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Abstract. The maximum nullity over a collection of matrices associated with a graph
has been attracting the attention of numerous researchers for at least three decades. Along
these lines various zero forcing parameters have been devised and utilized for bounding
the maximum nullity. The maximum nullity and zero forcing number, and their positive
counterparts, for general families of line graphs associated with graphs possessing a variety
of specific properties are analysed. Building upon earlier work, where connections to the
minimum rank of line graphs were established, we verify analogous equations in the positive
semidefinite cases and coincidences with the corresponding zero forcing numbers. Working
beyond the case of trees, we study the zero forcing number of line graphs associated with
certain families of unicyclic graphs.
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1. Introduction

Throughout this paper all graphs are assumed to be finite, simple, and undirected.

We use the notation G = (V,E) to denote the graph with nonempty vertex set

V = V (G) and edge set E = E(G). An edge of G with end points u and v is denoted

by uv. The order of the graph G is defined to be |V (G)|. A graph H is a subgraph

of G (denoted H 6 G) if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H of

a graph G is said to be induced if for any pair of vertices x and y of H , xy is an edge

The research has been supported by an NSERC Discovery Research Grant No. RGPIN-
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of H if and only if xy is an edge of G. For a subset S of V , G \ S is the subgraph

induced on V \ S. More specifically, for any vertex v and any edge e in a graph G,

we let G− v and G− e denote the graphs obtained from G by deleting the vertex v

(and all edges incident with v), and by deleting the edge e, respectively. Similarly,

if e is not an edge from G, then we let G+ e denote the graph obtained from G by

adding the edge e.

A path on n vertices is a graph Pn with vertex set V (Pn) = {v1, . . . , vn} and

edge set E(Pn) = {vivi+1 : i = 1, 2, . . . , n − 1}. A path in a graph G is said to be

a Hamilton path if this path includes every vertex in G. A complete graph (or clique)

is a graph Kn = ({v1, . . . , vn}, E) such that E = {vivj : i 6= j}. If G and H are two

graphs, then the Cartesian product of G and H , denoted by G � H , is the graph

with vertex set V (G) × V (H) with adjacency defined as: (u, v) is adjacent to (w, z)

if and only if u = w and vz ∈ E(H) or v = z and uw ∈ E(G).

The line graph of a given graph G, denoted by L(G), is obtained by associating

a vertex with each edge of G and connecting two vertices with an edge if and only if

the corresponding edges of G have a vertex in common.

To a given graph G with V = {1, . . . , n}, we associate a class of real, n × n

symmetric matrices as follows. The set of symmetric matrices over R is denoted

by Sn(R). For A ∈ Sn(R), the graph of A, denoted by G(A), is the graph with

vertex set {1, . . . , n} and with edge set {ij : aij 6= 0 and i 6= j}. Further, we set

S(G) = {A ∈ Sn(R) : G(A) ∼= G}.

Given a graph G, the minimum rank of a graph G is defined to be

mr(G) = min{rank(A) : A ∈ S(G)},

while the maximum nullity of G is defined as

M(G) = max{null(A) : A ∈ S(G)}.

Both of these quantities have been studied extensively, see, for example [10], [11]

and the numerous references listed within. Some basic properties include: M(G) +

mr(G) = |V (G)|, M(Pn) = 1, and M(Kn) = n− 1.

Also, we let S+(G) denote the subset of S(G) consisting of all real positive semi-

definite matrices. Further, we let

mr+(G) = min{rank(A) : A ∈ S+(G)},

and

M+(G) = max{null(A) : A ∈ S+(G)}.
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The parameter mr+(G) is called the (real) minimum positive semidefinite rank of G,

while M+(G) is called the maximum positive semidefinite nullity of G (see also [11]).

As with the case of standard minimum rank, it is clear that for any graph G,

mr+(G) +M+(G) = |V (G)|.

