
Czechoslovak Mathematical Journal

Francisco Pedroche; Miguel Rebollo; Carlos Carrascosa; Alberto Palomares
On some properties of the Laplacian matrix revealed by the RCM algorithm

Czechoslovak Mathematical Journal, Vol. 66 (2016), No. 3, 603–620

Persistent URL: http://dml.cz/dmlcz/145860

Terms of use:
© Institute of Mathematics AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/145860
http://dml.cz


Czechoslovak Mathematical Journal, 66 (141) (2016), 603–620

ON SOME PROPERTIES OF THE LAPLACIAN MATRIX

REVEALED BY THE RCM ALGORITHM

Francisco Pedroche, Miguel Rebollo, Carlos Carrascosa,

Alberto Palomares, València

(Received June 27, 2015)

Dedicated to the memory of Miroslav Fiedler

Abstract. In this paper we present some theoretical results about the irreducibility of the
Laplacian matrix ordered by the Reverse Cuthill-McKee (RCM) algorithm. We consider
undirected graphs with no loops consisting of some connected components. RCM is a well-
known scheme for numbering the nodes of a network in such a way that the corresponding
adjacency matrix has a narrow bandwidth. Inspired by some properties of the eigenvectors
of a Laplacian matrix, we derive some properties based on row sums of a Laplacian matrix
that was reordered by the RCM algorithm. One of the theoretical results serves as a basis
for writing an easy MATLAB code to detect connected components, by using the function
“symrcm” of MATLAB. Some examples illustrate the theoretical results.

Keywords: ordering algorithm; reverse Cuthill-McKee algorithm; graph partitioning;
Laplacian matrix

MSC 2010 : 15B36, 05C50

1. Introduction

When dealing with a problem related to consensus in the framework of complex

networks we noticed that a very easy MATLAB code allowed to detect connected

components [25]. We were mixing concepts from Graph Theory (the Laplacian) and

from Numerical Linear Algebra (the RCM algorithm). We thought it was worth

getting a deep insight into the theoretical properties that these two concepts spread

The research has been supported by Spanish DGI grant MTM2010-18674, Consolider In-
genio CSD2007-00022, PROMETEO 2008/051, OVAMAH TIN2009-13839-C03-01, and
PAID-06-11-2084.

603



on the table when we combine them. Since the proofs of the properties were beyond

of the left-to-the-reader problems of typical postgraduate textbooks we considered

it was interesting to write these proofs and to organize the theoretical material

involved. As a result, we present in this paper some results about the irreducibility

of the Laplacian matrix when it was reordered by the RCM algorithm. We also note

that as a byproduct of one of these results, one can write a simple MATLAB code

to detect connected components in graphs.

It is important to recall here that the standard method to detect connected com-

ponents in networks is the breadth first search (BFS), see, e.g., [15], [13]. Note that

our aim is not to offer a method faster than BFS, since RCM is a version of BFS,

and moreover, we are using the implementation of RCM made by MATLAB. The

BFS method can be implemented in running time of O(n + m), n being the num-

ber of nodes and m the number of edges of the network. For sparse networks this

means O(n) but for dense networks we can have the case m = O(n2). BFS visits

first the nodes that are closer to the initial node and lists all the neighbors. On the

contrary, the method called the depth first search (DFS), or backtracking, visits first

the nodes that are at a long distance from the initial node going as deep as possible.

For the standard algorithm for the method DFS one usually refers to the seminal

paper of Tarjan [29]. DFS can be implemented with a time complexity of O(m),

see [15] for details. Another variant of the BFS algorithm is the Reverse Cuthill-

McKee algorithm (RCM). This method is based on the Cuthill-McKee algorithm,

that was originally devised to reduce the bandwidth of symmetric adjacency matri-

ces, see [4]. RCM can be implemented with a time complexity O(qmaxm) where qmax

is the maximum degree of any node, see [11]. Note that for sparse matrices we have

that RCM works with time complexity O(n). RCM operates over a matrix A and

returns a permutation vector such that one can construct a symmetric permutation

PAPT that has a bandwidth smaller than the original one. It is known, see [4], that

when some connected components are presented the RCM method leads to a block

diagonal matrix similar to A. However, the RCM method is not commonly used to

detect components.

The structure of the paper is the following. In Section 2 we recall some defini-

tions from graph theory and matrix analysis. In Section 3 we describe the RCM

algorithm and related work. In Section 4 we give some new theoretical results about

the irreducibility of the Laplacian matrix; our contributions are Theorem 4.1 and

Theorem 4.2. In Section 5 we derive some properties of row sums of a Laplacian

matrix that was reordered by the RCM method; our contributions are Lemma 5.1

and Proposition 5.1. In Section 6 we mention a method to detect connected com-

ponents by combining the Laplacian matrix and the RCM method. In Section 7 we

give some conclusions.

