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Abstract. We obtain a sharp upper bound for the spectral radius of a nonnegative matrix.
This result is used to present upper bounds for the adjacency spectral radius, the Laplacian
spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the
distance Laplacian spectral radius, the distance signless Laplacian spectral radius of an
undirected graph or a digraph. These results are new or generalize some known results.
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1. Introduction

We begin by recalling some definitions. Let λ1, λ2, . . . , λn be all eigenvalues of an

n×n matrixM . It is obvious that the eigenvalues may be complex numbers sinceM

is not symmetric in general. We usually assume that |λ1| > |λ2| > . . . > |λn|. The
spectral radius of M is defined as ̺(M) = |λ1|, i.e., it is the largest modulus of the
eigenvalues ofM . IfM is a nonnegative matrix, it follows from the Perron-Frobenius

theorem that the spectral radius ̺(M) is an eigenvalue of M . If M is a nonnegative
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dation No.11561141001), Innovation Program of Shanghai Municipal Education Commis-
sion (No. 14ZZ016) and Specialized Research Fund for the Doctoral Program of Higher
Education (No. 20130073110075).
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irreducible matrix, it follows from the Perron-Frobenius theorem that ̺(M) = λ1 is

simple.

Let G = (V,E) be a simple undirected graph with vertex set V = V (G) =

{v1, v2, . . . , vn} and edge set E = E(G). The Laplacian matrix and the signless

Laplacian matrix of G are defined as

L(G) = diag(G)−A(G), Q(G) = diag(G) +A(G),

respectively, where A(G) = (aij) is the adjacency matrix of G, diag(G) = diag(d1,

d2, . . . , dn) is the diagonal matrix of vertex degrees of G and di is the degree of the

vertex vi. The spectral radii of A(G), L(G) and Q(G), denoted by ̺(G), µ(G) and

q(G), are called the (adjacency) spectral radius of G, the Laplacian spectral radius

of G, and the signless Laplacian spectral radius of G, respectively. In 1973, Fiedler

in [10] studied the Laplacian spectra, in particular, the second smallest eigenvalue

which is called algebra connectivity. Since then, the Laplacian matrix has been

extensively investigated. Further, Fiedler in [9] gave an excellent survey for the

Laplacian matrix.

Let G = (V,E) be a connected undirected graph with vertex set V = V (G) =

{v1, v2, . . . , vn} and edge set E = E(G). For u, v ∈ V (G), the distance between u

and v, denoted by dG(u, v), is the length of the shortest path connecting them in G.

The distance matrix of G is the n × n matrix D(G) = (dij) where dij = dG(vi, vj).

In fact, for 1 6 i 6 n, the transmission of vertex vi, TrG(vi) is just the i-th row sum

of D(G). So for convenience, we also call TrG(vi) the distance degree of vertex vi

in G, denoted by Di, that is, Di =
n
∑

j=1

dij = TrG(vi).

Let Tr(G) = diag(D1, D2, . . . , Dn) be the diagonal matrix of vertex transmissions

of G. The distance Laplacian matrix and the distance signless Laplacian matrix of

G are the n× n matrices defined by Aouchiche and Hansen in [1] as

L(G) = Tr(G)−D(G), Q(G) = Tr(G) +D(G).

The spectral radius of D(G), L(G) and Q(G), denoted by ̺D(G), µD(G) and qD(G),

are called the distance spectral radius of G, the distance Laplacian spectral radius

of G, and the distance signless Laplacian spectral radius of G, respectively.

Let ~G = (V,E) be a digraph, where V = V (~G) = {v1, v2, . . . , vn} and E = E(~G)

are the vertex set and arc set of ~G, respectively. A digraph ~G is simple if it has

no loops and multiple arcs. A digraph ~G is strongly connected if for every pair of

vertices vi, vj ∈ V (~G), there are directed paths from vi to vj and from vj to vi. In

this paper, we consider finite, simple digraphs.
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Let ~G be a digraph. Denote by N+

~G
(vi) = {vj ∈ V (~G) : (vi, vj) ∈ E(~G)} the set of

the out-neighbors of vi and by d
+

i = |N+

~G
(vi)| the out-degree of the vertex vi in ~G.

