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Spaces with star countable extent

A.D. Rojas-Sánchez, Á. Tamariz-Mascarúa

Abstract. For a topological property P , we say that a space X is star P if for
every open cover U of the space X there exists A ⊂ X such that st(A,U) = X.
We consider space with star countable extent establishing the relations between
the star countable extent property and the properties star Lindelöf and feebly
Lindelöf. We describe some classes of spaces in which the star countable extent
property is equivalent to either the Lindelöf property or separability. An example
is given of a Tychonoff star Lindelöf space with a point countable base which is
not star countable.

Keywords: extent; star properties; star countable spaces; star Lindelöf spaces;
feebly Lindelöf spaces

Classification: 54D20, 54C10, 54B10, 54B05

1. Spaces with star countable extent

If X is a topological space and U is a family of subsets of X , then the star of
a subset A ⊂ X with respect to U is the set

st (A,U) =
⋃

{U ∈ U : U ∩A 6= ∅} .

Definition 1. Let P be a topological property. A space X is said to be star P if
whenever U is an open cover of X , there is a subspace A ⊂ X with the property P ,
such that st(A,U) = X . The set A will be called a star kernel of the cover U .

The term star P was coined in 2007 [9], but certain star properties have been
studied by several authors ([5], [6], [8]).

In this paper we shall concentrate on the property star countable extent. The
goal is to develop the concept of star countable extent and study the relation-
ships between this property and others star properties such as that of being star
countable and star Lindelöf. In the remainder of this paper, spaces are assumed
to be Hausdorff spaces and to have at least two points.

Definition 2. The extent e(X) for a space X is defined as

e(X) = sup {|M | : M ⊂ X is a closed and discrete subspace of X} .
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Hereafter we refer to the star countable extent property as SCE property and
we call a space with star countable extent an SCE-space.There are many results
about star P spaces which are quite easy to prove. For example, since every
dense subset of a space X is a star kernel of every open cover U , then we have
the following result.

Proposition 3. Let P be a topological property. If a space X contains a dense

subspace D ⊂ X with the property P , then X is star P .

Another result easy to prove has to do with the union of star P spaces.

Proposition 4. For a cardinal number κ, let P be a topological property that is

preserved under unions of size κ. If X =
⋃

α<κ Yα and each Yα is a star P space,

then X is star P .

In particular, since the countable extent property is preserved under countable
unions then the star countable extent property is also preserved under countable
unions.

In [1] and [2] the authors offer a very deep and comprehensive study of the star
P property for “P = countable, σ-compact or Lindelöf ” (see also [12], [13]) and
they also deal with the feebly Lindelöf concept. For these properties we have the
well-known implications:

star countable ⇒ star σ-compact ⇒ star Lindelöf,

star Lindelöf ⇒ feebly Lindelöf.

In general, none of the implications can be reversed ([1]). Other important impli-
cations are

separable ⇒ star countable,

Lindelöf ⇒ countable extent ⇒ star countable,

star countable ⇔ star separable.

With the exception of the last, the reverse implications are not valid.
To begin with the study of the SCE property, let us notice that since every

Lindelöf space has countable extent then every star-Lindelöf space is an SCE-
space. Now we will see that every SCE-space is a feebly Lindelöf space.

Definition 5. A topological space X is called feebly Lindelöf if every locally
finite family of non-empty open sets in X is countable.

The following result is a well-known fact.

Proposition 6. Let U = {Uα : α < κ} be a locally finite family of non-empty

open sets in a space X . For each α < κ take xα ∈ Uα. Then D = {xα : α < κ} is

a closed and discrete subspace of X .

Recall that a pairwise disjoint collection of non-empty open sets in a space X
is called a cellular family. As an easy consequence of Proposition 6 we have the
next result.
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Corollary 7. If a space X has an uncountable locally finite cellular family, then

X is not an SCE-space.

This last corollary together with the fact that every locally finite collection of
non-empty open sets induces an uncountable locally finite cellular family implies
the following result.

Corollary 8. If X is an SCE-space then X is feebly Lindelöf.

So far we have that the concept of SCE lies between the classes of star Lindelöf
spaces and the feebly Lindelöf spaces. Now we will see examples to show that the
reversed implications do not hold.

The following space was presented in [1] as an example of a feebly Lindelöf
space but not star Lindelöf. Now we show that this space is also an SCE-space.

Proposition 9. There is a Tychonoff space which is an SCE-space but not star

Lindelöf.

