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We are pleased to dedicate this work to the very fond memory of Miroslav Fiedler,

who helped to shape this subject and our views on it

Abstract. Our purpose is to present a number of new facts about the structure of semi-
positive matrices, involving patterns, spectra and Jordon form, sums and products, and
matrix equivalence, etc. Techniques used to obtain the results may be of independent in-
terest. Examples include: any matrix with at least two columns is a sum, and any matrix
with at least two rows, a product, of semipositive matrices. Any spectrum of a real matrix
with at least 2 elements is the spectrum of a square semipositive matrix, and any real ma-
trix, except for a negative scalar matrix, is similar to a semipositive matrix. M-matrices
are generalized to the non-square case and sign patterns that require semipositivity are
characterized.
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1. Introduction and background

Several aspects of semipositive matrices are explored: the sums and products

that result from semipositive matrices, when generalized Z-matrices are semipositive,

sign patterns that require semipositivity, the spectra and Jordan cannonical form of

semipositive matrices, and equivalence on semipositive matrices.

Definition 1.1. An m × n matrix A is called semipositive (SP) if there exists

v ∈ R
n, v > 0, such that Av > 0. We may equivalently require v > 0 rather than

v > 0 by a simple perturbation argument. In order for an m × n matrix A to be
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seminonnegative (SNN), it is only required that Av > 0 where v > 0 and v 6= 0.

A seminegative (SN) matrix is the negative of a semipositive matrix. Seminonpositive

matrices are defined similarly.

There are many mathematical references that develop some properties of semipos-

itivity, including [1], [5], [4], [7], [13], [15], [16], [17], etc.

Definition 1.2. An m× n matrix A is called left semipositive (left SP) if there

exists v ∈ R
n, v > 0 such that v⊤A > 0. Again, we may equivalently require v > 0

rather than v > 0

Left seminonpositivity (SNP) and other ‘left’ variants are defined in the obviously

analogous ways.

Definition 1.3. A sign pattern is a matrix whose entries are the symbols 0, +,

and −. A real matrix A is said to have sign pattern B if A and B are the same size

and aij = 0 when bij = 0, aij > 0 when bij = +, and aij < 0 when bij = −.

Example 1.4. The matrix

A =





−1 1 0

1 0 −1

1 0 −1





is both semipositive and seminegative because v = [2, 3, 1]⊤ > 0 and Av =

[1, 1, 1]⊤ > 0, and w = [2, 1, 3]⊤ > 0 and Aw = [−1, −1, −1]⊤ < 0.

Lemma 1.5 (Theorem of the alternative). For a given matrix A ∈ Mm,n(R)

exactly one of the following is true:

1. A is SP.

2. A is left SNP.

There are many variations of the theorem of the alternative, which can be seen

in [14], and this is a restatement of one of them.

Since a permutation maps the positive vectors to themselves, the following is clear.

Lemma 1.6. A matrix, A ∈ Mm,n(R), is semipositive if and only if , whenever P

is a permutation matrix, AP is semipositive. The same is true for left multiplication

by a permutation matrix.

Lemma 1.7. Any matrix in Mm,n(R) with a positive column is SP.

P r o o f. Suppose that column j is all positive. Then make the jth entry large

enough compared to the other entries of the vector, v, and then Av > 0. �
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Remark 1.8. If a general matrix A is transformed to B = DAE, with D and

E positive diagonal matrices, we say that B is a scaling of A. We note that SP

matrices are scale invariant and that another view of SP matrices is that they are

those matrices scaleable to matrices with row sums 1.

2. Sums and products of SP matrices

We begin with a section on sums and products of SP matrices. We are mainly

concerned with which matrices occur as sums or products of SP matrices.

Theorem 2.1. Suppose A ∈ Mm,n(R), with n > 2. Then there exist SP matrices

B,C ∈ Mm,n(R) such that A = B + C.

P r o o f. First, pick B so that the entries of the first column are all 1s, the second

column is the second column of A with one subtracted from each entry, and all of

the other columns match the columns of A. Then set the first column of C to be

the first column of A with 1 subtracted from each entry, let the second column have

every entry equal to 1, and make all of the other columns have entries equal to 0.

Then A = B + C and B and C are both SP as each has a positive column. �

Remark 2.2. The requirement that n > 2 in Theorem 2.1 is necessary. If n = 1,

A has a negative entry, and A = B+C, then either B or C must also have a negative

entry and thus is not SP. So, when n = 1, A is the sum of two SP matrices if and

only if A, itself, is SP.

