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In memory of Professor Miroslav Fiedler who passed away on November 20, 2015

Abstract. We study some geometric properties associated with the t-geometric means

A ♯t B := A1/2(A−1/2BA−1/2)tA1/2 of two n × n positive definite matrices A and B.
Some geodesical convexity results with respect to the Riemannian structure of the n × n

positive definite matrices are obtained. Several norm inequalities with geometric mean
are obtained. In particular, we generalize a recent result of Audenaert (2015). Numerical
counterexamples are given for some inequality questions. A conjecture on the geometric
mean inequality regarding m pairs of positive definite matrices is posted.

Keywords: geometric mean; positive definite matrix; log majorization; geodesics; geodesi-
cally convex; geodesic convex hull; unitarily invariant norm
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1. Introduction

Let Pn be the set of n × n positive definite matrices over C. For t ∈ [0, 1], the

t-geometric mean of A,B ∈ Pn is

(1.1) A ♯t B := A1/2(A−1/2BA−1/2)tA1/2.

When t = 1/2, A ♯ B := A ♯1/2 B is called the geometric mean of A and B; it was

first introduced in [17] and is often denoted by A♯B in the literature. See [1], [6], [5],

and [17]. The t-geometric mean is interesting from the point of view of Riemannian

geometry since Pn is a Riemannian manifold with the Riemannian metric in [6]

δ(A,B) =

( n∑

i=1

log2 λi(A
−1B)

)1/2
, A,B ∈ Pn,

The research of the first author is funded by Vietnam National Foundation for Science
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which is the distance between A and B so that the curve β(t) = A ♯t B, 0 6 t 6 1,

is the unique geodesic joining A and B in Pn, see [6], page 205.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be in R
n. Let x↓ = (x[1],

x[2], . . . , x[n]) denote a rearrangement of the components of x such that x[1] >

x[2] > . . . > x[n]. We say that x is majorized by y, denoted by x ≺ y, if

k∑

i=1

x[i] 6

k∑

i=1

y[i], k = 1, 2, . . . , n− 1, and
n∑

i=1

x[i] =
n∑

i=1

y[i].

We say that x is weakly majorized by y if
k∑

i=1

x[i] 6
k∑

i=1

y[i], k = 1, 2, . . . , n, denoted

by x ≺w y. If x > 0 (i.e., xi > 0 for i = 1, . . . , n) and y > 0, we say that x is log

majorized by y, denoted by x ≺log y, if

k∏

i=1

x[i] 6

k∏

i=1

y[i], k = 1, 2, . . . , n− 1, and

n∏

i=1

x[i] =

n∏

i=1

y[i].

In other words, x ≺log y if and only if log x ≺ log y.

Recall that a norm |||·||| on the algebra Cn×n of n×n complex matrices is unitarily

invariant if |||UAV ||| = |||A||| for any U, V ∈ U(n) and any A ∈ Cn×n, where U(n)

denotes the unitary group; for example, the spectral norm ‖·‖ is a unitarily invariant

norm. Ky Fan dominance theorem, see [7], asserts that given A,B ∈ Cn×n, s(A) ≺w

s(B) if and only if |||A||| 6 |||B||| for all unitarily invariant norms |||·|||, where s(A) =

(s1(A), . . . , sn(A)) denotes the vector of singular values of A ∈ Cn×n in descending

order.

In this paper we prove several inequalities concerning the geometric mean; some

of them are in terms of log majorization. In the next section we study geodesic

convexity of the t-geometric means. In Section 3 we consider some specific unitarily

invariant norms with t-geometric means and generalize a recent result of Audeaert,

see [4]. Some inequalities for the 1-norm are also obtained.

2. Geodesic convexity of t-geometric means

For H ∈ Cn×n with positive eigenvalues, let λ(H) = (λ1(H), . . . , λn(H)) denote

the vector of eigenvalues ofH such that λ1(H) > . . . > λn(H). We say thatA ≺log B,

A,B ∈ Pn if λ(A) ≺log λ(B). We would like to point out that C ≺log A and

D ≺log B do not imply C ♯ D ≺log A ♯ B, for example, for C,D = diag(2, 1/2) and

A = diag(3, 1/3) and B = A−1 = diag(1/3, 3) we have C ♯ D = C and A ♯ B = I.

However, it is true that X 6 U and Y 6 V imply X ♯ Y 6 U ♯ V , where 6 denotes
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the Loewner order on Pn, see [11], Theorem 2.2. So, Loewner order is a stronger

one, in comparison with ≺log, from the point of view that it respects the geometric

mean.

The following interesting results can be found in the paper of Bhatia and Grover

[8], page 730.