604



2. Definitions and known results

Let G = (V,E) be a graph, with V = {v1, v2, . . . , vn} a nonempty set of n vertices

(or nodes) and E a set of m edges. Each edge is defined by the pair (vi, vj), where

vi, vj ∈ V . The adjacency matrix of the graph G is A = (aij) ∈ R
n×n such that

aij = 1 if there is an edge connecting nodes vi and vj , and 0 otherwise. We consider

simple graphs, i.e., undirected graphs without loops (i.e. (vi, vj) = (vj , vi) and

(vi, vi) /∈ E) and without multiple edges (i.e. there is only one edge, if any, from

vertex vi to vertex vj). Therefore A is a symmetric real matrix with zeros in its

diagonal. The degree di of a node i is the number of its adjacent edges, i.e., di =
n
∑

j=1

aij . The (unnormalized) Laplacian matrix of the graph is defined as L = D −A

where D is the diagonal matrix D = diag(d1, d2, . . . , dn). Some other definitions of

the Laplacian matrix can be found in the literature; a good review of definitions

can be found in [2]. A subgraph G′ of G is a graph such that G′ = (E′, V ′) with

V ′ ⊆ V and E′ ⊆ E. A path is a sequence of nodes with an edge connecting every

two consecutive nodes. A connected graph is a graph with a path connecting any

pair of nodes; otherwise, the graph is said to be disconnected. Let Ci ⊆ V be a set

of nodes of a graph. We call πk = {C1, C2, . . . , Ck} a partition of G(V,E) when

V =
k
⋃

i=1

Ci, and
k
⋂

i=1

Ci = ∅. A connected component of a graph G = (V,E) is

a connected subgraph Gi(Ci, Ei) such that no other node in V can be added to Ci

while preserving the property of being connected; i.e., a connected component is

a maximal connected subgraph. We are interested in partitions πk of a disconected

graph G(V,E) such that each subgraph Gi(Ci, Ei) is a connected component.

We recall that a permutation matrix P is just the identity matrix with its rows

reordered. Permutation matrices are orthogonal, i.e., PT = P−1. A matrix A ∈

R
n×n, with n > 2, is said to be reducible1 if there is a permutation matrix P of

order n and an integer r with 1 6 r 6 n − 1 such that PTAP =

[

B C

0 H

]

where

B ∈ R
r×r, C ∈ R

r×(n−r), H ∈ R
(n−r)×(n−r), and 0 ∈ R

(n−r)×r is the zero matrix.

A matrix is said to be irreducible if it is not reducible. It is known (see, e.g., [14])

that the adjacency matrix A of a directed graph is irreducible if and only if the

associated graph G is strongly connected. For an undirected graph, irreducibility

implies connectivity. Note that the Laplacian L = D−A is irreducible if and only if

A is irreducible. In the following we recall some properties of L.

The Laplacian matrix is positive semidefinite if xTLx > 0 for all x ∈ R
n×1, or

equivalently, L is symmetric and has all eigenvalues nonnegative. Since Len = 0,

with en the vector of all ones, L has 0 as an eigenvalue, and therefore it is a singular

1A matrix A ∈ R
1×1 is said to be reducible if A = 0.

605



matrix. Since L is real symmetric, it is orthogonally diagonalizable, and therefore

the rank of L is the number of nonzero eigenvalues of L. The eigenvalues of L can

be ordered as

(2.1) 0 = λ1 6 λ2 6 . . . 6 λn−1 6 λn.

It is known that λ2 = 0 if and only if G is disconnected. In fact, λ2 is called

the algebraic connectivity of G. It is known (see, e.g., [19], [5], [20], [22]) that the

number of connected components of a graph is given by the algebraic multiplicity

of zero as an eigenvalue of the Laplacian matrix. Note therefore that the spectrum

of L characterizes the connectivity properties of the associated graph G.

Note that L is irreducible if and only if G is connected. Therefore L is irreducible

if and only if λ2 6= 0. Therefore, since the eigenvalues of L are ordered as in (2.1),

L is irreducible if and only if rank(L) = n − 1. It is known (see, e.g., [3]) that L

is a singular M-matrix, i.e., L can be written as L = sI − B with B > 0 and s the

spectral radius of B.

We recall the following theorem due to Geiringer (see [30]) that we will use later.

Theorem 2.1. Let A = [aij ] be an n × n complex matrix, n > 2 and let N =

{1, 2, . . . , n}. Then A is irreducible if and only if, for every two disjoint nonempty

subsets S and T of N with S ∪ T = N , there exists an element aij 6= 0 of A with

i ∈ S, j ∈ T .

Note that for n = 1 we have the trivial case A = 0 ∈ R and L = 0 ∈ R, which

is a reducible matrix. The Laplacian matrix has been used extensively in spectral

clustering (i.e, the technique of dividing a graph in connected components based

on the eigenvectors) see [9], [28]. It is known that the inspection of the eigenvectors

associated with λ2 can lead to a partition ofG in connected components. The seminal

papers in this field are by Fiedler, see [7], [8]. The algorithm of the spectral bisection

is given in [24]. A good explanation can be found in [23]. This technique can be also

used to reduce the envelope-size (the sum of the row-widths), see [6], [17].

