤ g5(‖xk − x⋆‖)‖xk − x⋆‖ ≤ g5(‖xk−1 − x⋆‖)‖xk − x⋆‖

≤ g5(‖x0 − x⋆‖)‖xk − x⋆‖ = c‖xk − x⋆‖

≤ ck+1‖x0 − x⋆‖,

so limk→+∞ xk = x⋆ and xk+1 ∈ U(x⋆, r).

Finally, to show the uniqueness part, let y⋆ ∈ D1 be such that F(y⋆) = 0. Set

Q =
∫ 1

0
F ′(x⋆ + θ(y⋆ − x⋆)) dθ. Then, using (2.9), we get that

∥

∥

∥
F ′(x⋆)−1(Q −F ′(x⋆))

∥

∥

∥
≤ L0

∫ 1

0

θ‖x⋆ − y⋆‖ dθ ≤
L0T

2
< 1.

Hence, Q−1 ∈ L(Y,X). Then, by the identity 0 = F(x⋆) −F(y⋆) = Q(x⋆ − y⋆),
we deduce x⋆ = y⋆. �
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It turns out that we can use another approach. Indeed, define functions g5 and
h5 on the interval [0, r4) by

(2.22) g5(r) =
1

2(1 − L0r)

[

L +
3|α|ML0(1 − L0r + Lr/2 + M/3)

2(1 − L0r)2 − 3L0(1 − L0r + Lr/2 + M/3)r

]

r

and

(2.23) h5(r) = g5(r) − 1.

Then, we also have that

h5(0) = −1 < 0 and h5(r) → +∞ as r → r−4 .

Denote by r5 the smallest such zero. Set

(2.24) R⋆ = min{r2, r5}.

Next, we present a second local convergence result for method (1.2). �

Theorem 2.2. Let F : D ⊆ X → Y be a Fréchet differentiable operator. Sup-

pose that there exist x⋆ ∈ D and L0 > 0 such that for each x ∈ D

F(x⋆) = 0, F ′(x⋆)−1 ∈ L(Y,X),
∥

∥

∥
F ′(x⋆)−1(F ′(x) −F ′(x⋆))

∥

∥

∥
≤ L0‖x − x⋆‖ .

Moreover, suppose that there exist parameters L > 0 and M ∈ [0, 3) such that

for all x ∈ D0 = D ∩ U(x⋆, 1/L0)

∥

∥

∥
F ′(x⋆)−1(F(x) −F(x⋆) −F ′(x)(x − x⋆))

∥

∥

∥
≤

L

2
‖x − x⋆‖

2

∥

∥

∥
F ′(x⋆)−1F ′(x)

∥

∥

∥
≤ M

and

U(x⋆, R⋆) ⊆ D

hold, where the convergence radius R⋆ is defined in (2.24). Then, sequence {xn}
generated by method (1.2) for x0 ∈ U(x⋆, R⋆) is well defined, remains in U(x⋆, R⋆)
for each n = 0, 1, 2, . . . and converges to x⋆. Moreover, the following estimates

hold for each n = 0, 1, 2, . . .

‖yn − x⋆‖ ≤ g1(‖xn − x⋆‖)‖xn − x⋆‖ ≤‖xn − x⋆‖ < R⋆,

‖zn − x⋆‖ ≤ g2(‖xn − x⋆‖)‖xn − x⋆‖ ≤‖xn − x⋆‖ ,

3

2
‖Hn‖ ≤ g3(‖xn − x⋆‖)‖xn − x⋆‖ < 1,

‖xn+1 − x⋆‖ ≤ g5(‖xn − x⋆‖)‖xn − x⋆‖ ≤‖xn − x⋆‖ ,
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where function g5 is given in (2.22). Furthermore, for T ∈ [R⋆, 2/L0), the limit

point x⋆ is the only solution of equation F(x) = 0 in D2 := U(x⋆, T ) ∩ D.

Proof: It follows exactly as in Theorem 2.1 until the computation of the upper
bound on ‖x1 − x⋆‖ where we use the estimate

‖y0 − x0‖ =
∥

∥

∥
F ′(x0)

−1F(x0)
∥

∥

∥

≤
∥

∥

∥
F ′(x0)

−1F ′(x⋆)
∥

∥

∥

∥

∥

∥

∥

∥

∫ 1

0

F ′(x⋆)−1F ′(x⋆ + t(x0 − x⋆))(x0 − x⋆) dt

∥

∥

∥

∥

∥

≤
M‖x0 − x⋆‖

1 − L0‖x0 − x⋆‖
≤

MR⋆

1 − L0R⋆

instead of

‖y0 − x0‖ ≤‖y0 − x⋆‖ +‖x0 − x⋆‖

≤ (1 + g1(‖x0 − x⋆‖))‖x0 − x⋆‖

used in the proof of Theorem 2.1. This change leads to

‖x1 − x⋆‖ ≤‖y0 − x⋆‖ +
|α|M

2

g3(‖x0 − x⋆‖)‖x0 − x⋆‖
2

(1 − L0‖x0 − x⋆‖)(1 − g3(‖x0 − x⋆‖)‖x0 − x⋆‖)

