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Abstract. Fiedler and Markham (1994) proved

(detﬁ)k > det I,

where H = (Hij)?.j=1 is a positive semidefinite matrix partitioned into n x n blocks with

each block k x k and H = (tr Hij)?,j:r We revisit this inequality mainly using some ter-
minology from quantum information theory. Analogous results are included. For example,
under the same condition, we prove
det(In + H) > det(I,,), + kH)"*.
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1. INTRODUCTION
We are interested in complex matrices partitioned into n x n blocks
H11 . Hln
H, ... Hp,

with each block k x k. To save room, we usually put H = (H;;);';—; € My (Myg).

A map (not necessarily linear) ¢: My — M,,, is completely positive, see [1], page 92,
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if for each n > 1, (p(H;j))7 ;= is (Hermitian) positive semidefinite whenever
(Hij)i ;=1 is positive semidefinite.

It is known that the trace map and determinant map are completely positive. Let
E,.(H;;),1 < r < k, denote the r-th elementary symmetric function of the eigenvalues
of the matrix H;;. As early as last 60s, de Pillis [3] showed that ¢ = E, is a completely
positive map. In [4], Fiedler and Markham gave an almost “visualized” proof of this
fact. As a byproduct of their argument (plus a clever use of Oppenheim’s inequality),
Fiedler and Markham derived the following determinant inequality, which is the
starting point of this paper.

Proposition 1.1 ([4], Corollary 1). Let H = (H;;)7;—; € M, (My) be positive
semidefinite. Then

(1.1)

(det ﬁ)k > det I,

where H = (tr Hij)7 j—,. Moreover, the constant k in (1.1) is optimal.

Now we introduce the definition of partial traces, a notion from quantum informa-
P
tion theory. For any H € M,,(My), we may write H = ) A; ® B; for some A; € M,,,
i=1
B; € My, and some positive integer p. Here “®” stands for the tensor product. The
partial traces try H € M,, and tro H € M,,, are defined (see, e.g., [10], page 12),
respectively, as
P P
tI‘lH = Z(tr Ai)Bi; tI'QH = Z(tr Bz)Az
i=1 i=1
In other words, tr; “traces out” the first factor and tro “traces out” the second factor.
The actual forms of the partial traces are seen in [10], page 12:

n
tl"lH = ZH“‘, tl"QH = (tl"Hij)n

ij=1"
i=1

It is easy to see that partial trace maps are completely positive. With what has
been just defined, (1.1) can be written as

(det(trg H

(1.2) : ))k > det H.

A natural question is whether a result analogous to (1.2) is true for try H. The
answer turns out to be yes. In the next section, we consider some related results,
moreover, we give a new proof of (1.2) using an identity connecting tro H and H.
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2. MAIN RESULTS

Proposition 2.1. Let H € M,,(My,) be positive semidefinite. Then

(det(tr1 H)

(2.1) —~

) > det H.

Moreover, the constant n in (2.1) is optimal.
Proof. As H is positive semidefinite, it is clear that
n n
Z det H“‘ < det (Z H”> .
i=1

i=1

By Fischer’s inequality, see [6], page 506, and the Arithmetic mean-Geometric mean
inequality,

n 1 n n
det H < HdetHii < <—§ detH“)
n
i=1 i=1

() = (Y

This proves the inequality. To see the inequality is sharp, we simply take H = I,,,
the n x n identity matrix, with k = 1. 0

We remark that both (1.2) or (2.1) can be tighter than the other. For example,

take n = 2 and
(ZIk Ik)
H = .
I I

(det(tlzg H))k i (det(t: H))” _ (3’“)2.

Then det H = 1 and

Clearly, when k = 2,
det(trg H)\* det(try H)\» F\2
(2.2) <7e(r2 )) :k’“<(7e(r1 )) :<3_) 7
k n 2
but the inequality (2.2) reverses for large k.
Inequality (2.1) seems easier to prove than its counterpart (1.2). As promised, we

shall give a new proof of (1.2). Our proof relies on the following identity connecting
trg H and H, which can be found in [8]; see also [11], equation (14).
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Lemma 2.2. Let X and Y be generalized Pauli matrices on C*; these operators

act as Xej = ej41, Ye; = e2“ij/kej, where i is the imaginary unit, e; is the j-th

column of I}, and eyy1 = e;. Then

k
(2.3) > (I @ X'Y)H(I, ® X'Y7)* = (tr.H) @ I
=1

Bl

With relevant changes, a similar identity can be posed for I, ® (tr1 H).