Example 2.1. Consider the toy graph in Figure 1. A simple computation shows

that the spectrum of L is λ1 = 0, λ2 = 0, λ3 = 2, λ4 = 2. The algebraic multiplicity

of λ = 0 is two and therefore the graph has two connected components. An easy

computation shows that the eigenspace of λ = 0 is spanned by the vectors

v1 =









1

0

1

0









, v2 =









0

1

0

1









.

606



Note that the indices of the nonzero components of v1 and v2 give the labels of

the nodes corresponding to each component of G.

1

2

3

4

L =









1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1









Figure 1. Toy graph with two connected components and its corresponding Laplacian ma-
trix.

3. The reverse Cuthill-McKee (RCM) algorithm

The Cuthill-McKee algorithm (CM) was introduced in [4] where the authors pre-

sented a scheme for numbering the nodes of a network in such a way that the corre-

sponding adjacency matrix has a narrow bandwidth. They restricted their research

to symmetric positive definite matrices and at that time they were motivated by

systems of equations that resulted in this special kind of matrices, see [11] for de-

tails. To our knowledge the only limitation of their scheme is the symmetry of the

adjacency matrix. The main motivation to obtain a narrow bandwidth was to reduce

computer storage issues and calculation time. They explained that their objective

was to determine a permutation matrix P such that the nonzero elements of PAPT

cluster about the main diagonal. Therefore, they focused on bandwidth minimiza-

tion. Their strategy was to search for only few permutations P and then to choose

the better one. In most cases (e.g., when the matrix can be transformed to band

diagonal with no zero elements in the band) their scheme obtained the optimum

numbering. The numbering obtained by their scheme corresponds, in graph theory,

to the generation of a spanning tree (i.e., a subgraph of G which is a tree containing

all the nodes of G, when G is connected). The algorithm selects a starting node and

then visits all the neighbors in a level-by-level fashion, as in BFS. They remarked

that as a result of their scheme one can easily check whether a matrix is reducible

or not (we review this property in Section 5). In a later study, [10], the Reverse

Cuthill-McKee algorithm (RCM) was introduced. RCM consists in the CM num-

bering but in reverse form. This simple procedure worked better than the original

CM algorithm in some experimental studies while the bandwidth remained the same.

A theoretical comparison of CM and RCM algorithms was given in [18] where it is

shown that the reverse ordering is always as good as the original one in terms of

storage and number of operations. RCM determines a starting node and looks for

all the neighbors of this starting node. In the second step, the algorithm looks for

the neighbors of these neighbors, and so on. The RCM algorithm can be outlined as

follows:

607



Algorithm 1 RCM (Reverse Cuthill-McKee) for a network of n nodes.

1: select a starting node (e.g. a node with the lowest degree). Call it u1

2: k = 0 (neighbors counter)

3: for all i = 1 to n do

4: for the h neighbors of ui do

5: sort them in increasing order of degree

6: call them: ui+k+1, ui+k+2, . . ., ui+k+h

7: end for

8: k = h

9: end for

10: reverse the order of the n nodes

Note that when the order given by the RCM method is achieved, the construction

of the matrix P = (pij) is straightforward: in row i, pij = 1 with i the new node

label and j denoting the original one, see [4].

Since the introduction of the RCM method some new methods of reducing the

bandwidth of a symmetric matrix have been introduced. We remark here that this

problem is, in general, NP-complete [16]. These new methods can achieve better

results in terms of bandwidth reduction but may be more expensive, in computational

cost, than the RCM method (see, e.g., [17]). See, for example, [17] for methods like

the RCM and methods that use hybrid techniques (spectral plus ordering) to reduce

bandwidth. A review of some methods, including a spectral method that uses RCM

as a preprocessor, can be found in [6]. For a comparison of reorderings, including

RCM, in experiments with nonsymmetric matrices associated with the numerical

solution of partial differential equations, see [1]. For a general view of reordering

methods in linear systems, see [27]. A method to extend RCM to unsymmetric

matrices is shown in [26]. RCM has been also used as an inspection tool for graph

visualization [21].

In most mathematical packages there exists a function that provides the reordering

produced by the RCM algorithm. For example, in MATLAB there exists the function

symrcm. The expression v = symrcm(A) computes an RCM ordering of A. This

vector v is a permutation such that, using the syntax of MATLAB, A(v, v) tends

to have its nonzero entries closer to the diagonal. In MATLAB the algorithm first

finds a certain vertex (a pseudoperipheral vertex) of the graph associated with the

matrix A. Therefore the algorithm generates a level structure by BFS and orders

the vertices by decreasing the distance from this initial vertex, see [12]. MATLAB

claims that the implementation is based closely on the SPARSPAK implementation

described in [11].