Finally, we define some additional concepts and terminology. A clique covering

of a graph G is a family of cliques in G that cover (or contain) all of the edges

of G. The clique cover number of a graph G, denoted by cc(G), is the minimum

number of cliques over all clique coverings of G. For every graph G we have mr(G) 6

mr+(G) 6 cc(G) (see [5], [10]). Furthermore, if G is chordal (that is, a graph with

no induced cycles on four or more vertices), then mr+(G) = cc(G), whereas mr(G)

is often strictly less than cc(G) for chordal graphs (see also [5]).

2. Zero forcing sets and zero forcing numbers

Let G be a graph with every vertex initially coloured either black or white. If u is

a black vertex of G and u has exactly one white neighbour, say v, then we change the

colour of v to black; this rule is known as the colour change rule. In this case we say

“u forces v” which is denoted by u → v. The procedure of colouring a graph using

the colour change rule is called the zero forcing process (abbreviated to the forcing

process). Given an initial colouring of G, the derived set is the set of all black vertices

resulting from repeatedly applying the colour change rule until no more changes are

possible. A zero forcing set, Z, is a subset of vertices of G such that if initially

the vertices in Z are coloured black and the remaining vertices are coloured white,

then the derived set of G is V (G). The zero forcing number of a graph G, denoted

by Z(G), is the smallest size of a zero forcing set of G. A zero forcing process is

called optimal if the initial set of black vertices forms a minimum zero forcing set.

In [1], it was verified that for any connected graph G is Z(G) > M(G).

Recently, a variant of the zero forcing number, called positive semidefinite zero

forcing number or the positive zero forcing number, was introduced in [3], and a col-

lection of its properties were discussed in [7] and [8]. The positive zero forcing number

is also based on a colour change rule that is similar to the zero forcing colour change

rule. To begin, let G be a graph and B a set of vertices; we will initially colour the

vertices of B black and all other vertices white. LetW1, . . . ,Wk be the set of vertices

of the connected components of G \B. If u is a vertex in B and w is the only white

neighbour of u in the graph induced by V (Wi) ∪ B, then u can force the colour of

w to black. This is the positive colour change rule. Definitions and terminology for

the positive zero forcing process, such as colouring and positive zero forcing number,

etc., are analogous to those for the zero forcing number, except we use the positive

semidefinite colour change rule.
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The size of the smallest positive zero forcing set of a graph G is denoted by Z+(G).

Moreover, for all graphs G, since a zero forcing set is also a positive zero forcing set,

we have that Z+(G) 6 Z(G). Also, in [3] it was observed that M+(G) 6 Z+(G) for

any graph G.

3. On the zero forcing numbers of line graphs

We recall some basic results on the minimum rank of line graphs, which can be

found in [1]. These known results represent the starting point for our research and

will be relied upon throughout our work. We state them here for easier referencing

later.

Theorem 3.1 ([1], Corollary 3.19). If G has n > 2 vertices, then mr(L(G)) 6

n− 2 or equivalently M(L(G)) > |E(G)| − n+ 2.

Corollary 3.2 ([1], Corollary 3.20). If G has n > 2 vertices and contains a Hamil-

ton path, then mr(L(G)) = n− 2.

A connected graph is called non-separable if it does not have a cut-vertex. A block

of a graph is a maximal non-separable subgraph. A graph is block-clique if every

block is clique. A graph is the line graph of a tree if and only if it is block-clique and

no vertex is contained in more than 2 blocks, see also [1].

The minimum rank and zero forcing number of such a block-clique graph are

determined in the next fact and can be found in [1].

Proposition 3.3 ([1], Proposition 3.23). Let G be a block-clique graph of order at

least 2 such that no vertex is contained in more than 2 blocks. Then mr(G) = cc(G)

and M(G) = Z(G).

As noted in [1], Corollary 3.24, it follows that if T is a tree with l pendant vertices,

then Z(L(T )) = l − 1 = M(L(T )).