Proof: Let S = {α+1 : α < ω1} and let X = (ω1×ω)∪(S×{ω}) be considered
as a subspace of ω1 × (ω + 1). Call Z = ω1 × ω and notice that Z is dense in X .
Since Z is σ-countably compact, it follows that e(Z) ≤ ω, and therefore X is an
SCE-space.

Now let us check that X is not star Lindelöf. Consider the open cover

U = {ω1 × ω} ∪ {{α} × (ω + 1) : α ∈ S} .

If L ⊂ X is a Lindelöf subspace, then L must be bounded on its first coordinates,
i.e., there exists α0 < ω1 such that if (α, n) ∈ L then α ≤ α0. As a consequence
we have that L is disjoint from {α0 + 1} × (ω + 1), thus (α0 + 1, ω) /∈ st(L,U),
which proves that X cannot be star Lindelöf. �

The existence of a dense subset with countable extent in the example given
in Proposition 9 suggests that the concepts of star Lindelöf and SCE maintain
some distance from each other. However, as we will see, there are several classes
of spaces in which these concepts coincide.

The last example also allows us to establish the fact that we cannot change the
hypothesis in Proposition 3 related to the existence of a dense subspace with the
property P for the existence of a dense star P subspace. At least in the case of
P being Lindelöf, according to the space constructed in Proposition 9, we have a
non star Lindelöf space with a star Lindelöf dense subspace.

In Proposition 39, an example is given of a feebly Lindelöf Moore space that is
not an SCE-space. We have the following result.

Proposition 10. There is a feebly Lindelöf Tychonoff space which is an SCE-

space.

2. Subspaces of star countable extent spaces

In this section we study what kind of subspaces inherit the property star count-
able extent.
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Example 11. If X = ψ(A) is a Mrówka space for some MAD family A in ω, then
X is an SCE-space because X is separable. However, A is an uncountable closed
discrete subspace; therefore it cannot be an SCE-space. This proves that the
SCE property is not necessarily inherited either by closed sets or closed Gδ-sets
or zero sets.

Example 12. If X is the one-point compactification of an uncountable discrete
space D, then X is an SCE-space but D is not. This proves that the SCE
property is not necessarily inherited either by open sets or dense subspaces, nor
even by an open dense subspace.

Now we give a positive result.

Proposition 13. Every open Fσ-subset of an SCE-space is an SCE-space.

Proof: Let X be an SCE-space and Y ⊂ X be an open Fσ-subset, say Y =
⋃

n<ω Fn, where each Fn is closed in X . Let U be an open cover of Y . Being Y
an open set in X it follows that every member of U is open in X . For each n < ω
consider the family Un = U ∪ {X \Fn}. Un is an open cover of X . By hypothesis
there exists a countable extent kernel Mn ⊂ X of Un. Since for every n < ω we
have that Fn ⊂ st(Mn ∩ Y,U), then Y = st(M,U), where M =

⋃

n<ω(Mn ∩ Y ).
We claim that e(M) ≤ ω. To this end it is enough to show that eachMn∩Y has

countable extent. The set Mn∩Y is equal to
⋃

m<ω(Mn∩Fm). Since Fm is closed
in X and e(Mn) ≤ ω, we have that e(Mn ∩ Fm) ≤ ω, and thus e(Mn ∩ Y ) ≤ ω.
This proves that Y is star countable extent. �

Corollary 14. A clopen subspace of an SCE-space is an SCE-space.

Corollary 15. A cozero subspace of an SCE-space is an SCE-space.

Other classes of subspaces to consider are the regular open and the regular
closed sets. In both cases the answer is negative.

Example 16. Let L be the one-point Lindelöfication of an uncountable discrete
space and let S be a convergent sequence together with its limit. Let X be the
quotient space obtained from L ⊕ S by identifying the non-isolated points of L
and S. Being a continuous image of a Lindelöf space, we have that X is a Lindelöf
space. On the other hand, it is easy to check that the isolated points of L form
a regular open subset of X which is not an SCE-space. Therefore the SCE
property is not inherited by regular open sets.

Proposition 17. There is a Tychonoff star countable space with a regular closed

subset that is not an SCE-space.

Proof: Recursively we are going to build a MAD family of countable subsets of
ω · ω1 of size 2ω.