We now turn to products.

Lemma 2.3. Let m > 2, n > 1, and suppose that 0 6= C ∈ Mm,n(R). If

{v1, w} ∈ R
m is a linearly independent set and v2 ∈ R

n is such that {Cv2, w} is

a linearly independent set, then there exist A ∈ Mm(R) and B ∈ Mm,n(R) such that

Av1 = w , Bv2 = w, and C = AB.

P r o o f. Choose A ∈ Mm(R) to be an invertible matrix such that Av1 = w and

Aw = Cv2 6= 0. Set B = A−1C, so that C = AB. Then Bv2 = A−1Cv2 = w, and

the stated requirements are fulfilled. �

Theorem 2.4. If m > 2, n > 1, and C ∈ Mm,n(R), then there exits matrices

A ∈ Mm(R) and B ∈ Mm,n(R), both SP, such that C = AB.

P r o o f. If rank C > 1, positive vectors v1, v2, and w may be chosen so as to

fulfill the hypothesis of Lemma 2.3. The positivity of these vectors means that A
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and B are SP, completing the proof of this theorem. If C = 0 and m > 2, we may

choose

A =











1 −1 0 . . . 0

1 −1 0 . . . 0
...
...
...
. . .

...

1 −1 0 . . . 0











, B =











1 1 1 . . . 1

1 1 1 . . . 1
...
...
...
. . .

...

1 1 1 . . . 1











of the required sizes, so that C = AB. Since A and B both have positive columns,

they are SP. �

Remark 2.5. The requirement thatm > 2 in Theorem 2.2 is necessary. Suppose

that C ∈ M1,n(R) and all of the entries of C are negative. If C = AB then either A

has a negative entry in which case it is not SP, or B has all negative entries, and is

therefore not SP.

Despite it being simple enough to write any matrix as a sum or product of SP

matrices, it cannot be done for both left and right SP matrices. For sums, an easy

counterexample is the zero matrix. Suppose that A+B = 0 where A and B are both

left and right SP. Then A = −B, so B is left and right SN as well. But then B is

SP and left SN, and therefore left SNP, which violates Lemma 1.5.

3. Generalized M-matrices

In order for A ∈ Mm,n(R) to be SP, A must have at least one positive entry in

every row. When is a matrix with just one positive entry per row SP? It can be

easily seen that a positive entry in every column is not necessary for A to be SP,

as one may use a vector that weights the columns, with no positive entries, to be

arbitrarily small compared to the columns that contain positive entries. Therefore

one can ignore the columns with no positive entries.

Definition 3.1. An n × n matrix is a Z-matrix if every off diagonal entry is

nonpositive. If in addition, every diagonal entry is positive, then a Z-matrix is a Z+

matrix.

Definition 3.2. An M-matrix is a Z-matrix whose leading principal minors are

positive, see [3], [2], [6], [8].

Note that an M-matrix is both left and right semipositive.

Definition 3.3. An m × n matrix is a generalized Z+ matrix when there is

exactly one positive entry in every row.

Definition 3.4. An m × n generalized Z+ matrix is a proper Z+ matrix if it

has at least one positive entry in every column.
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Definition 3.5. An m×n proper Z+ matrix is a permuted proper Z+ matrix if

whenever the i, j entry is positive, all entries k, l are nonpositive for k > i and l < j.

Definition 3.6. Anm×n permuted proper Z+ matrix is a generalized M-matrix

if every n× n submatrix that is a Z+ matrix is an M-matrix.

Example 3.7. The following is an example of the sign pattern of a permuted

proper Z+ matrix:




























+ − − −

+ − − −

− + − −

− − + −

− − + −

− − − +

− − − +

− − − +





























.

Now, it is known that a “tall” matrix is SP if and only if all of its maximal square

submatrices are SP. This will be helpful in verifying our main result. Now, our main

result is a straightforward consequence.

Lemma 3.8 ([10]). The matrix A ∈ Mm,n(R), with m > n, is SP if and only if

every n× n submatrix is SP.

Lemma 3.9. A permuted proper Z+ matrix is SP if and only if every n × n

submatrix that is a Z+ matrix is also an M-matrix.

P r o o f. The reverse implication is the content of Lemma 3.8.