Moving beyond trees, it was demonstrated in [1] that if G contains a Hamilton

path, then M(L(G)) = |E(G)| − |V (G)| + 2. A similar conclusion was also shown if

G contains the complete bipartite graph Kk,n−k. These facts were then extended to

include the zero forcing number as follows:

Theorem 3.4 ([1], Proposition 4.9). Suppose G is a graph that contains a Hamil-

ton path or Kk,n−k. Then

Z(L(G)) = M(L(G)) = |E(G)| − |V (G)| + 2.
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Using a very basic, yet useful, idea concerning edge addition, we can re-prove these

facts differently, which may be of interest to the readers.

Lemma 3.5. Suppose G is a connected graph and contains a Hamilton path. If

Z(L(G)) = |E(G)| − |V (G)|+ 2, then for any edge e with e 6∈ E(G) we have

Z(L(G+ e)) = |E(G)| − |V (G)|+ 3.

P r o o f. Define G1
∼= G + e. Then L(G1) ∼= L(G) + ve, where the vertex ve is

adjacent to all the edges of G that are incident with e. Suppose B is a minimum

zero forcing set for L(G).

Claim: B ∪ {ve} is a zero forcing set for L(G1).

P r o o f of claim. Since L(G) and L(G1) only differ by a single vertex ve, choosing

ve initially black and using the zero forcing set for L(G) will result in a zero forcing

set for L(G1) in which ve need not force any vertices. Hence Z(L(G1)) 6 Z(L(G))+1.

�

On the other hand, using Theorem 3.1, we have

Z(L(G1)) > |E(G1)| − |V (G1)|+ 2 = |E(G)|+ 1− |V (G)| + 2 = Z(L(G)) + 1.

Thus Z(L(G1)) = Z(L(G)) + 1 = |E(G)| − |V (G)|+ 3. �

Now we are ready to provide another proof of Theorem 3.4.

P r o o f of Theorem 3.4. First suppose G is a graph that contains a Hamilton

path. Define a sequence of connected spanning subgraphs of G as:

G0
∼= Pn, G1

∼= G0 + e1, . . . , Gk
∼= Gk−1 + ek ∼= G.

Since G contains a Hamilton path, G contains Pn as a spanning subgraph. Hence,

G can be obtained from Pn by adding a sequence of k edges as outlined above. It is

easy to show that Z(L(G0)) = M(L(G0)) = |E(G0)| − |V (G0)|+ 2. By Lemma 3.5,

the same type of equality holds for G1. Furthermore, by a sequential application of

Lemma 3.5, we obtain the desired result.

Now assume that G contains the bipartite graph Kk,n−k with 1 < k < n − 1.

The proof in this case is similar to the proof in the previous case, in which we

start with a base graph and derive a sequence of graphs ending with G. Observe

that if we choose G0
∼= Kk,n−k, then using the fact that L(Kk,n−k) is isomorphic

to Kk � Kn−k, we have M(Ks � Kt) = Z(Ks � Kt) = st − s − t + 2 for any
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positive integers s and t (see also [1], Corollary 3.11). For G0 we have M(L(G0)) =

Z(L(G0)) = k(n− k)− n+ 2 = |E(G0)| − n+ 2. Now define an increasing sequence

of connected spanning subgraphs of G as:

G0
∼= Kk,n−k, G1

∼= G0 + e1, . . . , Gk
∼= Gk−1 + ek ∼= G.

Beginning with G0 and applying, in succession, Lemma 3.5, we obtain the desired

result. �

Similarly to the vertex colour change rule we could define an edge colour change

rule. Initially, we colour each edge in E(G) either black or white. A black edge f

may change the colour of a white edge g to black if and only if g is the only white

edge that shares a vertex with the edge f . An edge set F ⊂ E(G) is called an

edge forcing set for G if when the edges in F are initially coloured black, and after

successive application of the edge colour change rule, the result is that all edges are

black. Further, the edge zero forcing number Ze(G) is the size of the smallest edge

forcing set in G. The reader may refer to [9] for additional details and facts about

the edge zero forcing number. For our purpose, we observe that Ze(G) = Z(L(G)),

which follows easily from the definitions of both Z and Ze.

4. Line graphs: extensions to the positive semidefinite case

The objective of this section is to extend most of the results presented in [1] on

the minimum rank of line graphs to the positive semidefinite setting.