For a digraph ~G, let A(~G) = (aij) denote the adjacency matrix of ~G, where aij
is equal to the number of arcs (vi, vj). Let diag(~G) = diag(d+1 , d

+
2 , . . . , d

+
n ) be the

diagonal matrix of vertex out-degrees of ~G and

L(~G) = diag(~G)−A(~G), Q(~G) = diag(~G) +A(~G)

the Laplacian matrix of ~G and the signless Laplacian matrix of ~G, respectively. The

spectral radii of A(~G), L(~G) and Q(~G), denoted by ̺(~G), µ(~G) and q(~G), are called

the (adjacency) spectral radius of ~G, the Laplacian spectral radius of ~G, and the

signless Laplacian spectral radius of ~G, respectively.

For u, v ∈ V (~G), the distance from u to v, denoted by d~G
(u, v), is the length of

the shortest directed path from u to v in ~G. For u ∈ V (~G), the transmission of

a vertex u in ~G is the sum of distances from u to all other vertices of ~G, denoted

by Tr ~G(u).

Let ~G be a strong connected digraph with vertex set V (~G) = {v1, v2, . . . , vn}. The
distance matrix of ~G is the n × n matrix D(~G) = (dij), where dij = d~G

(vi, vj). In

fact, for 1 6 i 6 n, the transmission of the vertex vi, Tr~G(vi) is just the i-th row sum

of D(~G). So for convenience, we also call Tr~G(vi) the distance degree of the vertex vi

in ~G, denoted by D+

i , that is, D
+

i =
n
∑

j=1

dij = Tr~G(vi).

Let Tr(~G) = diag(D+

1 , D
+

2 , . . . , D
+
n ) be the diagonal matrix of vertex transmissions

of ~G. The distance Laplacian matrix and the distance signless Laplacian matrix of ~G

are the n × n matrices defined similarly to the undirected graph by Aouchiche and

Hansen in [1] as

L(~G) = Tr(~G)−D(~G), Q(~G) = Tr(~G) +D(~G).

The spectral radii of D(~G), L(~G) and Q(~G), denoted by ̺D(~G), µD(~G) and qD(~G),

are called the distance spectral radius of ~G, the distance Laplacian spectral radius

of ~G and the distance signless Laplacian spectral radius of ~G, respectively.

Let G = (V,E) be an undirected graph. For vi, vj ∈ V , if vi is adjacent to vj ,

we denote it by i ∼ j. Moreover, we call mi = d−1

i

∑

i∼j

dj the average degree of

the neighbors of vi. In addition, let ~G = (V,E) be a digraph. For vi, vj ∈ V , if

arc (vi, vj) ∈ E, we denote it by i ∼ j. Moreover, we call m+

i = d+i
−1∑

i∼j

d+j the

average out-degree of the out-neighbors of vi, where d+i is the out-degree of the

vertex vi in ~G.
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A regular graph is a graph where every vertex has the same degree. A bipartite

semi-regular graph is a bipartite graph G = (U, V,E) for which every two vertices

on the same side of the given bipartition have the same degree as each other.

So far, there are many results on the bounds of the spectral radius of a matrix and

a nonnegative matrix, the spectral radius, the Laplacian spectral radius, the sign-

less Laplacian spectral radius, the distance spectral radius, the distance Laplacian

spectral radius and the distance signless Laplacian spectral radius of an undirected

graph and a digraph, see [1], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [14], [15], [16],

[18], [21].

The followings are some results on the above spectral radii of undirected graphs

and digraphs in terms of degree, average degree, out-degree and so on.

̺(G) 6 max
16i6n

{

√

dimi

}

, see [4],(1.1)

µ(G) 6 max
16i6n

{

di +
√

dimi

}

, see [19],(1.2)

q(G) 6 max
16i6n

{

di +
√

dimi

}

, see [17],(1.3)

q(~G) 6 max
16i6n

{

d+i +
√

∑

j∼i

d+j

}

, see [3].(1.4)

It may be noticed that there are few results about the distance Laplacian spectral

radius ofG, the Laplacian spectral radius of ~G, the distance Laplacian spectral radius

of ~G and the distance signless Laplacian spectral radius of ~G. Maybe one reason is

that the Laplacian matrix and the distance Laplacian matrix are not nonnegative

matrices.