Theorem 2.1. Let A,B ∈ Pn. For any t ∈ [0, 1] and s > 0,

(2.1) λ(A ♯t B) ≺log λ(e(1−t) logA+t logB)

≺log λ(Bts/2A(1−t)sBts/2)1/s = λ(A(1−t)sBts)1/s.

The first inequality is a result of Ando and Hiai, see [2], Corollary 2.3, as the

complementary counterpart of the famous Golden-Thompson inequality tr eA+B 6

tr eAeB for Hermitian matrices A and B. The second inequality follows from a result

of Araki in [3].

Proposition 2.2. Let A,B ∈ Pn and t ∈ [0, 1] and s > 0. For all unitarily

invariant norms |||·||| on Cn×n,

(2.2) |||A ♯t B||| 6 |||(Bts/2A(1−t)sBts/2)1/s||| 6 |||(A(1−t)sBts)1/s|||.

In particular, with s = 1, t = 1/2,

|||A2 ♯ B2||| 6 min{|||A1/2BA1/2|||, |||B1/2AB1/2|||} 6 min{|||AB|||, |||BA|||}

and

|||(A ♯ B)2||| 6 min{|||AB|||, |||BA|||}.

P r o o f. Since A ♯t B ∈ Pn for all t ∈ [0, 1], s(A ♯t B) = λ(A ♯t B) ≺log λ(Bts/2 ×

A(1−t)sBts/2)1/s for all t ∈ [0, 1] and s > 0, by Theorem 2.1. By Weyl’s theorem,

see [7], on the singular values and the eigenvalues of a matrix, λ(Bts/2A(1−t)s ×

Bts/2)1/s ≺log s(Bts/2A(1−t)sBts/2)1/s. Then applying Ky Fan dominance theorem

we have |||A ♯t B||| 6 |||(Bts/2A(1−t)sBts/2)1/s|||. The second inequality follows from

s(Bts/2A(1−t)sBts/2)1/s = λ(Bts/2A(1−t)sBts/2)1/s

= λ(A(1−t)sBts)1/s

≺log (A(1−t)sBts)1/s

and the Ky Fan dominance theorem so we just proved (2.2). The last inequality

follows from Theorem 2.1. �
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For any given A ∈ Pn, define

M(A) := {B ∈ Pn : λ(B) ≺log λ(A)} ⊂ Pn.

The set is convex in the multiplicative sense since the exponential map exp: Hn → Pn

is a diffeomorphism, where Hn is the set of all n × n Hermitian matrices, so log :

Pn → Hn is defined; thus

log(M(A)) = {H : H ∈ Cn×n is Hermitian and λ(H) ≺ λ(logA)}

is a convex set. Indeed, it is equal to the convex hull of the set consisting of all

Hermitian matrices with spectrum majorized by λ(log(A)) according to a result of

Thompson in [18], Theorem 12. However, one can easily see that M(A) is not closed

under usual matrix addition. So M(A) is not convex in Pn when Pn is viewed as

a subset of the Euclidean space Cn×n, in which Pn is a cone. We will see that M(A)

is convex, which is associated with the Riemannian structure of Pn. To this end, we

say that C ⊂ Pn is geodesically convex [16], page 67, if all geodesics between any two

points lie in Pn, that is, the role of straight lines in the Euclidean space Cn×n is now

replaced by geodesics. Similarly we define the geodesic convex hull, see [16], page 68,

of a subset S in Pn to be the smallest geodesically convex set that contains S. As

we have mentioned, A ♯t B is the geodesic joining A and B. It turns out that M(A)

is also convex with respect to the Riemannian structure of Pn. As a corollary,M(A)

is closed under the action of A via the t-geometric means. We would like to point

out that the geometry of Pn (or at least the subset P
1
n of matrices of determinant 1

in Pn) is hyperbolic since P
1
n is a symmetric space of the noncompact type.

Theorem 2.3. Let A ∈ Pn. The set M(A) = {B ∈ Pn : λ(B) ≺log λ(A)} ⊂ Pn

is geodesically convex with respect to the Riemannian structure of Pn. In other

words, if B,C ∈ M(A), then the geodesic joining B and C lies in M(A). So

M(A) = {A ♯t B : t ∈ [0, 1], B ∈ Pn, λ(B) ≺log λ(A)}.