608



4. Laplacian matrix reordered by RCM

We are interested in applying the RCM algorithm to the Laplacian matrix L. To

that end, we denote L̂ = PLPT where P is the permutation matrix obtained by the

RCM algorithm applied to L. We say that L̂ is a Laplacian matrix of the graph

reordered by RCM. It is known (see, e.g., [26], [27]) that L̂ is block tridiagonal, i.e.:

(4.1) L̂ = PLPT =















L̂11 L̂12 . . . 0 0

L̂21 L̂22 L̂23 0 0

0 L̂32 L̂33 L̂34 0

0 0
. . .

. . .
...

0 0 0 L̂r,r−1 L̂r,r















.

Example 4.1. Given

L =









1 0 0 −1

0 1 −1 0

0 −1 2 −1

−1 0 −1 2









.

The RCM algorithm, computed by MATLAB, gives a permutation vector vT =

[2, 3, 4, 1]. That means, for example, that the old node 2 is now the new node 1, that

is p12 = 1. Therefore the permutation matrix is

P =









0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0









and L̂ becomes the tridiagonal matrix

L̂ = PLPT =









1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1









.

We use the following notation: l̂ij denotes the ij-element of L̂, 1i ∈ R
i×1 is the

column vector of all ones, ei ∈ R
n×1 is the vector with ones in the first i entries and

zero elsewhere. That is, eTi = [1T
i ,0

T]. For example, taking n = 4, eT2 = [1, 1, 0, 0].

We recall that the permutation matrices are orthogonal matrices: PT = P−1.

Since L̂ = PLPT, we say that L and L̂ are similar matrices. Let u be an eigenvector

609



of L̂ associated to the eigenvalue λ. That is, L̂u = λu. Therefore, it holds that

PLPT
u = λu, that is to say LPT

u = λPT
u and thus λ is an eigenvalue of L with

eigenvector PT
u. Therefore we conclude that L and L̂ have the same spectrum

and thus, the same rank. Therefore we have that L is irreducible if and only if

L̂ is irreducible. It is well known (see, e.g., [9]) that for a graph G of k connected

components the corresponding Laplacian matrix L can be written as a block diagonal

matrix. This fact can be derived from Theorem 2.1. What we want to remark in the

following result is that the RCM method gives a permutation matrix P such that L̂

is block diagonal. We give the proof for completeness and also to set the notation

that we use later.

Lemma 4.1. L is reducible if and only if L̂ is a block diagonal matrix of the form

(4.2) L̂ =











L̂11

L̂22

. . .

L̂kk











where each L̂ii, i = 1, 2, . . . , k, is an irreducible matrix or a 1× 1 zero matrix.

P r o o f. If L is reducible we know that G has k > 2 connected components with k

the multiplicity of λ = 0. We know that the RCM method detects these k connected

components. In fact, the RCM method packs the components. These connected

components appear as irreducible blocks L̂ii, i = 1, 2, . . . k in L̂; from Theorem 2.1

it is clear that L̂ must be block diagonal. In the case of isolated nodes we have 1× 1

null blocks in the diagonal. To prove the theorem in the other direction, note that it

is clear that there exists a permutation matrix P , given by the RCM method, such

that L̂ = PLPT is block diagonal and therefore, by definition, L is reducible. �

In the following theorem we give a first characterization of the irreducibility of L̂.

Theorem 4.1. Let n > 1. L̂ is irreducible if and only if L̂ ei 6= 0 for i =

1, 2, . . . , (n− 1).

P r o o f. Let L̂ be irreducible. Let us assume that there exists ei, with i < n,

such that L̂ei = 0. Therefore ei is an eigenvector for λ = 0. But since en is also

an eigenvector for λ = 0 we conclude that the eigenspace for λ = 0 has a dimension

greater than 1 and therefore, we conclude that the algebraic multiplicity of λ = 0

is greater than 1 and then the number of connected components in L̂ is greater

than 1 and then L̂ is reducible, which is a contradiction. To prove the theorem

in the opposite direction, let us assume that L̂ is reducible. Therefore, L is also

610



reducible and from Lemma 4.1 we have that L̂ must be block diagonal. Therefore

there exists i < n (with i the size of the first block, L̂ii) such that L̂ei = 0, which is

a contradiction. Therefore L̂ is irreducible. �

We now present a new result from which a first method to detect components can

be derived. We have seen in Lemma 4.1 that when L is reducible then L̂ is block

diagonal, with irreducible blocks L̂ii. In practice (for example, using MATLAB) the

RCM method gives us a permutation vector to construct L̂. The following result can

be used to detect the sizes of the blocks L̂ii when L̂ is known.

Theorem 4.2. Let n > 1. Let p ∈ N . If there exists p < n such that:

(4.3) L̂ei

{

6= 0 for i = 1, 2, . . . , p− 1,

= 0 for i = p

then L̂ is a block diagonal matrix of the form

(4.4) L̂ =

[

L̂11

L̃22

]

with L̂11 a matrix of size p×p such that L̂11 is irreducible if p > 1 and a zero matrix

if p = 1.