Let A0 be any MAD family in ω · 1 with |A0| = 2ω and
⋃

A0 = ω · 1. Assume
that for every α < β we have constructed a MAD family Aα in ω · α such that
⋃

Aα = ω · α and if δ < α, then Aδ ⊂ Aα. Since
⋃

α<β Aα is almost disjoint
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in ω · β, we can extend the family into a MAD family Aβ in ω · β such that
⋃

Aβ = ω · β. The fact that for every α < ω1, Aα is a MAD family in ω · α such
that

⋃

Aα = ω · α implies that if α < β < ω1 then Aβ \ Aα is uncountable.
Let A =

⋃

α<ω1
Aα. The collection A is an almost disjoint family in ω ·ω1. We

claim that A is also maximal. Let A ⊂ ω · ω1 with |A| = ω. Take α < ω1 such
that A ⊂ ω · α. Since Aα is maximal in ω · α, there exists B ∈ Aα ⊂ A such that
|A ∩ B| = ω, which proves that A is maximal. Notice that since |A0| = 2ω, we
have |A| = 2ω.

Let X1 = A∪ ω · ω1 be the Mrówka space determined by A, i.e., each point in
ω · ω1 is isolated and an open neighborhood of A ∈ A takes the form {A} ∪A \F
where F ⊂ A is finite. Now we show that X1 is not an SCE-space.

First notice that if A ∈ Aα+1 \Aα, then |A∩ω ·α| < ω. If this is not true then,
by maximality of Aα, there exists B ∈ Aα ⊂ Aα+1 such that |A∩B| = ω, but this
is not possible because Aα+1 is almost disjoint. Therefore, the set {A}∪(A\ω ·α)
is open in X1.

For each A ∈ A, we define UA = {A} ∪ (A \ ω · α) if A ∈ Aα+1 \ Aα for some
α < ω1, and define UA = {A} ∪A otherwise. Let

U = {UA : A ∈ A} ∪ {{α} : α ∈ ω · ω1} .

Let N ⊂ X1 be any subspace with e(N) ≤ ω. Notice that N ∩ A is countable
and since N \

⋃

A∈N∩A
UA ⊂ ω ·ω1 is closed and discrete in N , we have that N is

actually countable. Take α < ω1 such that N ∩ω ·ω1 ⊂ ω ·α. Since Aα+1 \Aα is
uncountable, we can take A ∈ Aα+1\(Aα∪(N∩A)). By construction, UA∩N = ∅,
thus A /∈ st(N,U). Therefore U cannot have a star kernel with countable extent.

Now let A′ be a MAD family in ω with |A′| = 2ω and let X2 = A′ ∪ ω be the
Mrówka space associated to A′. Take ϕ : A → A′ a bijection and let X be the
quotient image of X1 ⊕X2 by identifying each A ∈ A with ϕ(A) ∈ A′, say

X = ω · ω1 ∪ {(A,ϕ (A)) : A ∈ A} ∪ ω.

Let q : X1 ⊕X2 → X be the quotient map and call Z = q[X1]. We claim that
X is a star countable space and Z is a regular closed subset of X homeomorphic
to X1.

It is easy to check that Z = clX(ω · ω1), hence Z is a regular closed subset
of X .

Clearly q ↾X1
: X1 → Z is a continuous bijection. To see that q ↾X1

is also open,
take A ∈ A and F ⊂ A finite. Define

W = {(A,ϕ (A))} ∪ (A \ F ) ∪ ϕ(A).

Then W is open in X and q[{A} ∪ (A \ F )] = W ∩ Z. Thus Z is homeomorphic
to X1.

Finally we show that X is star countable. Let U be an open cover of X . Since
q[X2] is separable, there exists a countable subset M ⊂ q[X2] such that q[X2] ⊂
st(M,U); in particular {(A,ϕ(A)) : A ∈ A} ⊂ st(M,U). Call N = Z \ st(M,U)
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and notice that N is finite. Otherwise we can take B ⊂ Z \st(M,U) ⊂ ω ·ω1 with
|B| = ω, and by maximality of A there is A ∈ A such that |A ∩ B| = ω. Since
(A,ϕ(A)) ∈ st(M,U), there exists F ⊂ A finite such that A \ F ⊂ st(M,U), but
this implies that B ∩ st(M,U) 6= ∅ which is not possible. Therefore M ∪N is the
countable kernel of U . Thus X is star countable. �

3. Invariance of the star countable extent property

In what follows we shall see what happens with the images and the inverse
images of the SCE-spaces.

The following result appears in [9] as Proposition 32 and has a simple proof.

Proposition 18. If P is a topological property preserved under continuous im-

ages, then the property star P is also preserved under continuous images.

Since the countable extent is preserved under continuous images we have the
following result.

Corollary 19. The SCE property is preserved under continuous images.

Recall that a closed function with compact fibers is called a perfect map.

Lemma 20. The countable extent property is an inverse invariant of perfect

mappings.

