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Abstract. Using the notion of weighted sharing of values which was introduced by Lahiri
(2001), we deal with the uniqueness problem for meromorphic functions when two certain
types of nonlinear differential monomials namely hnh(k) (h = f, g) sharing a nonzero poly-
nomial of degree less than or equal to 3 with finite weight have common poles and obtain
two results. The results in this paper significantly rectify, improve and generalize the results
due to Cao and Zhang (2012).
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1. Introduction: definitions and results

In this paper by meromorphic functions we shall always mean meromorphic func-

tions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite

complex number. We say that f and g share a CM provided that f − a and g − a

have the same zeros with the same multiplicities. Similarly, we say that f and g

share a IM provided that f −a and g−a have the same zeros ignoring multiplicities.

In addition we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM (counting

multiplicities), and we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM

(ignoring multiplicities).

We adopt the standard notation of the value distribution theory (see [11]). We

denote by T (r) the maximum of T (r, f) and T (r, g). The symbol S(r) denotes any

quantity satisfying S(r) = o(T (r)) as r → ∞, outside of a possible exceptional set of
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finite linear measure. A meromorphic function a(z) is called a small function with

respect to f provided that T (r, a) = S(r, f).

Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z) be a small

function with respect to f(z) and g(z). We say that f(z) and g(z) share a(z) CM if

f(z)− a(z) and g(z)− a(z) have the same zeros with the same multiplicities and we

say that f(z), g(z) share a(z) IM if we do not consider the multiplicities.

We say that a finite value z0 is a fixed point of f if f(z0) = z0 or z0 is a zero of

f(z)− z.

The following well known theorem in the value distribution theory was posed by

Hayman and settled by several authors almost at the same time [4], [6].

Theorem A. Let f(z) be a transcendental meromorphic function, n > 1 a posi-

tive integer. Then fnf ′ = 1 has infinitely many solutions.

To investigate the uniqueness result corresponding to Theorem A, both Fang and

Hua [8], Yang and Hua [22], obtained the following result.

Theorem B. Let f and g be two non-constant entire (meromorphic) functions,

n > 6 (n > 11) a positive integer. If fnf ′ and gng′ share 1 CM, then either

f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying

4(c1c2)
n+1c2 = −1, or f ≡ tg for a constant t such that tn+1 = 1.

Considering the uniqueness problem of entire or meromorphic functions having

fixed points, Fang and Qiu [9] obtained the following theorem.

Theorem C. Let f and g be two non-constant meromorphic (entire) functions,

n > 11 (n > 6) a positive integer. If fnf ′ − z and gng′ − z share 0 CM, then either

f(z) = c1e
cz2

, g(z) = c2e
−cz2

, where c1, c2 and c are three constants satisfying

4(c1c2)
n+1c2 = −1, or f ≡ tg for a constant t such that tn+1 = 1.

Gradually the research work in the above directions gained pace and today it has

become one of the most prominent branches of the uniqueness theory. During the last

couple of years a large amount of research papers have been published by different

authors (see [2], [3], [5], [7]–[9], [16]–[18], [20], [22], [25], [28], [27]).

We recall the following result by Xu, Yi and Zhang [20].

Theorem D. Let f be a transcendental meromorphic function, let n (n > 2),

k be two positive integers. Then fnf (k) takes every finite nonzero value infinitely

many times or has infinitely many fixed points.

Recently, Cao and Zhang [5] proved the following theorems.
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Theorem E. Let f and g be two transcendental meromorphic functions, whose

zeros are of multiplicities at least k, where k is a positive integer. Let n > max{2k−1,

k+4/k+4} be a positive integer. If fnf (k) − z and gng(k) − z share 0 CM, f and g

share ∞ IM, then one of the following two conclusions holds

(i) fnf (k) ≡ gng(k);

(ii) f(z) = c1e
cz2

, g(z) = c2e
−cz2

, where c1, c2 and c are constants such that

4(c1c2)
n+1c2 = −1.

Theorem F. Let f and g be two non-constant meromorphic functions, whose

zeros are of multiplicities at least k+1, where k is a positive integer with 1 6 k 6 5.

Let n > 10 be a positive integer. If fnf (k) and gng(k) share 1 CM, f (k) and g(k)

share 1 CM, f and g share ∞ IM, then one of the following two conclusions holds:

(i) f ≡ tg, where t is a constant such that tn+1 = 1;

(ii) f(z) = c3e
dz, g(z) = c4e

−dz, where c3, c4 and d are constants such that

(−1)k(c3c4)
n+1d2k = 1.