In this paper, we obtain sharp upper bounds for the spectral radius of a matrix

or a nonnegative matrix in Section 2, and then we apply these bounds to various

matrices associated with an undirected graph or a digraph. We obtain some new

results or known results about various spectral radii, including the (adjacency) spec-

tral radius, the Laplacian spectral radius, the signless Laplacian spectral radius, the

distance spectral radius, the distance Laplacian spectral radius, the distance signless

Laplacian spectral radius and so on.

2. Main results

In this section, we will obtain the sharp upper bound for the spectral radius of

a (nonnegative) matrix. The techniques used in this section is motivated by [17].

Theorem 2.1. Let B = (bij) be an n×n nonnegative matrix, li the number of the

nonzero entries except for the diagonal entry of the i-th row for any i ∈ {1, 2, . . . , n},
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that is, li = |{bij : bij 6= 0, j ∈ {1, 2, . . . , n} \ {i}}|, and let X = (x1, x2, . . . , xn)
T be

the eigenvector of B corresponding to the eigenvalue ̺(B). Then

(2.1) ̺(B) 6 max
16i6n

{

bii +

Ã

n
∑

k=1, k 6=i

lkb
2
ki

}

.

Moreover, if the equality in (2.1) holds, then

bii +

Ã

n
∑

k=1, k 6=i

lkb
2
ki = bjj +

Ã

n
∑

k=1, k 6=j

lkb
2
kj

for any i, j ∈ {s : xs 6= 0, 1 6 s 6 n}. Furthermore, if B is irreducible, and the
equality in (2.1) holds, then

bii +

Ã

n
∑

k=1, k 6=i

lkb
2
ki = bjj +

Ã

n
∑

k=1, k 6=j

lkb
2
kj

for any i, j ∈ {1, 2, . . . , n}.

P r o o f. For each i ∈ {1, 2, . . . , n}, by BX = ̺(B)X, we have ̺(B)xi =
n
∑

j=1

bijxj ,

then

(̺(B)− bii)xi =
∑

j 6=i,bij 6=0

bijxj ,

and thus by the Cauchy inequality, we have

(̺(B)− bii)
2x2

i =

(

∑

j 6=i,bij 6=0

bijxj

)2

6 li
∑

j 6=i,bij 6=0

(bijxj)
2.

Then

n
∑

i=1

[(̺(B)− bii)xi]
2 6

n
∑

i=1

(

li
∑

j 6=i,bij 6=0

(bijxj)
2

)

=

n
∑

i=1

(

∑

j 6=i,bij 6=0

lib
2
ijx

2
j

)

=

n
∑

i=1

[( n
∑

k=1,k 6=i

lkb
2
ki

)

x2
i

]

,
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thus we have

(2.2)

n
∑

i=1

(

(̺(B) − bii)
2 −

n
∑

k=1,k 6=i

lkb
2
ki

)

x2
i 6 0.

Therefore there must exist some j ∈ {1, 2, . . . , n} such that

(̺(B)− bjj)
2 −

∑

k 6=j

lkb
2
kj 6 0,

so

̺(B) 6 bjj +

√

∑

k 6=j

lkb
2
kj 6 max

16i6n

{

bii +

√

∑

k 6=i

lkb
2
ki

}

.

If ̺(B) = max
16i6n

{

bii +
√

∑

k 6=i

lkb
2
ki

}

, then for any j ∈ {1, 2, . . . , n} we have ̺(B) >

bjj +
√

∑

k 6=j

lkb
2
kj , then

(2.3) (̺(B)− bjj)
2 −

∑

k 6=j

lkb
2
kj > 0,

and thus

(2.4)

n
∑

j=1

(

(̺(B) − bjj)
2 −

∑

k 6=j

lkb
2
kj

)

x2
j > 0.

Combining (2.2) and (2.4) implies that

n
∑

i=1

(

(̺(B) − bii)
2 −

∑

k 6=i

lkb
2
ki

)

x2
i = 0.