Now suppose that A is an m × n matrix with the stated properties. We proceed

by induction on n. The claim is trivially true when n = 1. Now suppose the claim

holds for all matrices with less than n columns. We want to show that A is SP by

checking that every n× n submatrix is SP. We already know this is true for all the

submatrices which are Z-matrices. Let B be an n × n submatrix that is not a Z-

matrix. Then B must have at least one nonpositive column. Let B′ denote B with

all of its nonpositive columns deleted. B is SP if and only if B′ is SP. B′ is a matrix

with more rows than columns, exactly one positive entry per row, no nonpositive

columns, and with the rows organized in the desired way. All of its maximal Z-

submatrices are principal submatrices of the maximal M-submatrices of A, so they

are M-matrices as well. Thus, by the induction hypothesis, B is SP. The matrix B

was arbitrary, so all of the n× n submatrices of A are SP, and A is SP. �
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Theorem 3.10. A matrix, A ∈ Mm,n(R), with exactly one positive entry per row

is SP if and only if deletion of entry-wise nonpositive columns leaves a matrix that,

when permuted to a permuted proper Z+ matrix, is a generalized M-matrix.

This result settles the question of which matrices with exactly as many positive

entries as rows are SP. If a matrix A has exactly as many positive entries as rows, then

we may assume A has exactly one positive entry per row, or else A has a nonpositive

row and is not SP. If A has more columns than rows, then A has nonpositive columns

which we can delete. If A is square, then we may permute the rows of A so that

it is a Z-matrix, and the question of which Z-matrices are M-matrices is already

settled by determinental criteria. So we may assume A has fewer columns than rows

and no nonpositive columns. The rows can be organized in any way one pleases by

the permutation invariance of semipositivity. The organization above was chosen for

convenience.

4. Sign semipositivity

As noted previously, an SP matrix must have at least one positive entry in each

row, and if a sign pattern has at least one + in each row, then it allows SP [12]. See

also [11]. So which sign patterns require SP (sign semipositivity)?

Definition 4.1. An m× n matrix with a given sign pattern is sign semipositive

if any A ∈ Mm,n(R) with the same sign pattern is semipositive.

Definition 4.2. The matrix A ∈ Mm,n(R) has a positive front if there is a per-

mutation of rows and columns such that in each row, the first nonzero entry is

positive. A negative front is defined similarly.

Example 4.3. The matrix A from Example 1.4 has a positive front since the

columns may be permuted to the form

A′ =





1 −1 0

0 1 −1

0 1 −1



 .

Note that any matrix with the same sign pattern as A′ will be semipositive, since

by choosing vector v with a “large” first coordinate, a second coordinate “small”

relative to the first (enough so that the first row in the product A′v is positive), and

a third coordinate “small” relative to the second (so that both the second and third

rows are of the product A′v are positive).
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In fact, any matrix with a positive front is semipositive. To show this, we will

need to utilize a lemma.

Lemma 4.4. If A has a positive front, then A is semipositive.

P r o o f. If A can be permuted to a matrix A′ that has a positive front, by

Lemma 1.6 it is enough to show that A′ is semipositive, since semipositivity is not

changed under permutation. If A′ has z zero columns as its first z columns, set the

first z entries of v to be zero. Set the remaining d entries of v as xd, xd−1, . . . , x,

where x is a fixed number to be specified later. Each row of the product A′v will

be a polynomial of degree less than or equal to d, whose first entry is positive (since

the first nonzero entry in each row is positive, and there are no zero rows since A

has a positive front). Since the coefficient of the monomial with the largest degree

in each of these polynomials is positive, the limit as x approaches infinity for all

of these polynomials is infinity. Therefore there is some x > 0 where each of these

polynomials are greater than zero, which implies that A′ is semipositive, and thus A

is semipositive. �

However, when presented with a matrix A with a large number of columns (say, n),

it may be difficult to check all n! permutations of the columns of the matrix. However,

there is an algorithm that can determine whether A has a positive front that works

in at most n steps.

A l g o r i t hm. To determine if an m × n matrix A has a positive front, first

check that the matrix has no zero row. If it does, this matrix does not have a positive

front. If it does not, construct a sequence of matrices with A1 := A. Construct A2

by removing the 0 columns in A1. Afterwards for k > 1, construct Ak+1 recursively

in the following fashion:

1. Determine if Ak contains a column without a negative entry. If all p columns

of Ak contain a negative entry, this matrix does not have a positive front.

Otherwise, choose a jth column of Ak, which we will denote by akj , which has

no negative entries. Set Ak+1 by deleting the jth column of Ak, as well as any

row in Ak in which akj contains a positive entry (leaving the rest of the matrix)

and repeat step 1, unless this deletion will result in the loss of the entire matrix.