R em a r k 1.1. Theorems E ([5], Theorem 1.2) and F ([5], Theorem 1.3) are new

and seemingly fine. However, in the statements of both of them there is a contra-

diction. It is assumed that f and g have zeros of multiplicities at least k in Theo-

rem E and k + 1 in Theorem F. But further authors concluded that “f(z) = c1e
cz2

,

g(z) = c2e
−cz2

, where c1, c2 and c are constants such that 4(c1c2)
n+1c2 = −1” in

Theorem E and “f(z) = c3e
dz, g(z) = c4e

−dz, where c3, c4 and d are constants

such that (−1)k(c3c4)
n+1d2k = 1” in Theorem F. Here we see that f and g have no

zeros, so their multiplicities are equal to k = 0. Furthermore, it is assumed that k is

a positive integer, but in both Theorems E and F the case k = 0 is also considered,

which is very strange.

Also, on the other hand, in the proof of Theorem E there is again a mistake.

For example, on page 8 under Step 2 we prove (b):

In this section, we would like to point out a gap. On the 3rd line below equa-

tion (5.5), the authors said: “From (5.1) and the assumptions that fnf (k) and gng(k)

share 1 CM, f (k) and g(k) share 1 CM, f and g share ∞ IM, we can deduce that f

and g share 0 IM.” But this is not true. Actually f and g share 0 IM only when f (k)

and g(k) share 0 CM.

The above discussion is sufficient enough to make one inquisitive to investigate

the accurate forms of Theorems E and F.

Also it is quite natural to ask the following questions.

Question 1 : Can the lower bound of n be further reduced in Theorems E and F?

Question 2 : Does Theorem F hold for k = 6 keeping all conclusions intact?

We now explain the notation of weighted sharing as introduced in [13] and [14].
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Definition 1.1 ([13], [14]). Let k be a nonnegative integer or infinity. For a ∈

C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point of

multiplicity m is counted m times if m 6 k and k + 1 times if m > k. If Ek(a; f) =

Ek(a; g), we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is an a-point

of f with multiplicity m (6 k) if and only if it is an a-point of g with multiplicity

m (6 k) and z0 is an a-point of f with multiplicity m (> k) if and only if it is

an a-point of g with multiplicity n (> k), where m is not necessarily equal to n.

We write f , g share (a, k) meaning that f , g share the value a with weight k.

Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 6 p < k. Also

we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞),

respectively.

If a(z) is a small function with respect to f(z) and g(z), we define that f(z) and

g(z) share a(z) IM or a(z) CM or with weight l according to whether f(z) − a(z)

and g(z)− a(z) share (0, 0) or (0,∞) or (0, l), respectively.

2. Main results

The following theorems are the main results of the present paper which improve

Theorems E and F.

Theorem 2.1. Let n, k, 1 6 k 6 6, be two positive integers such that n >

(k2 + 3k + 7)/(k + 1) and let p(z) be a nonzero polynomial such that deg(p) 6 3.

Let f and g be two transcendental meromorphic functions such that either f and g

have no zeros or the zeros of f and g are of multiplicities at least k+1. If fnf (k)−p(z)

and gng(k) − p(z) share (0,m), where m = [(k + 2)/(n− k)] + 3, f , g share ∞ IM,

and when k > 2, f (k) and g(k) share 0 CM, then one of the following two conclusions

holds:

(i) f ≡ tg, where t is a constant such that tn+1 = 1;

(ii) if p(z) is not a constant, then f = c1e
cQ(z), g = c2e

−cQ(z), where Q(z) =
∫ z

0
p(t) dt, c1, c2 and c are constants such that c2(c1c2)

n+1 = −1;

if p(z) is a nonzero constant b, then f = c3e
dz, g = c4e

−dz, where c3, c4 and d

are constants such that (−1)k(c3c4)
n+1d2k = b2.

Theorem 2.2. Let n, k be two positive integers such that n > (k2 + 2k + 6)/k

and let p(z) be a nonzero polynomial such that deg(p) 6 3. Let f and g be two

transcendental meromorphic functions such that either f and g have no zeros or the

zeros of f and g are of multiplicities at least k. If fnf (k) − p(z) and gng(k) − p(z)
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share (0,m), where m = [(k + 2)/(n− k)] + 3, f , g share ∞ IM, then one of the

following two conclusions holds:

(i) fnf (k) ≡ gng(k);

(ii) if p(z) is not a constant, then f = c1e
cQ(z), g = c2e

−cQ(z), where Q(z) =
∫ z

0
p(t) dt, c1, c2 and c are constants such that c2(c1c2)

n+1 = −1;

if p(z) is a nonzero constant b, then f = c3e
dz, g = c4e

−dz, where c3, c4 and d

are constants such that (−1)k(c3c4)
n+1d2k = b2.

In particular, when k = 1, then fnf (k) ≡ gng(k) implies f ≡ tg, where t is a constant

such that tn+1 = 1.

We now explain some definitions and notations, which are used in the paper.

Definition 2.1 ([17]). Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f |>p) (N(r, a; f |>p)) denotes the counting function (reduced counting

function) of those a-points of f whose multiplicities are not less than p.