P r o o f. From Theorem 4.1 we have that L̂ is reducible. Therefore L is reducible

and from Lemma 4.1 we have that L̂ is a block diagonal matrix of the form (4.2).

We also know that L̂11 is an irreducible matrix. What we have to prove here is that

the size of L̂11 is p× p.

Let us assume that the size of L̂11 is q × q, with q > 1, and study two cases:

Case 1. Suppose that q < p. Since L̂11 is itself a Laplacian matrix we have that 1q

is an eigenvector associated with λ = 0, and therefore L̂111q = 0 and then L̂eq = 0

and this is a contradiction with the hypothesis (4.3).

Case 2. Suppose that q > p. The hypothesis we have is L̂ep = 0, that is

(4.5) L̂ep =

[

L̂11 0

0 L̃22

] [

1p

0n−p

]

=

[

0p

0n−p

]

.

Let us make a partition of L̂11 in the form L̂11 =

[

M T

TT N

]

, with M of size p×p.

Then, from (4.5) we have

(4.6) L̂ep =





M T 0

TT N 0

0 0 L̃22









1p

0q−p

0n−q



 =





0p

0q−p

0n−q



 .

611



Note that TT
1p = 0q−p and since T has only nonpositive elements this implies T = 0

and therefore L̂11 =

[

M 0

0 N

]

and thus L̂11 is reducible, which is a contradiction.

Therefore we must have q = p, and since L̂11 is itself a Laplacian matrix we have

L̂ ep = 0 in agreement with (4.3). The case q = 1 is trivial to prove. Therefore the

proof is done. �

Note that with a recursive application of Theorem 4.2 we can compute the block

diagonal form of L̂ and thus the disconnected components of the graph G. Note that

we have to apply the RCM method only once, since the submatrices L̂22, L̂33, etc.,

are results of the RCM method and we can apply Theorem 4.2 to each of them.

Example 4.2. Given

L =









1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1









.

By applying the RCM algorithm to L we obtain that there exists a permutation

matrix P such that

L̂ = PLPT =









1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1









and this matrix verifies conditions (4.3) with p = 2. According to Theorem 4.2 we

have that L̂ is a block diagonal matrix with irreducible blocks.

An easy computation shows that the eigenspace of λ = 0 is spanned by the vectors

w1 =









1

1

0

0









, w2 =









0

0

1

1









.

Here we see that Theorem 4.2 is inspired by the search of an eigenvector as w1.

Note, however, that the use of Theorem 4.2 avoids the explicit computation of the

eigenspace of λ = 0 to detect the components.

Theorem 4.2 can be used to detect connected components when L̂ is known. Never-

theless, by analysing some properties of the RCMmethod one can obtain an improved

technique. We show this in the next section.

612



5. Properties of the RCM ordering

Definition (root of a component). Given a connected component ordered by

RCM each node has a label or index. We call the root of the component the node

with the maximum index (that is, the node denoted by the greatest number). We

denote by r the index of the root. This root corresponds to the starting node of the

RCM algorithm shown in Section 3. Note that, by reversing the numbering, the root

has the maximum index.

It is clear that: (a) a connected component has only one root, (b) for each node i

(different from the root) of the connected component we have i < r, (c) if the

connected component has n nodes, and the ordering begins in 1, then r = n. Note

also that from each node i there is a path to the root r (since the component is

connected, and thus irreducible).

Remark 5.1. Given a connected component ordered by RCM, each node i other

than the root r is adjacent to a node i+ k 6 r for some k ∈ {1, 2, . . .}.

Example 5.1. Let us consider the graphs shown in Figure 2. Graph a) is a poss-

ible RCM ordering since each node is connected to a node with higher index, except

node 3, which is the root. In graph b) we see that node 2 is not connected to a node

with higher index, and 2 is not the root, therefore this is not an ordering given by

RCM.

1 2 3

a)

2 1 3

b)

Figure 2. a) is an RCM ordering, while b) is not.

As a consequence of Remark 5.1 we have the following

Remark 5.2. Given a connected component ordered by RCM, let r be the root.

Let L̂ be the Laplacian of this connected component. Let si(L̂) be the sum of the

i-th row of L̂ up to and including the diagonal, that is

(5.1) si(L̂) =

i
∑

j=1

l̂ij , i ∈ N .

Then si(L̂) = 0 if and only if i = r.

P r o o f. We denote L̂ = PLPT, Â = PAPT and D̂ = PDPT. Since L = D − A

we have L̂ = D̂ − Â with l̂ii = d̂ii =
n
∑

j=1

âij . Therefore

si(L̂) =

i
∑

j=1

l̂ij =

i−1
∑

j=1

l̂ij + l̂ii =

i−1
∑

j=1

l̂ij +

n
∑

j=1

âij = −
i−1
∑

j=1

âij +

n
∑

j=1

âij =

n
∑

j>i

âij .