The next lemma is easy to establish and can be found in [14].

Lemma 4.1. Let T be a tree of order n with l pendant vertices. Then

mr+(L(T )) = n− l and Z+(L(T )) = l − 1 = M+(L(T )).

The next result, which is simply the positive semidefinite analog of Theorem 3.18

in [1], follows by simply confirming that the matrix

M =

[

In−1 −
1

n−1
Jn−1 D

DT DDT

]

is a positive semidefinite matrix (see the proof of [1], Theorem 3.18, where M is

defined and used).

Theorem 4.2. For n > 2 we have mr+(L(Kn)) = n− 2.

Corollary 4.3. For all graphs G of order n we have mr+(L(G)) 6 n − 2, and

hence M+(L(G)) > |E(G)| − |V (G)|+ 2.
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As in [1], we can extend the inequality in Corollary 4.3 to an equality when G is

assumed to possess certain additional properties.

Corollary 4.4. For any connected graph G with a Hamilton path we have

Z+(L(G)) = M+(L(G)) = |E(G)| − |V (G)| + 2.

P r o o f. For any such graph G, Z+(L(G)) 6 Z(L(G)) = |E(G)| − |V (G)| + 2.

On the other hand, by Corollary 4.3, |E(G)| − |V (G)| + 2 6 M+(L(G)). Now as

M+(L(G)) 6 Z+(L(G)), we obtain the result. �

Suppose G of order n contains Kk,n−k. Then L(Kk,n−k) is an induced subgraph

of L(G). Hence,

mr+(Kk � Kn−k) = mr+(L(Kk,n−k)) 6 mr+(L(G)).

Now using [1], Corollary 3.11, we havemr+(Kk � Kn−k) > mr(Kk � Kn−k) = n−2,

which implies mr+(L(G)) = n − 2. Consequently, we have the following result for

such graphs.

Theorem 4.5. Suppose G is a graph of order n that contains Kk,n−k. Then

mr+(L(G)) = n− 2 and

Z+(L(G)) = M+(L(G)) = |E(G)| − |V (G)| + 2.

We note in passing that the quantity |E(G)| − |V (G)|+1 is a well known number

in graph theory and other areas of mathematics, often referred to as the cyclomatic

number of a connected graph G and is denoted by cy(G) (see [16]). The cyclomatic

number is also called the circuit rank, and is the minimum number of edges that

are to be deleted so as to remove all of the cycles in a connected graph. In our

work, we have established that any connected graph G on n vertices which contains

a Hamilton path or Kk,n−k satisfies

Z+(L(G)) = M+(L(G)) = Z(L(G)) = M(L(G)) = cy(G) + 1.

Furthermore, for any connected graph G we have

Z(L(G)) > M(L(G)) > cy(G) + 1 and Z+(L(G)) > M+(L(G)) > cy(G) + 1.
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5. Zero forcing number of line graphs of unicyclic graphs

In this section we study the zero forcing number of line graphs associated with

unicyclic graphs, satisfying a mild necessary condition.

Recall that a unicyclic graph U is a connected graph containing exactly one cycle.

Obviously, |V (U)| = |E(U)|, and eliminating an edge on the cycle produces a tree.

In order to determine the zero forcing number of a unicyclic graph U , the following

concepts are employed. A path covering of a graph is a family of induced disjoint

paths in the graph that cover (or include) all vertices of the graph. The minimum

number of such paths that cover the vertices of a graph G is called the path cover

number of G, and is denoted by P(G). In [15], it is shown that for any unicyclic

graph U , Z(U) = P(U). For the remainder of this section, we assume that all

unicyclic graphs are connected.

Deleting an edge from a graph may increase or decrease the zero forcing number,

but by at most one in either direction. Accordingly, we have the following results,

which can be found in [6] and in [13] and [2] from different viewpoints.

Proposition 5.1. Let G be a connected graph. If e = uv is an edge of G, then

Z(G)− 1 6 Z(G− e) 6 Z(G) + 1.