Noting that (2.3) holds for any j ∈ {1, 2, . . . , n}, we have (̺(B)− bii)
2− ∑

k 6=i

lkb
2
ki = 0

for any i ∈ {s : xs 6= 0, 1 6 s 6 n}, and thus bii +
√

∑

k 6=i

lkb
2
ki = bjj +

√

∑

k 6=j

lkb
2
kj for

any i, j ∈ {s : xs 6= 0, 1 6 s 6 n}.
Furthermore, if B is irreducible, then xi > 0 for each i ∈ {1, 2, . . . , n} by the

Perron-Frobenius theorem, and thus bii +

 

n
∑

k=1,k 6=i

lkb
2
ki = bjj +

 

n
∑

k=1,k 6=j

lkb
2
kj for

any i, j ∈ {1, 2, . . . , n} if the equality in (2.1) holds. �

It is natural that we want to know under what conditions the equality in (2.1)

holds.
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Question 2.2. Look for the necessity and sufficiency conditions for the equality

in (2.1) to hold.

Lemma 2.3 ([13]). Let B = (bij) be an n × n nonnegative irreducible matrix

and A = (aij) a complex matrix. Let |A| = (|aij |). If bij > |aij | for any i, j ∈
{1, 2, . . . , n}, which we denote by B > |A|, then ̺(B) > ̺(A).

By Lemma 2.3 we know that for any connected graph G and any strong connected

digraph ~G, µ(G) 6 q(G) and µ(~G) 6 q(~G). In fact, we have

Lemma 2.4 ([2]). Let G = (V,E) be a connected undirected graph on n vertices.

Then µ(G) 6 q(G), with equality holding if and only if G is a bipartite graph.

Corollary 2.5. Let A = (aij) be an n × n complex irreducible matrix, li the

number of the nonzero entries except for the diagonal entry of the ith row for any

i ∈ {1, 2, . . . , n}, that is, li = |{aij : aij 6= 0, j ∈ {1, 2, . . . , n} \ {i}}|. Then

(2.5) ̺(A) 6 max
16i6n

{

|aii|+

Ã

n
∑

k=1,k 6=i

lk|aki|2
}

.

If the equality holds, then |aii|+
 

n
∑

k=1,k 6=i

lk|aki|2 = |ajj |+
 

n
∑

k=1,k 6=j

lk|akj |2 for any

i, j ∈ {1, 2, . . . , n}.

P r o o f. Let B = (|aij |), then B is a nonnegative irreducible matrix. Thus

̺(A) 6 ̺(B) by Lemma 2.3, and (2.5) holds by Theorem 2.1. �

3. Various spectral radii of an undirected graph

Let G be an undirected graph. The adjacency matrix A(G), the Laplacian ma-

trix L(G), the signless Laplacian matrix Q(G), and the (adjacency) spectral ra-

dius ̺(G), the Laplacian spectral radius µ(G), the signless Laplacian spectral radius

q(G) are defined as in Introduction. Let G be a connected undirected graph. The

distance matrix D(G), the distance Laplacian matrix L(G), the distance signless

Laplacian matrix Q(G), and the distance spectral radius ̺D(G), the distance Lapla-

cian spectral radius µD(G), the distance signless Laplacian spectral radius qD(G)

are defined as in Introduction. In this section, we will apply Theorem 2.1 to A(G),

Q(G), D(G) and Q(G), and apply Corollary 2.5 to L(G) and L(G), to obtain some

new results or known results on the spectral radius.
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3.1. Adjacency spectral radius of an undirected graph.

Lemma 3.1. Let G = (V,E) be a simple connected undirected graph with vertex

set V = {v1, v2 . . . , vn}. For any vi ∈ V , the degree of vi and the average degree

of the vertices adjacent to vi are denoted by di and mi, respectively. Then d1m1 =

d2m2 = . . . = dnmn holds if and only if G is a regular undirected graph or a bipartite

semi-regular undirected graph.

P r o o f. If G is a regular undirected graph or a bipartite semi-regular undirected

graph, we can check that d1m1 = d2m2 = . . . = dnmn holds immediately.