Proofof (1.2). First of all, note that X, Y in (2.3) are unitary. As the determi-
nant functional is log-concave over the cone of positive semidefinite matrices, see [6],
page 488, we have

k
det( > (I, @ X'YY) (In®Xle)*)
l,j=1
kZ

. . 2
> [[(det(l, © X'Y9)H (I, © X'v7)7) /"
j=1
kZ
= [ (det #)*/** = det A1.
j=1

Then by (2.3), det H is bounded above by

det<(tr2ﬂ;€)®jk) _ det((trng) ®Ik) _ (det(t;"g H))k.

Therefore, (1.2) follows. O

A matrix H = (H;;)7 ;-
(ie., PPT) if H is positive semidefinite and its partial transpose (Hj;)};_; is also
positive semidefinite. It is known, see [7], that if H = (H;;);';—; € M, (My) is PPT,

then both

1 € M, (Myg) is said to be positive partial transpose

troH® I, — H and I,QtriH—H

are positive semidefinite.
Making use of a majorization result of Hiroshima [5] (see also [9], Theorem 2.1)
and mimicking the proof of [2], Corollary 2.3, we have

Proposition 2.3. Let H € M,,(My) be PPT. Then

(2.4) det(Iy + tr1 H)
(2.5) det(I, +troH)

et( nk+H)

d
det(I, + H).

NN
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In general, neither (2.4) nor (2.5) need to be true if the PPT assumption is
dropped. This motivates us to consider possible extensions of (2.4) and (2.5) without
the PPT assumption or at least some analogous results. We need a lemma before
presenting our last result.

For a Hermitian matrix X € M,,, we denote by A(X) = (A (X),..., A (X)) the

vector of the eigenvalues of X such that A\ (X) > > > A\p(X). For two Hermitian
matrices X,Y € M,,, we write A(X) < A(Y) if Z Aj (X) Z ;(Y) for all m =

m m

1,...,n—1and ) A;(X)= > A\;(Y). This is the so called majorization relation. It
j=1 j=1

is clear that if XY are positive semidefinite and A(X) < A(Y), then det(I,, + X) >

det(I, +Y).

Lemma 2.4 ([6], page 250). Let X and Y be two Hermitian matrices of the same
size. Then
AMX 4Y) < AX) +A(Y).

Theorem 2.5. Let H € M,,(M},) be positive semidefinite. Then
(2.6) det(Iy + try H) > det (I, + nH)Y™;
(2.7) det(I,, + try H) > det (I, + kH)'/".
Moreover, these inequalities are sharp.

Proof. We prove (2.7) only, as (2.6) can be proved in exactly the same way. By
the identity (2.3) and Lemma 2.4, we have

k
1 , ,
MtroH @ I) = /\<% Y (Lo X'Y)H(I, & XlYJ)*>
1j=1

< ML, ® X'Y)H(I, ® X'V7)*)

> =
-

~

=1

- % zk: (H) = kACH).
1j=1
Therefore,
det(Ing + (troH) @ I;) > det(Iny + kH).
But now

det(I,y, + (troH) @ I1,) = det((I, + troH) ® I;) = det(I,, + troH)F,

yielding the desired result (2.7). To see that (2.6) is sharp, we just take n = 1. If we
take k = 1, then (2.7) becomes an equality. O
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Remark 2.6. If we apply (1.2), we could also get a lower bound for det(I, +

trg H). The argument goes as follows:

det(L, + troH) = det (tr2 (I”—’“ + H))

k
Lk 1/k
> —_— .
/k;det(k +H) by (1.2)
1
= o det(Tg + KH)'E,

However, this lower bound is weaker than (2.7).

To the author’s best knowledge, determinant inequalities involving partial traces

have not been extensively investigated in the literature. The author expects there

would be a fruitful interplay between determinant and partial traces.
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