Proposition 5.2. Let e = uv be an edge in a graph G. If there is a minimum

zero forcing process for G in which neither u → v nor v → u, then Z(G) − 1 6

Z(G− e) 6 Z(G). Otherwise Z(G) 6 Z(G− e) 6 Z(G) + 1.

Using the above facts, we establish a key result concerning the zero forcing number

of the line graph of certain unicyclic graphs.

Theorem 5.3. Suppose U is a unicyclic graph of girth k with s pendant vertices

(s = 0 is allowed) and at least one vertex of degree two on its cycle. Then s 6

Z(L(U)) 6 s+ 2.

P r o o f. Observe that L(U) contains an induced cycle of length k, call it Ck.

Further, note that L(U) is constructed from a cycle of length k, and by identifying

edges along this cycle with a collection of block-clique graphs, depending on the

nature of the adjacency between the vertices along the cycle of U and the trees or

branches attached to these vertices. (Recall that the line graph of a tree is a certain

block-clique graph.) Let y be a vertex on the unique cycle Ck of U having degree two,

and suppose x and z are the neighbours of y on the cycle. Further, let e1 = xy and

e2 = yz. Then in L(U) let e be the edge incident with vertices e1 and e2. It follows

L(U)− e is connected and is a block-clique graph as y is of degree two in U . To see
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this, in U replace the vertex y by two new pendant vertices y′ and y′′, and replace

the edges e1 and e2 by e
′

1 = xy′ and e′2 = zy′′. Call this new graph T . Observe that

T is a tree on |V (U)|+1 vertices with exactly s+2 pendant vertices. Thus, L(T ) is

a connected block-clique graph in which each vertex belongs to at most two cliques,

and L(U)− e ∼= L(T ).

Now by Proposition 3.3, we have Z(L(T )) = M(L(T )) = l−1, where l is the number

of pendant vertices in T , and hence Z(L(U) − e) = l − 1. So by Proposition 5.1,

l − 2 6 Z(L(U)) 6 l. We have already established that l = s + 2. So in terms of

the number of pendants in U , we have s 6 Z(L(U)) 6 s + 2, which completes the

proof. �

Consider the two examples of specific unicyclic graphs given in Figure 1 with

k > 3. Observe that Z(L(U1)) = s+1 and Z(L(U2)) = s+ r (the number of pendant

vertices in U2). In fact the upper bound s+2 in Theorem 5.3 is never attained when

U contains a vertex of degree two on its unique cycle, except for the case when U

has no pendant vertices. To prove this, we need the following lemma.

Ck s

U1

Ck s

U2

r

Figure 1. Two unicyclic graphs U1 and U2.

Following the derived notation in the above proof, if U is a unicyclic graph with

a vertex y of degree two on its unique cycle, then we define the edge e from L(U) as

e = uv, where u = xy and v = yz are the two edges in U incident with y.

Lemma 5.4. Suppose U is a unicyclic graph with at least one vertex of degree

two on its unique cycle. Let e = uv be the edge defined above based upon this vertex

of degree two. Then there is a minimum zero forcing set for L(U) in which either

u → v or v → u.

P r o o f. If there is no clique adjacent to either of the vertices incident with e,

then we have the desired result. Otherwise, there exists at least one clique Km with

size m > 3, such that e ∩Km = u or v.

Without loss of generality, suppose that e ∩Km = u. However, L(T ′

i ) is a block-

clique graph of order at least 3 and from the proof presented in [1] of Proposition 3.3,

since u is not a cut-vertex of L(T ′

i ) (see Figure 2), we can choose u and all remaining

non cut-vertices except one as minimum zero forcing set for L(T ′

i ). Hence u forces v,

and the proof is complete. �
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Ti

T ′

i

Ck

Km

u
v e

L(T ′

1
)

L(T ′

2
)

L(T ′

q)

Figure 2. A branch T
′

i and the line graph of U .

Corollary 5.5. If U is a unicyclic graph with at least one vertex of degree two

on the unique cycle and with s > 0 pendants, then s 6 Z(L(U)) 6 s+ 1.