P r o o f. By Proposition 2.2, if t ∈ (0, 1), then

‖B ♯t C‖ 6 ‖B1−tCt‖ = ‖(B(1−t)/t)tCt‖ 6 ‖B(1−t)/tC‖t

by [7], Theorem IX.2.1. Now

(2.3) ‖B ♯t C‖ 6 ‖B(1−t)/tC‖t 6 ‖B(1−t)/t‖t‖C‖t = ‖B‖1−t‖C‖t,

which is no greater than ‖A‖ since λ(B), λ(C) ≺log λ(A). So

(2.4) λ1(B ♯t C) = s1(B ♯t C) = ‖B ♯t C‖ 6 ‖A‖ = s1(A) = λ1(A).
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Denote by Ck(X) the k-th component of X ∈ Cn×n, k = 1, . . . , n. Note that for any

X,Y ∈ Pn,

(2.5) Ck(X ♯t Y ) = Ck(X
1/2(X−1/2Y X−1/2)tX1/2)

= Ck(X
1/2)Ck((X

−1/2Y X−1/2)t)Ck(X
1/2)

= C
1/2
k (X)(C

−1/2
k (X)Ck(Y )C

−1/2
k (X))tC

1/2
k (X)

= Ck(X) ♯t Ck(Y ).

In other words, Ck respects ♯t in Pn. Note that the
(
n
k

)
eigenvalues of Ck(X), where

X ∈ Cn×n, are the
(
n
k

)
possible products of any k eigenvalues of X . So

(2.6) λ1(Ck(B ♯t C)) =

k∏

i=1

λi(B ♯t C), k = 1, . . . , n− 1,

and

(2.7) det(B ♯t C) = (detB)1−t(detC)t = detA.

Applying (2.3) to Ck(B) and Ck(C) that are both positive definite, we have

k∏

i=1

λi(B ♯t C) = λ1(Ck(B) ♯t Ck(C)) by (2.6)

= ‖Ck(B) ♯t Ck(C)‖

6 ‖Ck(B)‖t‖Ck(C)‖1−t by (2.3)

=

( k∏

i=1

λi(B)

)t( k∏

i=1

λi(C)

)1−t

6

k∏

i=1

λi(A), i = 1, . . . , n− 1.

Together with (2.7), we conclude that λ(B ♯t C) ≺log λ(A). �

Corollary 2.4. If A,B ∈ Pn are such that B ≺log A, then for all t ∈ [0, 1] we

have A ♯t B ≺log A, or equivalently, |||A ♯t B||| 6 |||A||| for all unitarily invariant norms

|||·||| on Cn×n.

We are going to show that M(A) has a nice geometric description and our proof

requires a lemma, which is of independent interest. Let α, β ∈ R
n. We say that β is

a pinch of α (see [15], page 17), if β = (λI +(1−λ)Q)α, where Q is the permutation

matrix that interchanges two coordinates. It is well known that if β ≺ α, then
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β can be obtained by applying at most n pinches consecutively, starting from α.

The converse is clearly true. Now let α, β ∈ R
n
+, where R

n
+ denotes the set of all

positive n-tuples. If β ≺log α, then β can be obtained by applying at most n pinches

multiplicatively in the following sense. We say that β is a geometric pinch of α if

diag(β1, . . . , βn) = (QT diag(α1, . . . , αn)Q) ♯t diag(α1, . . . , αn)

for some t ∈ [0, 1] and some transposition matrix Q.

Lemma 2.5. Let α, β ∈ R
n
+, where R

n
+ denotes the set of all positive n-tuples. If

β ≺log α, then β can be obtained by applying at most n geometric pinches consecu-

tively, starting from α.

P r o o f. Since log β ≺ logα, log β can be obtained by at most n pinches from

logα. Let log α̂ be a pinch of logα. Without loss of generality, we may assume

that the pinch occurs on the first two coordinates. So (α̂1, α̂2) ≺log (α1, α2) and

thus α̂1 = αt
1α

1−t
2 and α̂2 = αt

2α
1−t
1 for some t ∈ [0, 1]. Let P denote the matrix

corresponding to the transposition switching the first two coordinates. Then

(PT diag (α1, α2, α3, . . . , αn)P ) ♯t diag(α1, α2, α3, . . . , αn)

= diag(α2, α1, α3, . . . , αn) ♯t diag(α1, α2, α3, . . . , αn)

= diag(αt
1α

1−t
2 , αt

2α
1−t
1 , α3, . . . , αn)

= α̂.

Then repeat the process to conclude that there exist t1, . . . , tk ∈ [0, 1] and transpo-

sition matrices P1, . . . , Pk such that

diagα(i+1) := (PT
i (diagα(i))Pi) ♯ti diagα

(i), i = 1, . . . , k,

where α(1) := α and α(k+1) := β. �

Theorem 2.6. The set M(A) is the geodesic convex hull, denoted by G(A), of

the orbit

O(A) := {UAU∗ : U ∈ U(n)} = {B ∈ Pn : λ(B) = λ(A)}

consisting of all B ∈ Pn whose spectrum coincides with that of A.