Proof: Let f : X → Y be a perfect map, where Y is a space such that e(Y ) ≤ ω.
Fix a closed and discrete subspace M ⊂ X . First we check that f [M ] is discrete
in Y . Given p ∈ f [M ], the set A = M \ f−1[{p}] is closed in X because M is
closed and discrete in X . Therefore Y \ f [A] is an open set in Y and clearly
(Y \ f [A]) ∩ f [M ] = {p}. With this we have that f [M ] is discrete in Y , but
also f [M ] is closed because f is perfect. Hence f [M ] is countable. On the other
hand, since f is perfect and M closed, then f |M : M → f [M ] is perfect. So for
every p ∈ f [M ], (f |M )−1[{p}] is compact in M and thus finite. Finally, since
M =

⋃

{(f |M )−1[{p}] : p ∈ f [M ]}, we get that |M | ≤ ω. This proves that
e(X) ≤ ω. �

Proposition 21. If f : X → Y is an open perfect surjection and Y is an SCE-

space, then X is an SCE-space.

Proof: Let U be an open cover of X . For each y ∈ Y there exists a finite subset
Uy ⊂ U such that f−1[{y}] ⊂

⋃

Uy. We can assume that for every U ∈ Uy,
U ∩ f−1[{y}] 6= ∅. Define Vy = (Y \ f [X \

⋃

Uy]) ∩
⋂

{f [U ] : U ∈ Uy}. Vy is
an open set because Uy is finite and f is an open-closed map. The condition
U ∩ f−1[{y}] 6= ∅ together with the fact that f−1[{y}] ⊂

⋃

Uy imply that y ∈ Vy.
This shows that the family V = {Vy : y ∈ Y } is an open cover for Y . By
hypothesis we can take a kernel N ⊂ Y of V with e(N) ≤ ω. Call M = f−1[N ].
Notice that Lemma 20 is valid because f |M : M → N is a perfect surjection and
hence e(M) ≤ ω. Now we show that M is a kernel of U . Given x ∈ X , there
exists y ∈ Y such that f(x) ∈ Vy and Vy ∩ N 6= ∅. Since Vy ⊂ Y \ f [X \

⋃

Uy],
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f−1[Vy] ⊂
⋃

Uy, then x ∈ U for some U ∈ Uy. Since Vy ⊂ f [U ] and Vy ∩N 6= ∅,
we have U ∩M 6= ∅, and thus x ∈ st(M,U). Therefore X is an SCE-space. �

It is worth mentioning that in Proposition 21 we do not need the continuity
of the function. However the hypothesis of f being perfect and open seems to be
quite strong. We shall see an example which shows us that we cannot drop the
open mapping condition.

The following lemma has a very simple proof and is left to the reader.

Lemma 22. Let X be a topological space and A(X) = X×{0, 1} the Alexandroff

duplicate of X . Then the function f : A(X) → X defined as f(x, i) = x, for

i = 0, 1, is a continuous perfect surjection.

The next example was proposed in [6] to exhibit that the star Lindelöf property
is not an inverse invariant of perfect mappings. Now we shall see that this same
space allows us to show that we cannot drop the hypothesis of open map in
Proposition 21.

Example 23. Let S2 be the product space of the Sorgenfrey line S. Since S2 is
separable, then it is also an SCE-space. By Lemma 22, f : A(S2) → S2 defined
as f(p, i) = p, i = 0, 1, is a continuous perfect surjection. Consider the subset
L = {(x,−x) ∈ S2 : x ∈ S}; it is well-known that L is closed and discrete in S2.
For p ∈ S2 \ L define U(p) = U × {0, 1}, where U ⊂ S2 is an open set such that
p ∈ U and U ∩ L = ∅. Similarly for p ∈ L define U(p) = (U × {0, 1}) \ {(p, 1)},
where U ⊂ S2 is an open set such that p ∈ U and U ∩ L = {p}. In both cases
U(p) ∩ (L× {1}) = ∅. This implies in particular that L× {1} is closed in A(S2),
but all the points of L×{1} are isolated. Hence L×{1} is an uncountable clopen
discrete subspace of A(S2), thus is not an SCE-space. Since the SCE property is
hereditary in clopen sets, we can conclude that A(S2) cannot be an SCE-space.

The key argument to show that A(S2) is not an SCE-space can be generalized
in the following result.

Proposition 24. If A(X) is an SCE-space, then e(X) ≤ ω.

Of course it is natural to ask whether the reverse implication in Proposition 24
is also valid. The answer is affirmative, in fact we can achieve a stronger result.

Proposition 25. If e(X) ≤ ω then e(A(X)) ≤ ω.

Proof: The proof is an immediate consequence of the fact that A(X) is a perfect
inverse image ofX and the countable extent property is a perfect inverse invariant.