P r o o f. According to Proposition 5.2 and Lemma 5.4, the desired result follows.

�

An important problem is to characterize the families of unicyclic graphs U with

s pendants, such that Z(L(U)) = s or Z(L(U)) = s + 1. In the next example we

introduce a family of unicyclic graphs U with Z(U) = Z(L(U)) = s.

Example 5.6. We construct unicyclic graph U of girth k > 4 and s pendant

vertices. Denote the ordered vertices of Ck by {u1, . . . , uk}. Add the star graphs

Sn1
, Sn2

, . . . , Snt
, where 1 6 t 6

⌊

1

2
k
⌋

, to the vertices u1, u3, . . . , u2t−1 and choose

n1, n2, . . . , nt such that s = n1 + n2 + . . .+ nt − t. By a process similar to the one

outlined in the proof of Theorem 5.3, we may conclude that Z(U) = Z(L(U)) = s.

This equality holds when we replace each branch of Sni
by different path of arbitrary

length, denoted by PSni
for all 1 6 i 6 t. Also, all unicyclic subgraphs U ′ of U satisfy

Z(U ′) = Z(L(U ′)).

Note that in Figure 3, we have the special case of unicyclic graph constructed by

the method in the above example for which Z(U) = Z(L(U)) = 9.

u1

u2

u3

u4

u5

u6
e

Figure 3. The unicyclic graph U and its line graph.
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We actually suspect that all unicyclic graphs U with at least one pendant vertex

satisfy

s 6 Z(L(U)) 6 s+ 1.

The restriction that there is at least one vertex of degree two on the unique cycle

was required for our proof technique, although we are not convinced this restriction

is necessary. Note though, we do need U to have at least one pendant vertex as

the zero forcing number of any cycle is two, whereas the number of pendant vertices

is zero.

Thus far we have concentrated on the zero forcing number of unicyclic graphs, but

the maximum nullity of unicyclic graphs has also been determined (see [4], Corol-

lary 5.3). In this case the maximum nullity can be expressed in terms of the ‘trimmed

graph’ associated with a given unicyclic graph. In fact, for any unicyclic graph U ,

the maximum nullity is either P(G) or P(G) − 1, depending on the trimmed form

of U , see [4], Corollary 5.3.

Suppose U is a connected unicyclic graph with at least one vertex of degree two on

its unique cycle. For such a graph it is not difficult to determine that the trimmed

form of U is never a k-sun with k-odd (see [4] or a definition of an n-sun), as every

vertex of a k-sun has degree three. Therefore it follows that M(U) = P(U) = Z(U)

for such a unicyclic graph U .

Looking at other related parameters, it is well known (see, for example, [10])

that for any graph G and any edge e of G, each of the following inequalities holds:

Z+(G)−1 6 Z+(G−e) 6 Z+(G)+1 (see [7]); M+(G)−1 6 M+(G−e) 6 M+(G)+1

(see [7]); M(G) − 1 6 M(G− e) 6 M(G) + 1 (see [12]).

Combining all of the above inequalities with the proof established for Theorem 5.3

and Lemma 4.1, we have the following consequences.

Corollary 5.7. If U is a unicyclic graph with at least one vertex of degree two

on the unique cycle and with s > 0 pendants, then

s 6 M(L(U)) 6 Z(L(U)) 6 s+ 1,

and

s 6 M+(L(U)) 6 Z+(L(U)) 6 s+ 1.

The various cases of equality have not been characterized. However, for the class

of unicyclic graphs U defined in Example 5.6, we have

s = M(U) = Z(U) = Z(L(U)) = M(L(U)).
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The positive semidefinite cases of equality between M+(L(U)) and Z+(L(U)) with

their counterpartsM+(U) and Z+(U) seem less useful to consider, as it is known that

both M+(U) and Z+(U) are equal to the tree cover number of U (see [10]), where

the quantities M+(L(U)) and Z+(L(U)) are constrained by the number of pendant

vertices in U . In general, the tree cover number, defined in a similar manner as

the path cover number, is not typically related to the number of pendant vertices

of U .
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