P r o o f. By the spectral theorem, it is easy to see that O(A) := {UAU∗ : U ∈

U(n)} is equal to {B ∈ Pn : λ(B) = λ(A)} ⊂ M(A). So G(A) ⊂ M(A) as M(A) is

geodesically convex by Theorem 2.3. Thus it suffices to show that M(A) ⊂ G(A).

Let B ∈ M(A), that is, λ(B) ≺log λ(A). Since M(A), O(A) and thus G(A) are
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invariant under unitary similarity, we may assume that A = diag(α1, . . . , αn). Let

λ(B) = (β1, . . . , βn) and let U ∈ U(n) be such that B = U∗ diag(β1, . . . , βn)U . By

Lemma 2.5, there exist t1, . . . , tk ∈ [0, 1] and transposition matrices P1, . . . , Pk such

that

diagα(i+1) := (PT
i (diagα(i))Pi) ♯ti diagα

(i), i = 1, . . . , k,

where α(1) := α and α(k+1) := β. It is easy to see that V ∗(C ♯t D)V = (V ∗CV ) ♯t
(V ∗DV ) for all V ∈ U(n), C,D ∈ Pn. So

B = U∗ diag(β1, . . . , βn)U

= U∗(PT
k (diagα(k))Pk) ♯tk diagα(k))U

= (U∗PT
k (diagα(k))PkU) ♯tk (U∗ diagα(k)U).

Then use induction on k to show that B ∈ G(A) as U∗PT
k (diagα(k))PkU and

U∗ diagα(k)U ∈ G(A) since G(A) is invariant under unitary similarity. �

3. Norm inequalities for t-geometric means

Bourin and Uchiyama in [10], Theorem 1.1, proved that for any positive semi-

definite matrices A,B ∈ Cn×n and any nonnegative concave function f : [0,∞) →

[0,∞),

|||f(A+B)||| 6 |||f(A) + f(B)|||,

where |||·||| denotes any unitarily invariant norm. This is a noncommutative version

of the well-known inequality for nonnegative concave functions f on [0,∞):

f(a+ b) 6 f(a) + f(b), a, b > 0.

Bourin in [9] asked a related question: Given A,B > 0 and p, q > 0, is it true that

|||Ap+q +Bp+q||| 6 |||(Ap +Bp)(Aq +Bq)|||?

Hayajneh and Kittaneh in [12] gave an affirmative answer for the trace norm ‖·‖1 and

the Hilbert-Schmidt norm ‖·‖2. Recently, Audenaert in [4] proved that if Ai, Bi ∈ Pn,

i = 1, . . . ,m, are such that AiBi = BiAi, then for any unitarily invariant norm |||·|||

on Cn×n,

(3.1)

∣∣∣∣
∣∣∣∣
∣∣∣∣

m∑

i=1

AiBi

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6

∣∣∣∣
∣∣∣∣
∣∣∣∣
( m∑

i=1

A
1/2
i B

1/2
i

)2∣∣∣∣
∣∣∣∣
∣∣∣∣ 6

∣∣∣∣
∣∣∣∣
∣∣∣∣
( m∑

i=1

Ai

)( m∑

i=1

Bi

)∣∣∣∣
∣∣∣∣
∣∣∣∣.
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In particular, this result confirms a conjecture of Hayajneh and Kittaneh in [12]

and answers a question of Bourin. Very recently Lin in [13] gave another proof of

inequality (3.1).

Note that the geometric mean is a symmetric operation, that is, A ♯ B = B ♯ A,

A,B ∈ Pn and that A
2 ♯ B2 = (A ♯B)2 = AB for commuting matrices A and B. We

also have |||(A ♯ B)2||| 6 |||AB||| and |||A2 ♯ B2||| 6 |||AB||| by Proposition 2.2. So we ask

the following questions.

Question 1. Let Ai, Bi ∈ Pn. Is it true that

(3.2)

∣∣∣∣
∣∣∣∣
∣∣∣∣

m∑

i=1

A2
i ♯ B

2
i

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6

∣∣∣∣
∣∣∣∣
∣∣∣∣

m∑

i=1

AiBi

∣∣∣∣
∣∣∣∣
∣∣∣∣

and

(3.3)

∣∣∣∣
∣∣∣∣
∣∣∣∣

m∑

i=1

A2
i ♯ B

2
i

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6

∣∣∣∣
∣∣∣∣
∣∣∣∣
( m∑

i=1

Ai

)( m∑

i=1

Bi

)∣∣∣∣
∣∣∣∣
∣∣∣∣?