�

Combining these last two propositions, we see that in the class of spaces which
are Alexandroff duplicates of topological spaces, the concepts countable extent and
SCE are equivalent (therefore they also coincide with any intermediate concept).

Corollary 26. For any topological space X , e(A(X)) ≤ ω if and only if A(X) is

an SCE-space.
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4. Finite products

In this section we shall see that the SCE property is fragile when we take finite
products, even between spaces with a stronger covering property than the SCE.

As a consequence of Proposition 21 we have the following result.

Proposition 27. If X is an SCE-space and K is compact, then X × K is an

SCE-space.

From this proposition we obtain a slightly better result.

Corollary 28. If X is an SCE-space and Y is σ-compact, then X × Y is an

SCE-space.

Proof: Suppose Y =
⋃

n<ω Kn, where each Kn is a compact subspace. Then
X × Y =

⋃

n<ω(X × Kn) and each X × Kn is an SCE-space. Since the SCE
property is preserved under countable unions then X × Y is an SCE-space. �

Next we present an example that shows us that in Proposition 27 we cannot
replace σ-compact by Lindelöf nor by countably compact; moreover, this same
example shows us that the product of a countably compact space with a Lindelöf
space is not necessarily an SCE-space.

Proposition 29. There exist a countably compact space X and a Lindelöf

space Y such that X × Y is not an SCE-space.

Proof: Let Z = ω1 × L where L is the one-point Lindelöfication of ω1. Let

U = {(α, ω1) × {α} : α < ω1} .

It is easy to see that the set U = {(α, β) ∈ Z : β ≥ α} is an open subset of X .
Since V = U ∪ {U} is a partition of X in open subsets, then it is also a partition
in clopen subsets, so V is an uncountable discrete family. By Corollary 7, X is
not an SCE-space. �

The following example shows us that the SCE property is not preserved if we
take the product of two Lindelöf spaces. To construct the example we use the
concept of a totally imperfect set [7].

Definition 30. A subset A ⊂ R is totally imperfect if A does not contain a copy
of the Cantor set.

An important remark is that if A ⊂ R is a totally imperfect set and F ⊂ R
is an uncountable closed set then F * A. The next theorem is due to Bernstein,
a proof can be found in [7].

Theorem 31 (Bernstein Theorem). There exists A ⊂ R such that |A| = |R\A| =
2ω and both A and R \A are totally imperfect sets.

Proposition 32. There exist two Lindelöf spaces X and Y such that X × Y is

not an SCE-space.
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Proof: Let A ⊂ R be as in the Bernstein Theorem. Take the Alexandroff dupli-
cate of R, A(R) = R × {0, 1}. Let

X1 = (A× {0}) ∪ (R × {1}) and X2 = ((R \A) × {0}) ∪ (R × {1})

subspaces of A(R).
Let B be the collection of open intervals in R and let Bx = {A ∈ B : x ∈ A}.

The collection A1 = {Ux × {0, 1} \ {(x, 1)} : x ∈ A and Ux ∈ Bx} ∪ {{(x, 1)} :
x ∈ R} is a base for X1; and A2 = {Ux × {0, 1} \ {(x, 1)} : x ∈ R \ A and Ux ∈
Bx} ∪ {{(x, 1)} : x ∈ R} is a base for X2.

We shall see that X1 and X2 are Lindelöf. Let U be an open cover of X1 by
sets belonging to A1. Assume that

U = {(Ux × {0, 1}) \ {(x, 1)} : x ∈ F} ∪ {{(x, 1)} : x ∈ B}

for some subsets F,B ⊂ R. Notice that {Ux : x ∈ F} is an open cover of A.
Being A a subspace of R, there exists a countable subset F0 ⊂ F such that
A ⊂

⋃

x∈F0
Ux. Define U =

⋃

x∈F0
Ux. Since R \ U is a closed set contained in

R \ A and this is a totally imperfect set, it follows that R \ U is countable. For
each x ∈ F0 ∪ (R \ U) fix Wx ∈ U such that (x, 1) ∈Wx. Let

U0 = {(Ux × {0, 1}) \ {(x, 1)} : x ∈ F0} ∪ {Wx : x ∈ F0 ∪ (R \ U)} .

U0 is a countable subfamily of U , let us see that it is also a subcover. By the choice
of F0 we only need to show that R × {1} is covered by U0. Take (t, 1) ∈ R × {1}
and assume that t /∈ F0 ∪R \U , then t ∈ U =

⋃

x∈F0
Ux, thus there exists x ∈ F0

such that t ∈ Ux. Since t 6= x we have that (t, 1) ∈ (Ux × {0, 1}) \ {(x, 1)} ∈ U0.
Therefore X1 is Lindelöf. Similarly X2 is Lindelöf.