Conversely, let d1m1 = d2m2 = . . . = dnmn hold. Now we show that G is a regular

or a bipartite semi-regular undirected graph.

Let a vertex vn be the lowest degree vertex in G, that is, dn = min{di : 1 6 i 6 n}.
Let dn = r, and let the neighbors of vn be vi1 , vi2 , . . . , vir . Let di1 = max{dij :
1 6 j 6 r}, denoted by s = di1 . Then mn 6 s by mi = d−1

i

∑

i∼j

dj and thus

dnmn = rmn 6 rs.

On the other hand, for a vertex vi1 we have di1mi1 = smi1 > rs, then rs 6

di1mi1 = dnmn 6 rs, thus di1mi1 = dnmn = rs, which implies mn = s and mi1 = r.

Therefore by the definitions of s and r, we know vi1 , vi2 , . . . , vir must have the same

degree, say, s = di1 = di2 = . . . = dir , and all the neighbors of vi1 must have the

same degree r.

Similarly to the above arguments, we can show that the vertices with degree r are

adjacent to the vertices with degree s, and the vertices with degree s are adjacent to

the vertices with degree r in G.

Now we assume that G is not bipartite. Then G has at least an odd cycle. Let

C = vj1vj2 . . . vj2k−1
vj2kvj2k+1

vj1 be an odd cycle of length 2k + 1 in G. Clearly,

the degree of the vertex vj1 , say dj1 , is either r or s. Without loss of generality, we

assume that dj1 = r. Since the vertices with degree r are adjacent to the vertices with

degree s, and the vertices with degree s are adjacent to the vertices with degree r,

hence dj2 = s, dj3 = r, . . ., dj2k−1
= r, dj2k = s, dj2k+1

= r and dj1 = s by vj2k+1
and

vj1 being adjacent, thus r = s, which implies that G is regular.

Hence the undirected graph G is a regular undirected graph or a bipartite semi-

regular undirected graph. �

Theorem 3.2 ([4], Theorem 1). Let G = (V,E) be a simple undirected graph on

n vertices. Then ̺(G) 6 max
16i6n

√
dimi.Moreover, if G is connected, then the equality

holds if and only if G is a regular or bipartite semi-regular undirected graph.

P r o o f. We apply Theorem 2.1 to A(G).
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Since bii = 0,

bij =

{

1 if vi and vj are adjacent,

0 otherwise,

and li = di for i = 1, 2, . . . , n, hence bii+
√

∑

k 6=i

lkb
2
ki =

√
dimi for i = 1, 2, . . . , n, and

thus ̺(G) 6 max
16i6n

√
dimi by (2.1).

If G is connected, now we show the equality holds if and only if G is a regular or

bipartite semi-regular undirected graph.

If G is connected and ̺(G) = max
16i6n

√
dimi, then

√
d1m1 =

√
d2m2 = . . . =

√
dnmn by Theorem 2.1, and thus d1m1 = d2m2 = . . . = dnmn. Therefore, G is

a regular or bipartite semi-regular undirected graph by Lemma 3.1.

On the other hand, if G is connected and G is a regular or bipartite semi-regular

undirected graph, then d1m1 = d2m2 = . . . = dnmn by Lemma 3.1, thus
√
d1m1 =√

d2m2 = . . . =
√
dnmn, and ̺(G) 6 max

16i6n

√
dimi =

√
d1m1. Then we complete the

proof in the following two cases.

Case 1 : G is a regular undirected graph with degree r. It is well known that

r =
√
d1m1 is an eigenvalue of G, so

√
d1m1 6 ̺(G). Thus ̺(G) = max

16i6n

√
dimi = r

by ̺(G) 6
√
d1m1 = r.

Case 2 : G is a bipartite semi-regular undirected graph.

We assume that the two bipartitions of G have degree r and s, respectively. It

is easy to check that
√
rs =

√
d1m1 is an eigenvalue of G, so

√
rs 6 ̺(G). Thus

̺(G) = max
16i6n

√
dimi =

√
rs by ̺(G) 6

√
d1m1 =

√
rs. �

3.2. (Signless) Laplacian spectral radius of an undirected graph.