Question 2. For Ai, Bi ∈ Pn, is it true that

(3.4)

∣∣∣∣
∣∣∣∣
∣∣∣∣

m∑

i=1

(Ai ♯ Bi)
2

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6

∣∣∣∣
∣∣∣∣
∣∣∣∣

m∑

i=1

AiBi

∣∣∣∣
∣∣∣∣
∣∣∣∣

and

(3.5)

∣∣∣∣
∣∣∣∣
∣∣∣∣

m∑

i=1

(Ai ♯ Bi)
2

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6

∣∣∣∣
∣∣∣∣
∣∣∣∣
( m∑

i=1

Ai

)( m∑

i=1

Bi

)∣∣∣∣
∣∣∣∣
∣∣∣∣?

Inequalities (3.2) and (3.4) are false in general (we thank the referee for pointing

this out). See the Appendix for their counterexamples. Moreover, the left hand

sides in (3.2) and (3.4) are not comparable. However, in the next theorem we prove

inequality (3.5) which generalizes inequality (3.1) as the matrices in Pn in inequality

(3.5) are not necessarily commuting pairwisely.

Theorem 3.1. Let Ai, Bi ∈ Pn, i = 1, . . . ,m. Then for any unitarily invariant

norm |||·||| on Cn×n, we have

(3.6)

∣∣∣∣
∣∣∣∣
∣∣∣∣

m∑

i=1

(Ai ♯ Bi)
2

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6

∣∣∣∣
∣∣∣∣
∣∣∣∣
( m∑

i=1

Ai

)1/2( m∑

i=1

Bi

)( m∑

i=1

Ai

)1/2∣∣∣∣
∣∣∣∣
∣∣∣∣

6

∣∣∣∣
∣∣∣∣
∣∣∣∣
( m∑

i=1

Ai

)( m∑

i=1

Bi

)∣∣∣∣
∣∣∣∣
∣∣∣∣.
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P r o o f. Applying [10], Theorem 1.2, to the convex function t2, we have

(3.7)

∣∣∣∣
∣∣∣∣
∣∣∣∣

m∑

i=1

(Ai ♯ Bi)
2

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6

∣∣∣∣
∣∣∣∣
∣∣∣∣
( m∑

i=1

Ai ♯ Bi

)2∣∣∣∣
∣∣∣∣
∣∣∣∣.

On the other hand, by the concavity of the geometric mean, we have

∣∣∣∣
∣∣∣∣
∣∣∣∣

m∑

i=1

Ai ♯ Bi

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6

∣∣∣∣
∣∣∣∣
∣∣∣∣
( m∑

i=1

Ai

)
♯

( m∑

i=1

Bi

)∣∣∣∣
∣∣∣∣
∣∣∣∣.

Consequently,

(3.8)

∣∣∣∣
∣∣∣∣
∣∣∣∣
( m∑

i=1

Ai ♯ Bi

)2∣∣∣∣
∣∣∣∣
∣∣∣∣ 6

∣∣∣∣
∣∣∣∣
∣∣∣∣
(( m∑

i=1

Ai

)
♯

( m∑

i=1

Bi

))2∣∣∣∣
∣∣∣∣
∣∣∣∣.

Combining (3.7) and (3.8) and Proposition 2.2, we get (3.6). �

Remark 3.2. When AiBi = BiAi for all i = 1, . . . ,m, inequalities in (3.1) follow

from the proof of Theorem 3.1.

For the trace norm ‖·‖1 we have the following corollary.

Corollary 3.3. Let Ai, Bi ∈ Pn, i = 1, . . . ,m. We have

(3.9)

∥∥∥∥
m∑

i=1

A2
i ♯ B

2
i

∥∥∥∥
1

6

∥∥∥∥
( m∑

i=1

Ai

)1/2( m∑

i=1

Bi

)( m∑

i=1

Ai

)1/2∥∥∥∥
1

6

∥∥∥∥
( m∑

i=1

Ai

)( m∑

i=1

Bi

)∥∥∥∥
1

.

P r o o f. We have a special case of the Ando-Hiai log majorization

λ(A2 ♯ B2) ≺log λ(A ♯ B)2.

Consequently, ∥∥∥∥
m∑

i=1

A2
i ♯ B

2
i

∥∥∥∥
1

6

∥∥∥∥
m∑

i=1

(Ai ♯ Bi)
2

∥∥∥∥
1

.