Now we show that X1 × X2 is not an SCE-space. Consider the diagonal set
∆ = {(p, p) : p ∈ A(R)} of A(R)×A(R). Since ∆ is closed in A(R)×A(R), we have
thatD = ∆∩(X1×X2) is closed inX1×X2. Notice thatD = {(p, p) : p ∈ R×{1}};
so each element of D is isolated in X1 ×X2, which gives us that D is actually an
uncountable clopen discrete subspace and therefore not an SCE-space. Since the
SCE is clopen hereditary, X1 ×X2 cannot be an SCE-space. �

5. Relations between star P spaces

To finish this study of the SCE property, we shall analyze several classes of
spaces in which the SCE property is equivalent to any of the following three
properties: separability, Lindelöf or countable extent (remember that each of
these implies the SCE property). We will also consider those classes in which
SCE is similar to either star countable or star Lindelöf.

In Corollary 26 we already gave a first result on this matter because we have
shown that the Alexandroff duplicate of a space has countable extent if and only
if it is an SCE-space. Considering that every space is continuous image of its
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Alexandroff duplicate, it is clear that in Corollary 26 neither l(A(X)) ≤ ω nor
d(A(X)) ≤ ω can be substituted for e(A(X)) ≤ ω.

Recall that a space in which every Gδ-set is open is called a P -space. In [2]
the following result is shown.

Proposition 33. If X is a normal P -space, then e(X) ≤ ω if and only if X is

feebly Lindelöf.

A natural question to ask is whether the normality can be weakened to Ty-
chonoff in Proposition 33. In [2] a consistent example of a feebly Lindelöf Ty-
chonoff P -space which is not star Lindelöf is given. We now see that this space is
not an SCE-space.

A family A of subsets of ω1 is almost disjoint if every element of A is un-
countable and for each pair of distinct sets A,B ∈ A, |A ∩ B| ≤ ω. Using a
construction similar to that of a Mrówka space, we may define a topology on
A ∪ ω1 by declaring that each d ∈ ω1 is isolated and an open neighborhood of
A ∈ A takes the form {A} ∪ A \ C, where C ⊂ A is countable. It turns out that
this space is Hausdorff and 0-dimensional; we will call this space a Mrówka space
on ω1 (determined by A).

The proof of the following lemma is entirely analogous to the proof that
a Mrówka Ψ-space is feebly compact and is left to the reader.

Lemma 34. If A is an almost disjoint family on ω1, then the Mrówka space

A ∪ ω1 is a P -space. Moreover, if A is maximal then A ∪ ω1 is feebly Lindelöf.

It is well-known that the existence of a MAD family A on ω1 such that |A|ω =
|A| is independent of ZFC.

Proposition 35. If there exists a MAD family A on ω1 such that |A|ω = |A|,
then there is a feebly Lindelöf P -space which is not an SCE-space.

Proof: Let X = A ∪ ω1 be the Mrówka space related to A, and assume that
⋃

A = ω1. By Lemma 34 we already know that X is a feebly Lindelöf P -space.
In [1] it is shown that this space is not star-Lindelöf. Since a subspace M of

X has countable extent if and only if M is Lindelöf, we have that X cannot be
an SCE-space. �

This space shows us that at least consistently, normal cannot be replaced by
Tychonoff in Proposition 33. We have the question open whether it is possible to
find in ZFC a Tychonoff feebly Lindelöf P -space which is not an SCE-space.

Another important class of spaces are the Moore spaces. Recall that a deve-
lopment for a space X is a sequence of open covers {Un : n < ω} such that for
each x ∈ X , the family {st(x,Un) : n < ω} is a local base at x. A Moore space is
a regular space with a development.

In [2] the following is shown.

Theorem 36. If X is a Moore space, then X is separable if and only if X is

star Lindelöf.
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It is well-known that every Moore space is semistratifiable [4], which in par-
ticular implies that every Moore space is a D-space and therefore the Lindelöf
degree and the extent of the space match. Thus we have a slight generalization
of Theorem 36.

Corollary 37. If X is a Moore space, then X is separable if and only if X is an

SCE-space.

We may now ask if the following implications are true in the class of Moore
spaces:

SCE ⇒ countable extent ?

feebly Lindelöf ⇒ SCE ?

The answer to both questions is negative. The Niemytzki plane is a separable
Moore space with uncountable extent. To show that the second implication is not
valid, we use the following lemma. The proof is a simple exercise and is left to
the reader.