Lemma 3.3 ([13]). Let A be a nonnegative matrix with the spectral radius ̺(A)

and the row sums r1, r2, . . . , rn. Then min
16i6n

ri 6 ̺(A) 6 max
16i6n

ri. Moreover, if A is

an irreducible matrix, then one of the equalities holds if and only if the row sums of

A are all equal.

Lemma 3.4. Let G = (V,E) be a simple connected undirected graph with vertex

set V = {v1, v2, . . . , vn}. For any vi ∈ V , the degree of vi and the average degree of

the vertices adjacent to vi are denoted by di andmi, respectively. Then d1+
√
d1m1 =

d2 +
√
d2m2 = . . . = dn +

√
dnmn holds if and only if G is regular.

P r o o f. If G is regular, we can check that d1 +
√
d1m1 = d2 +

√
d2m2 = . . . =

dn +
√
dnmn holds immediately.
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Conversely, let d1 +
√
d1m1 = d2 +

√
d2m2 = . . . = dn +

√
dnmn hold. Now we

show G is regular.

Let a vertex vn be the lowest degree vertex in G, that is, dn = min{di : 1 6 i 6 n}.
Let dn = r, and let the neighbors of vn be vi1 , vi2 , . . . , vir . Let di1 = max{dij : 1 6

j 6 r}, denoted by s = di1 . It is obvious that r 6 s, mn 6 s by mi = d−1

i

∑

i∼j

dj , and

thus dn +
√
dnmn 6 r +

√
rs.

On the other hand, for the vertex vi1 , we have di1mi1 = smi1 > rs, then di1 +
√

di1mi1 > s +
√
rs. Thus s +

√
rs 6 di1 +

√

di1mi1 = dn +
√
dnmn 6 r +

√
rs 6

s +
√
rs, which implies mn = s, mi1 = r and r = s. Therefore by the definitions

of s and r, we know vi1 , vi2 , . . . , vir must have the same degree, that is, s = di1 =

di2 = . . . = dir , and all the neighbors of vi1 must have the same degree r (= s).

Similarly to the above arguments, we can show that the vertices with degree r are

adjacent to the vertices with degree s, and the vertices with degree s are adjacent to

the vertices with degree r in G. Then G is regular by r = s. �

Theorem 3.5. Let G = (V,E) be a simple undirected graph on n vertices. Then

(i) (see [17]) q(G) 6 max
16i6n

{

di+
√
dimi

}

. Moreover, if G is connected, the equality

holds if and only if G is a regular undirected graph.

(ii) (See [19].) If G is connected, then µ(G) 6 max
16i6n

{di+
√
dimi}, and the equality

holds if and only if G is a bipartite regular undirected graph.

P r o o f. First, we show (i) holds. We apply Theorem 2.1 to Q(G).

Since bii = di,

bij =

{

1 if vi and vj are adjacent;

0 otherwise,

li = di for i = 1, 2, . . . , n, we have bii +
√

∑

k 6=i

lkb
2
ki = di +

√
dimi for i = 1, 2, . . . , n,

and thus q(G) 6 max
16i6n

{di +
√
dimi} by (2.1).

Now we show that if G is connected, then the equality holds if and only if G is

regular.

If G is a connected undirected graph and q(G) = max
16i6n

{di +
√
dimi}, then

d1 +
√
d1m1 = d2 +

√
d2m2 = . . . = dn +

√
dnmn by Theorem 2.1, and thus G

is regular by Lemma 3.4.

On the other hand, if G is connected and G is regular with degree r, then

d1 +
√
d1m1 = d2 +

√
d2m2 = . . . = dn +

√
dnmn = 2r by Lemma 3.4 and

max
16i6n

{di +
√
dimi} = 2r. It is well known that q(G) = 2r by Lemma 3.3, so

q(G) = max
16i6n

{di +
√
dimi}.
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Similarly to the proof of (i), by Corollary 2.5, Lemma 2.4 and the result of (i), we

can show (ii) immediately, so we omit it. �

3.3. Distance spectral radius of an undirected graph.

Theorem 3.6. Let G = (V,E) be a connected undirected graph on n vertices.