By Theorem 3.1, we get the conclusion. �
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Proposition 3.4. Let Ai, Bi ∈ Pn, i = 1, . . . ,m. We have

(3.10)

∥∥∥∥
m∑

i=1

A2
i ♯ B

2
i

∥∥∥∥
1

6

∥∥∥∥
m∑

i=1

AiBi

∥∥∥∥
1

.

The inequality in (3.10) becomes equality if and only if

(1) (A
1/2
1 B

1/2
1 , . . . , A

1/2
m B

1/2
m ) and (A

1/2
1 U1B

1/2
1 , . . . , A

1/2
m UmB

1/2
m ) are linearly de-

pendent, where Ui := (A−1
i B2

iA
−1
i )1/2AiB

−1
i , i = 1, . . . ,m, and

(2) tr(U∗
i AiUiBi) = tr(AiUiBi) for all i = 1, . . . ,m, and

(3) (tr(A1B1), . . . , tr(AmBm)) and (tr(A1U1B1), . . . , tr(AmUmBm)) in R
m are lin-

early dependent.

P r o o f. By [6], Proposition 4.1.8, there exists a unique Ui ∈ U(n) such that

A2
i ♯ B2

i = AiUiBi for each i = 1, . . . ,m. Indeed, Ui = (A−1
i B2

iA
−1
i )1/2AiB

−1
i

as (A−1
i B2

iA
−1
i )1/2 = A

1/2
i (A−1

i B2)1/2A−1/2 and A2
i ♯ B2

i = A2
i (A

−2
i B2

i )
1/2, cf. [6],

page 109. Since each A2
i ♯ B

2
i is positive definite, so is their sum. Thus

(3.11)

∥∥∥∥
m∑

i=1

A2
i ♯ B

2
i

∥∥∥∥
1

= tr

( m∑

i=1

A2
i ♯ B

2
i

)

= tr

( m∑

i=1

AiUiBi

)
=

m∑

i=1

tr(B
1/2
i A

1/2
i A

1/2
i UiB

1/2
i ).

Applying Cauchy-Schwarz’s inequality, we have

m∑

i=1

tr(B
1/2
i A

1/2
i A

1/2
i UiB

1/2
i ) 6

m∑

i=1

(tr(AiBi))
1/2(tr(B

1/2
i U∗

i A
1/2
i A

1/2
i UiB

1/2
i ))1/2

=
m∑

i=1

(tr(AiBi))
1/2(tr(U∗

i AiUiBi))
1/2

6

m∑

i=1

(tr(AiBi))
1/2(tr(AiUiBi))

1/2

since each AiUiBi is positive definite. Applying Cauchy-Schwarz’s inequality again,

we obtain

m∑

i=1

(tr(AiBi))
1/2(tr(AiUiBi))

1/2 6

( m∑

i=1

(tr(AiBi))

)1/2( m∑

i=1

tr(AiUiBi)

)1/2
.

Hence we have

(3.12)

∥∥∥∥
m∑

i=1

A2
i ♯ B

2
i

∥∥∥∥
1

=

m∑

i=1

‖A2
i ♯ B

2
i ‖1 6

( m∑

i=1

‖AiBi‖1

)1/2( m∑

i=1

‖A2
i ♯ B

2
i ‖1

)1/2
.
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Note that (3.11) implies that
∥∥∥

m∑
i=1

A2
i ♯B

2
i

∥∥∥
1
=

m∑
i=1

‖A2
i ♯B

2
i ‖1. So the inequality (3.10)

follows from (3.12). The conditions for equality to occur are readily seen. �

Because of the symmetric property of the geometric mean, we have the following

corollary. The results are generalizations of some results in [12], Theorem 3.1.

Corollary 3.5. Let Ai, Bi ∈ Pn, i = 1, . . . ,m. We have

∥∥∥∥
m∑

i=1

(A2
i ♯ B

2
i )

∥∥∥∥
1

6

∥∥∥∥
m∑

i=1

(Ai ♯ Bi)
2

∥∥∥∥
1

6 min

{∥∥∥∥
( m∑

i=1

Ai

)1/2( m∑

i=1

Bi

)( m∑

i=1

Ai

)1/2∥∥∥∥
1

,

∥∥∥∥
( m∑

i=1

Bi

)1/2( m∑

i=1

Ai

)( m∑

i=1

Bi

)1/2∥∥∥∥
1

}

6 min

{∥∥∥∥
( m∑

i=1

Ai

)( m∑

i=1

Bi

)∥∥∥∥
1

,

∥∥∥∥
( m∑

i=1

Bi

)( m∑

i=1

Ai

)∥∥∥∥
1

}
.