Lemma 38. If X is a ccc space, then X is feebly Lindelöf.

In the following example we employ the Pixley-Roy topology on the hyperspace
of all non-empty finite subsets of R (see [10] and [5]).

Proposition 39. There is a feebly Lindelöf Moore space which is not an SCE-

space.

Proof: Let X = [R]<ω \ {∅} be endowed with the Pixley-Roy topology. Recall
that for each F ∈ X a canonical open neighborhood of F takes the form

[F,U ] = {A ∈ X : F ⊂ A ⊂ U}

where U ⊂ R is an Euclidean open set such that F ⊂ U . This construction was
first described in [10], and X with this topology is a Moore space.

To see that X is feebly Lindelöf it is enough to show that X is ccc. Take B as
any countable base of R and define

B0 =
{

⋃

U : U ∈ [B]<ω
}

.

Notice that for any open set [F,U ], there exists B ∈ B0 such that [F,B] ⊂ [F,U ].
This is because if for each x ∈ F we take Vx ∈ B such that x ∈ Vx ⊂ U , then
[F,B] ⊂ [F,U ], where B =

⋃

{Vx : x ∈ F}.
If C = {[Fα, Uα] : α < κ} is a cellular family of basic open sets, then for each

α < κ take Bα ∈ B0 such that [Fα, Bα] ⊂ [Fα, Uα]; the countability of B0 now
implies the countability of C.

Finally we show that X is not an SCE-space. By Theorem 36 it suffices to
show that X is not star countable. Let U = {[{t},R] : t ∈ R}. Consider any
countable subset of X , Y = {Fn ∈ X : n < ω}. Then A =

⋃

Y ⊂ R is countable



392 Rojas-Sánchez A.D., Tamariz-Mascarúa Á.

and thus we can take s ∈ R \ A. The only member of U that contains the point
{s} ∈ X is [{s},R]; however, if there is an Fn ∈ [{s},R], then s ∈ Fn ⊂ A,
which is impossible. Therefore {s} /∈ st(A,U) and consequently X cannot be star
countable. �

It is worth mentioning that in [2] a first countable feebly Lindelöf space which
is not star Lindelöf is given. The example given in Proposition 39, being a Moore
space, represents an improvement on the first countable condition. The example
given in [2] is due to Shakhmatov, who in [11] constructed a pseudocompact space
with a point-countable base and with extent larger than 2ω; in [2] the authors
proved that this space cannot be star Lindelöf. To achieve this, the authors of [2]
proved and made use of the following result.

Proposition 40. If X is a regular star Lindelöf space with a point-countable

base, then l(X) ≤ 2ω.

This proposition, as well as Shakhmatov’s space, raises several questions.

(i) Is a pseudocompact Tychonoff space an SCE-space?
(ii) Can the bound l(X) ≤ 2ω in Proposition 40 be reached?
(iii) In the class of spaces with a point-countable base, is every star Lindelöf

space star countable?

As we shall see, the answers to (i) and (iii) are negative while (ii) has a positive
answer. To see that the answer to (i) is negative we will show that Shakhmatov’s
example mentioned above cannot be an SCE-space.

In [3] it was shown that every space with a point-countable base is a D-space,
with this in mind we have as an immediate consequence the following result.

Proposition 41. If X has a point-countable base, then X is star Lindelöf if and

only if X is an SCE-space.

Corollary 42. There exists a Tychonoff pseudocompact space which is not an

SCE-space.

Proof: Shakhmatov’s space [11] is a pseudocompact Tychonoff space with a
point-countable base which is not star Lindelöf. By Proposition 41 this space
cannot be an SCE-space either. �

The next example simultaneously proves that questions (ii) and (iii) have po-
sitive and negative answers, respectively. By responding negatively to (ii) we
also solve (in a stronger way) the question posed in [1]: is a first countable star
Lindelöf space star countable? Note that the space constructed in Proposition 9
is also related to the question posed in [1], because it is an example of a first
countable SCE-space which is not star Lindelöf.

To construct the required space we are going to use again the totally imperfect
sets of R.

Example 43. Let A ⊂ R be a totally imperfect set as in the Bernstein Theo-
rem. Consider Y = A ∪ (R \ A) with the topology generated by the collection
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B = {{x} : x ∈ R \A}∪ {(x− ǫ, x+ ǫ) : x ∈ A and ǫ > 0} as a base. The space Y
endowed with this topology is Lindelöf as we now show: if U ⊆ B is a basic open
cover, then there exists a countable subfamily V ⊂ U consisting of Euclidean open
sets such that A ⊂

⋃

V . Hence Y \
⋃

V is a Euclidean closed set disjoint from A.
By the Bernstein Theorem we have that Y \

⋃

V is countable. Therefore U has a
countable subcover of Y . Let X = R \A with the subspace topology of R and let
M = X × Y .