= g5(‖x0 − x⋆‖)‖x0 − x⋆‖ = c0‖x0 − x⋆‖ < R⋆,

where c0 = g5(‖x0 − x⋆‖) ∈ [0, 1), instead of the old estimate. The rest of the
proof follows as in Theorem 2.1. �

Remarks 2.3. 1. In view of (2.9) and the estimate

∥

∥

∥
F ′(x⋆)−1F ′(x)

∥

∥

∥
=

∥

∥

∥
F ′(x⋆)−1(F ′(x) −F ′(x⋆)) + I

∥

∥

∥

≤ 1 +
∥

∥

∥
F ′(x⋆)−1(F ′(x) −F ′(x⋆))

∥

∥

∥

≤ 1 + L0‖x − x⋆‖ ,

condition (2.11) can be dropped and M can be replaced by M(r) = 1 + L0r or
simply by M(r) = M = 2, since r ∈ [0, 1/L0).

2. Condition (2.10) can be replaced by the popular but stronger condition

∥

∥

∥
F ′(x⋆)−1(F ′(x) −F ′(y))

∥

∥

∥
≤ L‖x − y‖ for each x, y ∈ D.

3. The results obtained here can be used for operatorsF satisfying autonomous
differential equations [2], [6], [15], [17] of the form

F ′(x) = P(F(x))
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where P is a continuous operator. Then, since F ′(x⋆) = P(F(x⋆)) = P(0), we can
apply the results without actually knowing x⋆. For example, let F(x) = ex − 1.
Then, we can choose: P(x) = x + 1.

4. The local results obtained here can be used for projection methods such
as the Arnoldi’s method, the generalized minimum residual method (GMRES),
the generalized conjugate method (GCR) for combined Newton/finite projection
methods and in connection to the mesh independence principle can be used to de-
velop the cheapest and most efficient mesh refinement strategies [2], [6], [15], [17].

5. The parameter rA — given in (2.2) — was shown by us to be the convergence
radius of Newton’s method [2], [6]

(2.25) xn+1 = xn −F ′(xn)−1F(xn) for each n = 0, 1, 2, . . .

under the conditions (2.8)–(2.9). It follows from (2.4) that the convergence radius
r of the third order method (1.2) cannot be larger than the convergence radius
rA of the second order Newton’s method (2.25). In our earlier studies, we used
rA = 2

2L0‘+L
. As already noted in [2], [4], [6] rA is at least as large as the

convergence ball given by Rheinboldt [21]

rR =
2

3 L
.

In particular, for L0 < L we have that rR < rA and

rR
rA

−→
1

3
as

L0

L
−→ 0.

That is our convergence ball rA is at most three times larger than Rheinboldt’s.
The same value for rR was also given by Traub [22]. Notice also that rA ≤ rA,
since L ≤ L.

3. Numerical examples

We present some numerical examples in this section.

Example 3.1. Returning back to the motivational example, we get L0 = L =
L = 96.662907, M = 1.0631 and α = 1. Then, using (2.7) and (2.24), we obtain

r⋆ = 0.002116 . . . , R⋆ = 0.002026 . . .

Example 3.2. Let X = Y = R
m−1 for integer m ≥ 2, X and Y are equipped

with the max-norm ‖x‖ = max1≤i≤m−1‖xi‖. The corresponding matrix norm is

‖A‖ = max
1≤i≤m−1

m−1
∑

j=1

|aij |
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for A = (aij)1≤i,j≤m−1. On the interval [0, 1], we consider the following two point
boundary value problem

(3.1)

{

v′′ + v2 = 0

v(0) = v(1) = 0,

see [2], [6]. To discretize the above equation, we divide the interval [0, 1] into
m equal parts with length of each part h = 1/m and coordinate of each point
xi = i h with i = 0, 1, 2, . . . , m. A second-order finite difference discretization of
equation (3.1) results in the following set of nonlinear equations

(3.2) F(v) :=

{

vi−1 + h2 v2
i − 2vi + vi+1 = 0

for i = 1, 2, . . . , (m − 1) and from (3.1) v0 = vm = 0

where v = [v1, v2, . . . , v(m−1)]
T. For the above system-of-nonlinear-equations, we

provide the Fréchet derivative

F ′(v) =



























2v1

m2
− 2 1 0 0 · · · 0 0

1
2v2

m2
− 2 1 0 · · · 0 0

0 1
2v3

m2
− 2 1 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 1
2v(m−1)

m2
− 2



























.

Let m = 101 and we choose α = 1.0. To solve the nonlinear system (3.2)
by method (1.2), we implemented the algorithm in MatLab. Performance of
method (1.2) is reported in Table 1.

n ‖xn − xn−1‖2

∥

∥F(x)
∥

∥

2

0 10.122106 . . .
1 1.035814 . . . 1,738 051 · 10−1

2 8,099 007 · 10−1 2,012 154 · 10−2

3 1,507 597 · 10−1 5,264 710 · 10−5

4 5,063 846 · 10−4 1,91 · 10−14

5 1,25 · 10−13 1,1 · 10−14

Table 1. Solving (3.1) by method (1.2) for x0 = [1, 1.09, . . . , 10]T.

Figure 1 plots our numerical solution.
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Figure 1. Solution of the boundary value problem (3.1).
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