Remark 3.6. Let us consider again the matrices C,D = diag(2, 1/2) and A =

diag(3, 1/3) and B = diag(1/3, 3). So, C ≺log A and D ≺log B, but the inequality

C +D ≺log A+B is not true. In other words,

λ(A2
i ♯ B

2
i ) ≺log λ(Ai ♯ Bi)

2

does not imply

(3.13)

∥∥∥∥
m∑

i=1

A2
i ♯ B

2
i

∥∥∥∥
2

6

∥∥∥∥
m∑

i=1

(Ai ♯ Bi)
2

∥∥∥∥
2

.

But we still believe that inequality (3.13) is true. As a consequence, we hope that

the following conjecture is true.

Conjecture. Let Ai, Bi ∈ Pn, i = 1, . . . ,m. For any unitarily invariant norm

|||·||| on Cn×n, the following inequalities are true:

∣∣∣∣
∣∣∣∣
∣∣∣∣

m∑

i=1

A2
i ♯ B

2
i

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6

∣∣∣∣
∣∣∣∣
∣∣∣∣
( m∑

i=1

Ai

)1/2( m∑

i=1

Bi

)( m∑

i=1

Ai

)1/2∣∣∣∣
∣∣∣∣
∣∣∣∣.
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4. Appendix

In this section we generate counterexamples for inequalities (3.2) and (3.4) by

MATLAB. Consider the real positive definite matrices

A =




7.0306 −1.7934 −1.6084

−1.7934 1.3863 −1.5663

−1.6084 −1.5663 4.5745


 , B =




0.3082 0.6024 0.7812

0.6024 2.1386 2.1567

0.7812 2.1567 3.6532




and

C =




0.8033 −0.6712 −0.1708

−0.6712 2.6880 −3.8800

−0.1708 −3.8800 7.6512


 , D =




3.7785 −1.5586 0.8780

−1.5586 4.1198 −0.2474

0.8780 −0.2474 1.0951


 .

By MATLAB,

s((A ♯ B)2 + (C ♯ D)2) = (33.7025, 9.5523, 0.2768)

and

s(AB + CD) = (20.6082, 5.2004, 0.1149).

Therefore

sj((A ♯ B)2 + (C ♯ D)2) 6≺w sj(AB + CD).

In other words, inequality (3.4) is false.

Consider the following real positive definite matrices which yield a counterexample

for inequality (3.2):

A =




1.8074 −0.5670 −0.9254

−0.5670 2.5836 −0.1312

−0.9254 −0.1312 0.5493


 , B =




1.7959 −0.5089 −0.3335

−0.5089 1.5947 −0.4223

−0.3335 −0.4223 1.8003


 ,

C =




2.0032 −0.3516 −0.4131

−0.3516 1.9916 0.9086

−0.4131 0.9086 2.7557


 , D =




8.6985 3.9885 −3.1856

3.9885 3.8386 0.8276

−3.1856 0.8276 4.0948


 ,

and

E =




6.8082 −4.5263 4.6906

−4.5263 4.3174 −2.8839

4.6906 −2.8839 3.3008


 , F =




3.3452 2.6243 −1.2761

2.6243 2.5186 −0.1382

−1.2761 −0.1382 2.5263


 .

MATLAB gives

s((A2 ♯ B2) + (C2 ♯ D2) + (E2 ♯ F 2)) = (54.8001, 25.0031, 3.5943)
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and

s(AB + CD + EF ) = (30.2699, 21.0650, 5.6523).

Therefore,

s((A ♯ B)2 + (C ♯ D)2 + (E ♯ F )2) 6≺w s(AB + CD + EF ).

In other words, inequality (3.2) is false.

Finally, we would like to point out that the left hand sides in inequality (3.2) and

inequality (3.4) are not comparable. Consider the real positive definite matrices

A =




2.9414 −1.2083 −0.3679

−1.2083 1.4373 0.2056

−0.3679 0.2056 1.4924


 , B =




3.6033 −2.8792 1.7006

−2.8792 3.9028 −3.8431

1.7006 −3.8431 6.4632


 ,

C =




1.4116 −1.3675 −1.2256

−1.3675 4.2278 1.2205

−1.2256 1.2205 2.0843


 , D =




2.6449 1.2291 −1.8794

1.2291 1.8298 −0.6273

−1.8794 −0.6273 1.4651


 ,

E =




1.8504 −2.9027 −0.4251

−2.9027 7.1646 0.9936

−0.4251 0.9936 3.9361


 , F =




4.7157 −0.9068 0.8326

−0.9068 0.3987 −0.1025

0.8326 −0.1025 1.1471


 .