(ii) N(r, a; f |6p) (N(r, a; f |6p)) denotes the counting function (reduced counting

function) of those a-points of f whose multiplicities are not greater than p.

Definition 2.2. We denote by N(r, a; f |=k) the reduced counting function of

those a-points of f whose multiplicities are (or equal) exactly k, where k > 2 is

an integer.

Definition 2.3 ([24]). For a ∈ C ∪ {∞} and a positive integer p we denote

by Np(r, a; f) the sum N(r, a; f) + N(r, a; f |>2) + . . . + N(r, a; f |>p). Clearly

N1(r, a; f) = N(r, a; f).

Definition 2.4 ([1]). Let f and g be two non-constant meromorphic functions

such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p,

a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting function of

those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting function of those

1-points of f and g where p = q = 1 and by N
(2

E (r, 1; f) the counting function of those

1-points of f and g where p = q > 2; each point in these counting functions is counted

only once. In the same way we can define NL(r, 1; g), N
1)
E (r, 1; g), N

(2

E (r, 1; g).

Definition 2.5 ([14]). Let f , g share a value a IM. We denote by N∗(r, a; f, g)

the reduced counting function of those a-points of f whose multiplicities differ from

the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g).
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3. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let

F , G be two non-constant meromorphic functions. Henceforth we shall denote by H

and V the functions.

(3.1) H =
(F ′′

F ′
−

2F ′

F − 1

)

−
(G′′

G′
−

2G′

G− 1

)

,

and

(3.2) V =
( F ′

F − 1
−

F ′

F

)

−
( G′

G− 1
−

G′

G

)

=
F ′

F (F − 1)
−

G′

G(G− 1)
.

Lemma 3.1 ([26]). Let f be a non-constant meromorphic function and p, k

positive integers. Then

Np(r, 0; f
(k)) 6 Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 3.2 ([15]). If N(r, 0; f (k)|f 6= 0) denotes the counting function of those

zeros of f (k) which are not zeros of f , where a zero of f (k) is counted according to

its multiplicity, then

N(r, 0; f (k)|f 6= 0) 6 kN(r,∞; f) +N(r, 0; f |<k) + kN(r, 0; f |>k) + S(r, f).

Lemma 3.3 ([11]). Suppose that f is a non-constant meromorphic function,

k (> 2) is an integer. If

N(r,∞; f) +N(r, 0; f) +N(r, 0; f (k)) = S
(

r,
f ′

f

)

,

then f = eaz+b, where a 6= 0, b are constants.

Lemma 3.4 ([10]). Let f(z) be a non-constant entire function and let k (> 2)

be a positive integer. If f(z)f (k)(z) 6= 0, then f(z) = eaz+b, where a 6= 0, b are

constants.

Lemma 3.5 ([19]). Let f and g be two non-constant meromorphic functions, k,

n (> 2k+1) two positive integers. If (fn)(k) ≡ (gn)(k), then f ≡ tg for a constant t

such that tn = 1.
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Lemma 3.6 ([11], [23]). Let f be a non-constant meromorphic function and let

a1(z), a2(z) be two meromorphic functions such that T (r, ai) = S(r, f), i = 1, 2.

Then

T (r, f) 6 N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 3.7. Let f , g be two non-constant meromorphic functions and F =

fnf (k), G = gng(k), where n and k are positive integers. Let H 6≡ 0. If F , G share

(1,m), f , g share (∞, p), where 0 6 m 6 ∞, 0 6 p 6 ∞. Then

((n+ 1)(p+ 1) + k − 1)N(r,∞; f |>p+ 1)

6 N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G) + S(r, f) + S(r, g).

P r o o f. Since H 6≡ 0, it follows that F 6≡ G. We assert that V 6≡ 0. If not, let

V ≡ 0. Then by integration we obtain

1−
1

F
≡ A

(

1−
1

G

)

.

If z0 is a pole of f then it is a pole of g. Hence from the definition of F and G we have

1/F (z0) = 0 and 1/G(z0) = 0. So A = 1 and hence F ≡ G, which is a contradiction.

Hence V 6≡ 0.

Let z1 be a pole of f with multiplicity q and a pole of g with multiplicity r.

Clearly z1 is a pole of F with multiplicity (n+1)q+k and a pole ofG with multiplicity

(n+1)r+k. Noting that f , g share (∞, p), from the definition of V it is clear that z1
is a zero of V with multiplicity at least (n+ 1)(p+ 1) + k − 1, provided q > p+ 1.