Then

(3.1) ̺D(G) 6 max
16i6n

Ã

(n− 1)

n
∑

k=1

d2ki.

If the equality holds, then
n
∑

k=1

d2ki =
n
∑

k=1

d2kj for any i, j ∈ {1, 2, . . . , n}.

P r o o f. We apply Theorem 2.1 to D(G). Since bii = dii = 0, bij = dij 6= 0 when

i 6= j and li = n− 1 for i = 1, 2, . . . , n, we have bii +
√

∑

k 6=i

lkb
2
ki =

 

(n− 1)
n
∑

k=1

d2ki

for i = 1, 2, . . . , n, and thus (3.1) holds by (2.1).

It is obvious that if the equality holds, then
n
∑

k=1

d2ki =
n
∑

k=1

d2kj for any i, j =

1, 2, . . . , n by Theorem 2.1. �

3.4. Distance (signless) Laplacian spectral radius of an undirected

graph.

Theorem 3.7. Let G = (V,E) be a connected undirected graph on n vertices.

Then

(3.2) qD(G) 6 max
16i6n

{

Di +

Ã

(n− 1)

n
∑

k=1

d2ki

}

,

and

(3.3) µD(G) 6 max
16i6n

{

Di +

Ã

(n− 1)

n
∑

k=1

d2ki

}

.

Moreover, if the equality in (3.2) (or (3.3)) holds, then Di +

 

(n− 1)
n
∑

k=1

d2ki =

Dj +

 

(n− 1)
n
∑

k=1

d2kj for any i, j ∈ {1, 2, . . . , n}.
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P r o o f. We apply Theorem 2.1 to Q(G). Since bii = Di, bij = dij where i 6= j,

and li = n− 1 for i = 1, 2, . . . , n, hence bii +
…

∑

k 6=i

lkb
2
ki = Di +

 

(n− 1)
n
∑

k=1

d2ki for

i = 1, 2, . . . , n, and thus (3.2) holds.

Similarly, we apply Corollary 2.5 to L(G) and (3.3) holds. �

4. Various spectral radii of a digraph

Let ~G be a connected digraph. The adjacency matrix A(~G), the Laplacian ma-

trix L(~G), the signless Laplacian matrix Q(~G), and the (adjacency) spectral ra-

dius ̺(~G), the Laplacian spectral radius µ(~G), the signless Laplacian spectral radius

q(~G) are defined as in Introduction. Let ~G be a connected digraph. The distance

matrix D(~G), the distance Laplacian matrix L(~G), the distance signless Laplacian

matrix Q(~G), and the distance spectral radius ̺D(~G), the distance Laplacian spec-

tral radius µD(~G), the distance signless Laplacian spectral radius qD(~G) are defined

as in Introduction. In this section, we will apply Theorem 2.1 to A(~G), Q(~G), D(~G)

and Q(~G), and apply Corollary 2.5 to L(~G) and L(~G), to obtain some new results

or known results on the spectral radius.

4.1. Adjacency spectral radius of a digraph.

Theorem 4.1 ([20], Corollary 3.2). Let ~G = (V,E) be a digraph on n vertices.

Then

̺(~G) 6 max
16i6n

√

∑

k∼i

d+k .

If ~G is connected and the equality holds, then
∑

k∼1

d+k =
∑

k∼2

d+k = . . . =
∑

k∼n

d+k .

P r o o f. We apply Theorem 2.1 to A(~G). Since bii = 0, bij =

{

1 if (vi, vj) ∈ E;

0 otherwise,

and li = d+i for i = 1, 2, . . . , n, we have bii +
√

∑

k 6=i

lkb
2
ki =

√

∑

k∼i

d+k , and thus

̺(~G) 6 max
16i6n

√

∑

k∼i

d+k by (2.1).

It is obvious that if ~G is connected and the equality holds, then
∑

k∼1

d+k =
∑

k∼2

d+k = . . . =
∑

k∼n

d+k by Theorem 2.1. �
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4.2. (Signless) Laplacian spectral radius of a digraph.