Proposition 44. M has a point-countable base.

Proof: Since X and A ⊂ Y have the Euclidean topology, both are separable.
Fix countable dense sets D1 ⊂ X and D2 ⊂ A. For x ∈ R and r > 0, denote

B (x, r) = {t ∈ R : |x− t| < r}

and in case x ∈ X let BX(x, r) = B(x, r) ∩X . Let

B1 =

{

BX

(

x,
1

n

)

×B

(

a,
1

n

)

: x ∈ D1, a ∈ D2, n ∈ N

}

and

B2 =

{

BX

(

x,
1

n

)

× {y} : x ∈ D1, y ∈ Y \A, n ∈ N

}

,

then B = B1 ∪ B2 is a base for M . Let (x, t) ∈ M . If t ∈ A, then (x, t) does
not belong to any element of B2. Since B1 is countable it follows that B is point
countable at (x, t). On the other hand if t ∈ Y \A, then (x, t) belongs to elements
of B2 only of the form BX(a, 1

n
)×{t} (assuming that x ∈ BX(a, 1

n
)). Using again

that B1 is countable we have that B is also point-countable at (x, t). �

Proposition 45. M is not star countable.

Proof: Let D = {(x, x) : x ∈ R \A}. Since for every x ∈ R \A

D ∩ (X × {x}) = {(x, x)} ,

D is discrete. On the other hand, if (x, t) ∈M \D, we can take r = 1

2
|x− t| > 0

and it follows that

(BX (x, r) ×B (t, r)) ∩D = ∅.

Hence D is also closed.
Consider the open cover U = {M \D} ∪ {X × {y} : y ∈ Y \ A}. U witnesses

that M cannot be star countable. If L ⊂ M is any kernel of U , then L must be
such that for every y ∈ Y \A, L∩ (X × {y}) 6= ∅. This is because X × {y} is the
only member of U that contains the point (y, y). Since {X × {y} : y ∈ Y \ A} is
a cellular family, it follows that |L| = 2ω. Therefore M is not star countable. �

The open cover considered in Proposition 45 also witnesses that the Lindelöf
degree of M is 2ω. Once we demonstrate that M is star Lindelöf we will have
shown that question (ii) indeed has a positive answer.



394 Rojas-Sánchez A.D., Tamariz-Mascarúa Á.

Proposition 46. M is star Lindelöf.

Proof: First notice that for each p ∈ X , the space {p}×Y is Lindelöf, since this
subspace of M is homeomorphic to Y . Thus if D = {dn : n < ω} is a dense subset
of X , then

⋃

{{dn} × Y : n < ω} is a dense Lindelöf subspace of M , therefore M
is star-Lindelöf. �

Corollary 47. There exists a Tychonoff space with a point-countable base, star

Lindelöf and with Lindelöf degree equal to 2ω which is not star countable.

We have already mentioned that every Moore space is semistratifiable (and
thus a D-space). We need to check if Theorem 36 is also valid in semistratifiable
spaces. Knowing that every space with a point countable base is a D-space and
since the space M in Example 43 is star Lindelöf and has a point-countable
base but is not star countable, we have that Theorem 36 is no longer valid for
D-spaces in general. For the semistratifiable case the authors do not know the
answer. However, at least in this class of spaces the properties SCE and star
countable are equivalent. This is actually a consequence of the following theorem
(see [4]).

Theorem 48. Let X be a semistratifiable space. The following are equivalent:

(i) X is Lindelöf;

(ii) X is hereditarily separable;

(iii) X has countable extent.

Corollary 49. If X is semistratifiable, then X is star countable if and only if X
is an SCE-space.

Proof: Assume that X is an SCE-space. The property of being semistratifiable
is hereditary, thus every subspace M ⊂ X with countable extent is separable and
therefore X is star separable. But the star separable property is the same as the
star countable property. Consequently X is star countable. �

6. Open questions

1. Is the product of an SCE-space and a separable space an SCE-space?
2. Is the product of an SCE-space and a second countable space an SCE-

space?
3. Is every SCE-space P -space, star Lindelöf (star countable)?
4. Is every SCE-space and semistratifiable space separable?
5. Is every SCE-space and semimetric space separable?
6. Is every SCE-space and semidevelopable space separable?
7. Is every SCE-space and σ-paralindelöf space star Lindelöf?
8. Is every SCE-space and pseudocompact Tychonoff space star Lindelöf?
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