By MATLAB

s(A2 ♯ B2 + C2 ♯ D2 + E2) = (41.2706, 13.4935, 6.4385)

and

s((A ♯ B)2 + (C ♯ D)2 + (E ♯ F )2) = (31.3871, 16.7946, 5.3813).

So

s((A ♯ B)2 + (C ♯ D)2 + (E ♯ F )2) ≺w s(A2 ♯ B2 + C2 ♯ D2 + E2).

Thus for all unitarily invariant norms |||·|||,

|||(A ♯ B)2 + (C ♯ D)2 + (E ♯ F )2||| 6 |||A2 ♯ B2 + C2 ♯ D2 + E2 ♯ F 2|||.

On the other hand, consider the real positive definite matrices

A =




7.5408 0.5924 −1.4512

0.5924 3.6894 −2.1791

−1.4512 −2.1791 3.0029


 , B =




5.3431 −7.5310 2.4967

−7.5310 11.0391 −3.8396

2.4967 −3.8396 1.4136


 ,

C =




1.7759 −2.7332 −1.6756

−2.7332 5.0135 2.8238

−1.6756 2.8238 2.8247


 , D =




3.0511 0.4364 2.0034

0.4364 0.2126 0.4251

2.0034 0.4251 3.2135


 ,

E =




2.9873 1.2895 −0.3725

1.2895 5.2250 −0.2709

−0.3725 −0.2709 0.2721


 , F =




1.6925 1.9769 0.2839

1.9769 2.3873 0.2145

0.2839 0.2145 1.1522


 .
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By MATLAB

s(A2 ♯ B2 + C2 ♯ D2 + E2) = (64.4274, 15.1265, 4.4290)

and

s((A ♯ B)2 + (C ♯ D)2 + (E ♯ F )2) = (78.2216, 19.8741, 5.2668).

So

s(A2 ♯ B2 + C2 ♯ D2 + E2) ≺w s((A ♯ B)2 + (C ♯ D)2 + (E ♯ F )2).

Thus for all unitarily invariant norms |||·|||,

|||A2 ♯ B2 + C2 ♯ D2 + E2 ♯ F 2||| 6 |||(A ♯ B)2 + (C ♯ D)2 + (E ♯ F )2|||.

Remark 4.1. The following is another proof of inequality (3.5) given by the

referee. A 2× 2 block matrix M = z

(
A X

X∗ B

)
is called positive partial transpose

(PPT) if M and

(
A X∗

X B

)
are positive semidefinite. Since

(
Ai Ai ♯ Bi

Ai ♯ Bi Bi

)
, i = 1, . . . ,m

are PPT (see for example [19], Lemma 1.21, and [6], Proposition 4.1.8), so is the

matrix

m∑

i=1

(
Ai Ai ♯ Bi

Ai ♯ Bi Bi

)
=




m∑
i=1

Ai

m∑
i=1

Ai ♯ Bi

m∑
i=1

Ai ♯ Bi

m∑
i=1

Bi


 .

By a result of Bourin in [14], Theorem 4.1, one gets the first inequality of the relation

λ

(( m∑

i=1

Ai ♯ Bi

)2)
≺log λ

(( m∑

i=1

Ai

)( m∑

i=1

Bi

))
≺log s

(( m∑

i=1

Ai

)( m∑

i=1

Bi

))
.

The second inequality follows from the well known fact that |λ(X)| ≺log s(X) for all

X ∈ Cn×n and the fact that the eigenvalues of XY are positive for X,Y ∈ Pn. Note

that
m∑
i=1

(Ai ♯ Bi)
2 ∈ Pn so that λ

(( m∑
i=1

Ai ♯ Bi

)2)
= s

(( m∑
i=1

Ai ♯ Bi

)2)
. Now we have

s

(( m∑

i=1

Ai ♯ Bi

)2)
≺log s

(( m∑

i=1

Ai

)( m∑

i=1

Bi

))
.
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It is well-known that a ≺log b implies a ≺w b for all nonnegative vectors a, b ∈ R
n,

see [19], Theorem 2.7. So

s

(( m∑

i=1

Ai ♯ Bi

)2)
≺w λ

(( m∑

i=1

Ai

)( m∑

i=1

Bi

))
.

Thus ∣∣∣∣
∣∣∣∣
∣∣∣∣
( m∑

i=1

Ai ♯ Bi

)2∣∣∣∣
∣∣∣∣
∣∣∣∣ 6

∣∣∣∣
∣∣∣∣
∣∣∣∣
( m∑

i=1

Ai

)( m∑

i=1

Bi

)∣∣∣∣
∣∣∣∣
∣∣∣∣.

Then by (3.7) we get the desired result.
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