Theorem 4.2. Let ~G = (V,E) be a digraph on n vertices. Then

(i) (See [3], Theorem 3.3.) q(~G) 6 max
16i6n

{

d+i +
√

∑

j∼i

d+j

}

. Moreover, if ~G is con-

nected and the equality holds, then d+1 +
√

∑

j∼1

d+j = d+2 +
√

∑

j∼2

d+j = . . . =

d+n +
√

∑

j∼n

d+j .

(ii) If ~G is connected, then µ(~G) 6 max
16i6n

{

d+i +
√

∑

j∼i

d+j

}

, and if the equality holds,

then d+1 +
√

∑

j∼1

d+j = d+2 +
√

∑

j∼2

d+j = . . . = d+n +
√

∑

j∼n

d+j .

P r o o f. We apply Theorem 2.1 to Q(~G). Since bii = d+i , bij=

{

1 if (vi, vj)∈E;

0 otherwise,

and li = d+i for i = 1, 2, . . . , n, then bii+
√

∑

k 6=i

lkb
2
ki = d+i +

√

∑

j∼i

d+j for i = 1, 2, . . . , n,

and thus q(~G) 6 max
16i6n

{

d+i +
√

∑

j∼i

d+j

}

by (2.1).

It is obvious that if ~G is connected and the equality holds then d+1 +
√

∑

j∼1

d+j =

d+2 +
√

∑

j∼2

d+j = . . . = d+n +
√

∑

j∼n

d+j by Theorem 2.1.

Similarly to the proof of (i), we can show (ii) immediately by Corollary 2.5, so we

omit it. �

4.3. Distance spectral radius of a digraph.

Theorem 4.3. Let ~G = (V,E) be a strongly connected digraph on n vertices.

Then

(4.1) ̺D(~G) 6 max
16i6n

Ã

(n− 1)

n
∑

k=1

d2ki.

If the equality holds, then
n
∑

k=1

d2ki =
n
∑

k=1

d2kj for any i, j ∈ {1, 2, . . . , n}.

P r o o f. We apply Theorem 2.1 to D(~G). Since bii = dii = 0, bij = dij 6= 0,

and li = n− 1 for any i = 1, 2, . . . , n, hence bii +
√

∑

k 6=i

lkb
2
ki =

√

(n− 1)
n
∑

k=1

d2ki for

i = 1, 2, . . . , n, and thus (4.1) holds by (2.1).
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It is easy to see that if the equality holds, then
n
∑

k=1

d2ki =
n
∑

k=1

d2kj for any i, j ∈
{1, 2, . . . , n}. �

4.4. Distance (signless) Laplacian spectral radius of a digraph.

Theorem 4.4. Let ~G = (V,E) be a strongly connected digraph on n vertices.

Then

(4.2) qD(~G) 6 max
16i6n

{

D+

i +

Ã

(n− 1)
n
∑

k=1

d2ki

}

,

and

(4.3) µD(~G) 6 max
16i6n

{

D+

i +

Ã

(n− 1)

n
∑

k=1

d2ki

}

.

Moreover, if the equality in (4.2) (or (4.3)) holds then D+

i +

√

(n− 1)
n
∑

k=1

d2ki =

D+

j +

√

(n− 1)
n
∑

k=1

d2kj for any i, j ∈ {1, 2, . . . , n}.

P r o o f. We apply Theorem 2.1 to Q(~G). Since bii = D+

i , bij = dij 6= 0 for all

i 6= j, bii = dii = 0, and li = n− 1 for i = 1, 2, . . . , n, hence bii +
√

∑

k 6=i

lkb
2
ki = D+

i +
√

(n− 1)
n
∑

k=1

d2ki for i = 1, 2, . . . , n, and thus (4.2) holds by (2.1). By Corollary 2.5

and (i), (4.3) holds.

It is easy to see that if the equality in (4.2) (or (4.3)) holds then D+

i +
√

(n− 1)
n
∑

k=1

d2ki = D+

j +

√

(n− 1)
n
∑

k=1

d2kj for any i, j ∈ {1, 2, . . . , n} by Theo-

rem 2.1. �
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