613



In the last equality we have used that âii = 0 for all i. From Remark 5.1 we have

that each node i of the component, except the root, verifies âi,i+k = 1 for some

k ∈ {1, 2, . . .} and therefore for all these nodes we have si(L̂) 6= 0. The only node

that verifies the equality si(L̂) = 0 is the root, since it has no links to nodes with

higher indices. �

Let us now show the properties of the RCM in a graph with more than one

connected component.

Remark 5.3. Let L̂ be the Laplacian of a graph with k connected components

ordered by RCM. Let ri, i = 1, 2, . . . k, be the root of the i-th connected component.

Then:

1. si(L̂) = 0 if and only if i = ri.

2. The nodes of a component i do not have a path to nodes with indices higher

than ri.

Lemma 5.1. Let L̂ ∈ R
n×n, n > 1, be the Laplacian of a graph ordered by RCM.

Let si(L̂) be given by (5.1). Then L̂ is irreducible if and only if si(L̂) = 0 occurs

only for i = n.

P r o o f. If L̂ is irreducible then there is only one component and from Remark 5.2

the proof follows. In the opposite direction, since sn(L̂) = 0, from Remark 5.2 we

have that n is the root and from the basic properties we know that any node can

follow a path to reach the root. Therefore the graph associated with the matrix L̂ is

connected and therefore L̂ is irreducible. �

Proposition 5.1. Let L̂ ∈ R
n×n be the Laplacian of a graph ordered by RCM.

Let si(L̂) be given by (5.1). Let n > 2. Let p ∈ N . If there exists p < n such that:

(5.2) si(L̂)

{

6= 0 for i = 1, 2, . . . , p− 1,

= 0 for i = p

then L̂ is a block diagonal matrix of the form

(5.3) L̂ =

[

L̂11

L̃22

]

with L̂11 a matrix of size p×p such that L̂11 is irreducible if p > 1 and a zero matrix

if p = 1.

P r o o f. Since si(L̂) = 0 for i 6= n we have from Lemma 5.1 that L̂ is reducible.

From Lemma 4.1 we have that L̂ is block diagonal with more than one block. Since

614



sp(L̂) = 0 we have from Remark 5.3 that the node p is the root of a component. The

nodes of this component must have indices lower than p. Therefore, the p nodes of

this component are the nodes described by L̂11. In the particular case that p = 1,

L̂11 has only one element, which is zero; this means that node 1 is an isolated node.

It is a component with a single element which is the root. �

By a recursive application of Proposition 5.1 one can derive an easy method to

detect components. We show the details in the next section.

Example 5.2. Given the matrices L and L̂ from Example 4.2 we have that

si(L̂) = 0 for i = 2 and i = 4. This means that there are two roots and therefore L̂

has two components. L̂ is a block diagonal matrix with two blocks: one formed by

the nodes 1, 2 and the other by the nodes 3, 4 (with the numbering given by RCM,

which is used in L̂).

6. MATLAB code to detect connected components

A 5-lines MATLAB code to detect connected components can be obtained by using

Proposition 5.1. The method can be written in the following form:

Algorithm 2 L-RCM Algorithm.

1: L = sparse(diag(sum(A))−A);

2: rcm = symrcm(L);

3: Lp = L(rcm, rcm);

4: s = sum(tril(Lp), 2);

5: cut = find(s == 0);

In the first line we construct the Laplacian matrix from the adjacency matrix. In

the experiments we have used sparse matrices. The number of nonzero entries of A

is nnz := 2m, with m being the number of edges. Since A is symmetric it suffices

only to handle m entries. In sparse matrices, m is much less than n2. The operation

sum(A) performs sums in n columns with an average of 2m/n entries per column,

which totals 2m operations, therefore we need O(2m). Note that sum(A) is a vector

of n entries, while diag(sum(A)) is a diagonal matrix of order n. In order to compute

diag(sum(A)) − A, note that the entries are of the form dij − aij . When i = j we

have n operations of the form dii − 0, and when i 6= j we have 2m operations of

the form 0 − aij . Thus the construction of diag(sum(A)) − A has a cost of order

O(n+2m). To sum up, the construction of L in the first line has a cost of O(n+4m).

The second line of the algorithm computes the RCM vector, that is, the ordering

given by the RCM algorithm as computed by MATLAB. We have noted, in Section 3,

615



that MATLAB follows a procedure given in [11]. Therefore, as we have noted in

Introduction, we can assume a time complexity of O(qmaxm), where qmax is the

maximum degree of any node.

The third line computes the Laplacian matrix of the graph ordered by the RCM

method. This matrix is what we have called L̂ in previous sections. Obviously, it

would have a very high cost to compute L̂ as the explicit matrix product PLPT, with

P the permutation matrix derived from the RCM. According to Matlab 2012 the cost

of reordering a matrix, as in line 3, is proportional to nnz of that matrix. Therefore

let us denote by O(γ nnz(L̂)) the cost of computing Lp, with γ some parameter that

depends on the implementation in MATLAB. Since nnz(L̂) = nnz(A)+n = 2m+n

we have that the cost of the third line of the algorithm is of the order O(γ(2m+n)).