If this is the case, set Ak as the “final matrix” and proceed to step 2.

2. Define a function C(akj) which takes the vector akj and returns the original

column of A associated with akj .

3. If A has r columns of entirely 0, set the first r columns of A′ to be 0. Then,

set the next column to be C(a3j), the next column to be C(a4,j), . . ., and the

next column to be C(akj) where Ak is the final matrix. If there are columns of
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A that have not been mapped to by this C function and are nonzero, set them

in an arbitrary order after the C(akj) column.

Note that this process must terminate in at most n steps since after n repetitions

of step 1, the entire matrix will be “deleted”.

Theorem 4.5. A′ exists (this algorithm terminates) if and only if A has a positive

front.

P r o o f. Assume A′ exists. If A′ exists, then A has a positive front, namely A′.

To show this, we will show that A′ is a permutation of the columns of A, and then

the first nonzero entry of A′ is positive. To show that A′ is a permutation of A,

note that if C(aij) = ak (where aij is defined to be the jth column of Ai and ak is

the kth column of A), then ak is not mapped to again by C, since every entry of

ak is deleted to obtain Ai+1. Therefore, as A
′ contains every column of A and has

each column only once, A′ is a permutation of the columns of A. The 1st nonzero

entry of each row must also be positive, since for A′ to exist every entry of A must

at some point have been “deleted”, and the only way for a row to be deleted is if

its first nonzero entry is positive. Now assume A′ does not exist. This means that

for some Ak, every column contains a negative entry or A has a zero row. If A has

a zero row it does not have a positive front, so assume that there is some Ak in

which every column contains a negative entry. Matrix A is m × n; assume Ak is

p × q, with Ak = (ak1| . . . |akq), in which akj is the jth column of Ak (the vertical

lines separating columns). Let B denote a permutation of A. In this permutation,

let a denote the leftmost column indicated by {C(ak1), . . . , C(akq)}. In some row,

in which a has a negative entry, that entry will be the first nonzero entry in the

row. This is because every member of ak1, . . . , akq contains a negative entry, which

implies that none of the other columns of A had a positive entry in one of the rows

in which a had a negative entry and since a is leftmost. This implies that one of the

negative entries of a is the leftmost entry of some row. Therefore a positive front

does not exist for A. �

Using this process, it is possible to show that a positive front is necessary for a sign

pattern to be semipositive.

Lemma 4.6. If a sign pattern is sign semipositive, then it has a positive front.

P r o o f. To show this, assume that A does not have a positive front. The first

possibility is that A has a zero row, in which case A⊤ has a zero column and thus

is seminonpositive (since if A⊤ has an ith 0 column the vector with a 1 in the ith

entry and 0s elsewhere will yield a zero vector), so A is not semipositive. The other

possibility is that at some point in the algorithm above, at the matrix Ak (a p × q
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matrix) there is a negative entry in each column. Let C(akj) be defined as it was

before in step 2 of the algorithm above. Construct a row vector v⊤ which is 0 in the

ith row if the ith row of A was previously deleted in the algorithm, and 1 otherwise.

Choose a matrix B to have the same sign pattern as A, but so that the column

sums of any column with a negative entry is zero. Therefore v⊤B = 0, but v⊤ is

nonzero since if every entry were zero, every row would have been deleted and this

algorithm would have terminated. Therefore B is left seminonpositive and thus not

semipositive; therefore the sign pattern of A does not require semipositivity. �

Finally, combining Lemma 4.4 and Lemma 4.6, we give a characterization of sign

semipositivity.

Theorem 4.7. An m × n sign pattern is sign semipositive if and only if it has

a positive front.

5. Spectral theory of SP matrices

Of course, SP matrices represent a generalization of entry-wise nonnegative matri-

ces. Here we will only consider square matrices. The inverse eigenvalue problem for

nonnegative matrices (NIEP) is known to be notoriously difficult. We give a complete

solution to the SP inverse eigenvalue problem (SPIEP) and, further, the similarity

class problem for SP matrices. Interestingly, except for nonpositive scalar matrices,

there is an SP matrix in the similarity class of every real matrix.

The key observation is:

Lemma 5.1. Every n× n non-scalar real matrix is similar to a real matrix with

a positive first column.

P r o o f. Unless one is scalar and the other is not, two matrices in M2(R) are

similar if and only if they have the same trace and determinant. Furthermore, unless

the diagonal entries are the eigenvalues, both off-diagonal entries will be nonzero.

Thus, a simple calculation shows that the claim of the lemma is valid in the 2 × 2

case. Now, let A ∈ Mn(R) be non-scalar. It is clearly similar to a non-diagonal

matrix B ∈ Mn(R), which, in turn, has a 2× 2 non-scalar principal submatrix that

we may assume, without loss of generality, is in the first two rows and columns and

has a positive first column.

Now, if the remaining entries in the first column of B are all nonzero, the proof

is completed by performing similarity on B by a diagonal matrix of ± 1s, so as to

adjust the signs of the entries in the first column to be all positive and complete the
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proof. If not all entries in the first column are nonzero, we may make them so, by

a sequence of similarities of the form






I 0 0

0

[

1 0

1 1

]

0

0 0 I






,

in which the second I may not be present. Then, we may proceed as in the case of

a totally nonzero first column to complete the proof. �

Now we may show

Theorem 5.2. Except for nonpositive scalar matrices, every n× n real matrix is

similar to an SP matrix.

P r o o f. If A ∈ Mn(R) is not a scalar matrix, then according to Lemma 5.1,

there is a matrix with positive column in its similarity class. By Lemma 1.7, this

matrix is SP. Since any positive diagonal matrix is SP, positive scalar matrices are,

as well, which completes the proof. �

As a corollary, we have

Corollary 5.3. Let n be given and suppose that Λ = {λ1, . . . , λn} is a multi-set

of complex numbers that is the spectrum of a real matrix. Then Λ is the spectrum

of an SP matrix in Mn(R), unless n = 1 and λ1 6 0.

6. Equivalence theory of SP matrices

Recall that two matrices A,B ∈ Mm,n(R) are said to be equivalent if there exist

invertible matrices S ∈ Mm(R) and T ∈ Mn(R) such that

B = SAT.

Of course this “equivalence” is an equivalence relation onMm,n(R). It is known that

two matrices inMm,n(R) are equivalent if and only if they have the same rank, see [9].

Now, if S (T ) may be taken to be I, equivalence is called right (left) equivalence. For

each equivalence, left and right equivalence, we may characterize the equivalence

classes that include an SP matrix. Of course, the 0 matrix is the only matrix in

its (right or left) equivalence class (the rank of 0 class), so that no SP matrix is

equivalent or right or left equivalent to 0.

Now we have

Theorem 6.1. Any matrix of rank at least 1 is equivalent to an SP matrix.

630



P r o o f. Begin with A ∈ Mm,n(R). Now suppose that matrices S, T reduce A

to its reduced echelon form. Therefore the equivalence relation SAT will result in

a matrix with a positive front for the 1 through rth row where r = rank of A. Then

left multiply SAT by the matrix that will add the rth row to the r + 1th rows. The

resulting matrix will be SP and is clearly equivalent to the original matrix A. �

Corollary 6.2. Any matrix of rank at least 1 is left equivalent to an SP matrix.

The operations performed by matrices S, T can be done with exclusively left

multiplication using elementary row operations. Therefore, in addition to any matrix

being equivalent to an SP matrix, any matrix is left equivalent to an SP matrix.

Right equivalence is more subtle.

Lemma 6.3. If a matrix is right equivalent to an SP matrix, then it has a positive

vector in its range.

P r o o f. Begin with matrices A ∈ Mm,n(R), B ∈ Mm,p(R), and C ∈ Mp,n(R)

and a nonnegative vector, x ∈ R
n, such that Ax = v where v > 0 so that A is SP.

By assumption B is right equivalent to A by some matrix C and therefore A = BC.

This implies that Ax = BCx and therefore Ax = Bu where u = Cx. And finally

v = Bu and this implies that for some vector u, Bu will result in a positive vector,

v, and therefore B has a positive vector in its range. �

On the other hand, we have

Lemma 6.4. If a matrix has a positive vector in its range then it is right equivalent

to an SP matrix.

P r o o f. Begin with a matrix A ∈ Mm,n(R) and x ∈ R
n where Ax = v and v > 0.

Choose a matrix B ∈ Mn,p(R), such that x = Bu where u > 0. Then ABu = v and

therefore AB is SP and A is right equivalent to an SP matrix. �

It follows from the two lemmas that

Theorem 6.5. A matrix is right equivalent to an SP matrix if and only if it has

a positive vector in its range.
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