In line 4 the algorithm computes the sums si(L̂) defined in equation (5.1). To

compute these sums in MATLAB we take the lower triangular part of L̂ and sum

each row. Here we have m entries of A to sum plus the diagonal of L that counts n

entries. Therefore this operation has a cost of O(m+ n).

Finally, in line 5 we find the indices of the sums that verify si(L̂) = 0. Let

us assume that this operation costs O(n). The indices of these sums, the entries

of the vector cut, give the location of the roots of the components, according to

Proposition 5.1, i.e., vector cut gives the indices where there exists a gap in the blocks.

Therefore the total cost of the algorithm is of the order O([qmax + 2γ + 5]m +

(3 + γ)n).

The outputs of the method are the permutation vector rcm that defines the new

ordering and the cut vector that identifies the blocks over the order defined by rcm.

In the following example we show how the method works. In [25] we show some

applications of this method to some real graphs.

Remark 6.1. Since Lp is a symmetric matrix, line 4 of Algorithm 2 may be

replaced by s = sum(triu(Lp)), which evaluates the column sums of the upper

triangular part of Lp.

Example 6.1. Let us consider the graph shown in Figure 3.

4 1

2 5 13 6 3

11 8 7 10

129

Figure 3. Graph with n = 13 and four connected components.

616



Matrix L is given by

L =



















































1 0 0 −1 0 0 0 0 0 0 0 0 0

0 1 0 0 −1 0 0 0 0 0 0 0 0

0 0 1 0 0 −1 0 0 0 0 0 0 0

−1 0 0 1 0 0 0 0 0 0 0 0 0

0 −1 0 0 2 0 0 0 0 0 0 0 −1

0 0 −1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 3 −1 −1 −1 0 0 0

0 0 0 0 0 0 −1 2 0 0 −1 0 0

0 0 0 0 0 0 −1 0 2 0 0 −1 0

0 0 0 0 0 0 −1 0 0 2 0 −1 0

0 0 0 0 0 0 0 −1 0 0 1 0 0

0 0 0 0 0 0 0 0 −1 −1 0 2 0

0 0 0 0 −1 0 0 0 0 0 0 0 1



















































and the vector rcm is

rcm = [4, 1, 13, 5, 2, 6, 3, 11, 8, 7, 10, 9, 12].

Matrix L̂ is given by

L̂ =



















































1 −1 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 0 0 0 −1 3 −1 −1 0

0 0 0 0 0 0 0 0 0 −1 2 0 −1

0 0 0 0 0 0 0 0 0 −1 0 2 −1

0 0 0 0 0 0 0 0 0 0 −1 −1 2



















































and the vector cut is cut = [2, 5, 7, 13]T. From the vectors rcm and cut we

have the components (with the original labelling): {4, 1}, {13, 5, 2}, {6, 3} and

617



{11, 8, 7, 10, 9, 12}. In Figure 4 we show the graph with the ordering given by the

vector rcm.

1 2

5 4 3 6 7

8 9 10 11

1312

Figure 4. Graph with n = 13, ordered by RCM.

7. Conclusions

In this paper we have reviewed some works related to the Laplacian matrix that

represents a graph and with the RCM algorithm. Our main contributions are some

theoretical results concerning a Laplacian matrix that was reordered by the RCM

algorithm. We illustrate the results with some examples. The reordering of the

Laplacian matrix induced by the RCM algorithm reveals the number of the connected

components in the graph. We have shown how some eigenvector properties of the

Laplacian matrix inspire the use of certain row sums. One of the presented theoretical

results serves as a basis for a 5-lines MATLAB code to detect connected components.

Acknowledgment. The authors would like to thank the anonymous referee for

his/her valuable comments and remarks.

References

[1] M.Benzi, D.B. Szyld, A.C.N. vanDuin: Orderings for incomplete factorization precon-
ditioning of nonsymmetric problems. SIAM J. Sci. Comput. 20 (1999), 1652–1670.

[2] D.Boley, G.Ranjan, Z.-L. Zhang: Commute times for a directed graph using an asym-
metric Laplacian. Linear Algebra Appl. 435 (2011), 224–242.

[3] M.Bolten, S. Friedhoff, A.Frommer, M.Heming, K.Kahl: Algebraic multigrid methods
for Laplacians of graphs. Linear Algebra Appl. 434 (2011), 2225–2243.

[4] E.Cuthill, J.McKee: Reducing the bandwidth of sparse symmetric matrices. Proc. 24th
Nat. Conf. of the ACM, ACM Publ P-69, Association for Computing Machinery, New
York, 1969. pp. 157–172, doi:10.1145/800195.805928.

[5] N.M.M. deAbreu: Old and new results on algebraic connectivity of graphs. Linear Al-
gebra Appl. 423, (2007), 53–73.

[6] G.M.Del Corso, F. Romani: Heuristic spectral techniques for the reduction of band-
width and work-bound of sparse matrices. Numer. Algorithms 28 (2001), 117–136.

[7] M.Fiedler: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298–305.
[8] M.Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its appli-
cation to graph theory. Czech. Math. J. 25 (1975), 619–633.

618



[9] S.Fortunato: Community detection in graphs. Phys. Rep. 486 (2010), 75–174.

[10] J.A.George: Computer Implementation of the Finite Element Method. Doctoral Dis-
sertation, Stanford University, Stanford, 1971.

[11] A.George, J.W.-H. Liu: Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall Series in Computational Mathematics, Prentice-Hall, Englewood Cliffs,
1981.

[12] J.R.Gilbert, C.Moler, R. Schreiber: Sparse matrices in MATLAB: Design and imple-
mentation. SIAM J. Matrix Anal. Appl. 13 (1992), 333–356.

[13] J. L.Gross, J. Yellen, eds.: Handbook of Graph Theory. Discrete Mathematics and Its
Applications, CRC Press, Boca Raton, 2004.

[14] R.A.Horn, C.R. Johnson: Matrix Analysis. Cambridge University Press, Cambridge,
1985.

[15] D. Jungnickel: Graphs, Networks and Algorithms. Algorithms and Computation in
Mathematics 5, Springer, Berlin, 2008.

[16] M.Juvan, B.Mohar: Laplace eigenvalues and bandwidth-type invariants of graphs.
J. Graph Theory, 17 (1993), 393–407.

[17] G.Kumfert, A. Pothen: Two improved algorithms for envelope and wavefront reduction.
BIT 37 (1997), 559–590.

[18] W-H.Liu, A.H. Sherman: Comparative analysis of the Cuthill-McKee and the reverse
Cuthill-McKee ordering algorithms for sparse matrices. SIAM J. Numer. Anal. 13
(1976), 198–213.

[19] B.Mohar: The Laplacian spectrum of graphs. Graph theory, Combinatorics, and Ap-
plications Vol. 2. Proc. Sixth Quadrennial International Conf. on the Theory and Ap-
plications of Graphs, Kalamazoo, Michigan, 1988 (Y.Alavi et all, eds.). John Wiley &
Sons, New York, 1991, pp. 871–898.

[20] J. J.Molitierno: The spectral radius of submatrices of Laplacian matrices for graphs
with cut vertices. Linear Algebra Appl. 428 (2008), 1987–1999.

[21] C.Mueller, B.Martin, A. Lumsdaine: A comparison of vertex ordering algorithms for
large graph visualization. Visualization. Asia-Pacific Symposium on Visualization 2007,
Sydney, Australia, 2007, pp. 141–148, doi: 10.1109/APVIS.2007.329289.

[22] M.C.V.Nascimento, A. De Carvalho: Spectral methods for graph clustering—a survay.
Eur. J. Oper. Res. 211 (2011), 221–231.

[23] M.E. J.Newman: Networks. An Introduction. Oxford University Press, Oxford, 2010.

[24] A.Pothen, H.D. Simon, K. P. Liou: Partitioning sparse matrices with eigenvector of
graphs. SIAM J. Matrix Anal. Appl. 11 (1990), 430–452.

[25] M.Rebollo, C. Carrascosa, A. Palomares, F. Pedroche: Some examples of detection of
connected components in undirected graphs by using the Laplacian matrix and the
RCM algorithm. Int. J. Complex Systems in Science 2 (2012), 11–15.

[26] J.K.Reid, J.A. Scott: Reducing the total bandwidth of a sparse unsymmetric matrix.
Siam J. Matrix Anal. Appl. 28 (2006), 805–821.

[27] Y.Saad: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, 2003.

[28] S.E. Schaeffer: Graph clustering. Comput. Sci. Rev. 1 (2007), 27–64.

[29] R.Tarjan: Depth-first search and linear graph algorithms. SIAM J. Comput. 1 (1972),
146–160.

619



[30] R. S. Varga: Matrix Iterative Analysis. Springer Series in Computational Mathemat-
ics 27, Springer, Berlin, 2000.

Authors’ addresses: Fr a n c i s c o P e d r o c h e, Institut de Matemàtica Multidisci-
plinària, Universitat Politècnica de València, Cam’i de Vera s/n. 46022. València, Spain,
e-mail: pedroche@imm.upv.es; M i g u e l R e b o l l o, C a r l o s C a r r a s c o s a, A l b e r t o
Pa l om a r e s, Departament de Sistemes Informátics i Computació, Universitat Politècnica
de València, Cam’i de Vera s/n. 46022. València, Spain, e-mail: mrebollo@dsic.upv.es,
carrasco@dsic.upv.es, apalomares@dsic.upv.es.

620