So from the definition of V we have

((n+ 1)(p+ 1) + k − 1)N(r,∞; f |>p+ 1)

6 N(r, 0;V ) 6 N(r,∞;V ) + S(r, f) + S(r, g)

6 N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G) + S(r, f) + S(r, g).

�

Lemma 3.8. Let f , g be two non-constant meromorphic functions whose zeros

are of multiplicities at least s, and F = fnf (k), G = gng(k), where n and k are

positive integers such that n > k. Let H 6≡ 0. If F , G share (1,m), f , g share

(∞, 0), where 0 6 m 6 ∞, then

N(r,∞; f) 6
min{s, k}+ 1

s(n− k)
(N(r, 0; f) +N(r, 0; g))

+
1

n− k
N∗(r, 1;F,G) + S(r, f) + S(r, g).
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P r o o f. We note, provided f has zeros of multiplicities > s, that when s > k,

Nk(r, 0; f) 6 kN(r, 0; f |>s) 6 ks−1N(r, 0; f |>s) = ks−1N(r, 0; f) and when s 6 k,

Nk(r, 0; f) 6 N(r, 0; f) is obvious. Using Lemmas 3.2 and 3.7 for p = 0 we get

(n+ k)N(r,∞; f) 6 N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 N(r, 0; f) +N(r, 0; f (k)|f 6= 0) +N(r, 0; g)

+N(r, 0; g(k)|g 6= 0) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 N(r, 0; f) + kN(r,∞; f) +Nk(r, 0; f) +N(r, 0; g)

+ kN(r,∞; g) +Nk(r, 0; g) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

6
1

s
N(r, 0; f) +

min{s, k}

s
N(r, 0; f) +

1

s
N(r, 0; g)

+
min{s, k}

s
N(r, 0; g) + 2kN(r,∞; f)

+N∗(r, 1;F,G) + S(r, f) + S(r, g)

6
min{s, k}+ 1

s
(N(r, 0; f) +N(r, 0; g)) + 2kN(r,∞; f)

+N∗(r, 1;F,G) + S(r, f) + S(r, g).

Hence the lemma follows. �

Lemma 3.9 ([21]). Let f be a non-constant meromorphic function and P (f) =

a0+a1f +a2f
2+ . . .+anf

n, where a0, a1, a2, . . . , an are constants and an 6= 0. Then

T (r, P (f)) = nT (r, f) +O(1).

Lemma 3.10. Let f be a non-constant meromorphic function and F = fnf (k),

where n and k are positive integer. Then

(n− 1)T (r, f) 6 T (r, F )−N(r,∞; f)−N(r, 0; f (k)) + S(r, f).

P r o o f. Note that

N(r,∞;F ) = N(r,∞; fn) +N(r,∞; f (k))

= N(r,∞; fn) +N(r,∞; f) + kN(r,∞; f) + S(r, f).

That is,

N(r,∞; fn) = N(r,∞;F )−N(r,∞; f)− kN(r,∞; f) + S(r, f).

Also

m(r, fn) = m
(

r,
F

f (k)

)

6 m(r, F ) +m
(

r,
1

f (k)

)

+ S(r, f)

= m(r, F ) + T (r, f (k))−N(r, 0; f (k)) + S(r, f)
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= m(r, F ) +N(r,∞; f (k)) +m(r, f (k))−N(r, 0; f (k)) + S(r, f)

6 m(r, F ) +N(r,∞; f) + kN(r,∞; f) +m
(

r,
f (k)

f

)

+m(r, f)−N(r, 0; f (k)) + S(r, f)

= m(r, F ) + T (r, f) + kN(r,∞; f)−N(r, 0; f (k)) + S(r, f).

Now

nT (r, f) = N(r,∞; fn) +m(r, fn)

6 T (r, F ) + T (r, f)−N(r,∞; f)−N(r, 0; f (k)) + S(r, f),

i.e.,

(n− 1)T (r, f) 6 T (r, F )−N(r,∞; f)−N(r, 0; f (k)) + S(r, f).

�

Lemma 3.11. Let p(z) be a nonzero polynomial and n, k two positive integers

such that n > (k2 + 3k + 3)/(k + 1). Let f , g be two transcendental meromorphic

functions such that either f and g have no zeros or the zeros of f and g are of

multiplicities at least k+1 and let F = fnf (k)/p, G = gng(k)/p. If f , g share (∞, 0)

and H ≡ 0, then either FG ≡ 1 or F ≡ G.

P r o o f. Since H ≡ 0, by integration we get

(3.3)
1

F − 1
≡

bG+ a− b

G− 1
,

where a, b are constants and a 6= 0. From (3.3) it is clear that F and G share (1,∞).

We now consider the following cases.

Case 1. Let b 6= 0 and a 6= b.

If b = −1, then from (3.3) we have

F ≡
−a

G− a− 1

together with

N(r, a+ 1;G) = N(r,∞;F ) = N(r,∞; f) +N(r, 0; p).

So, in view of Lemma 3.10 and the second fundamental theorem we get

(n− 1)T (r, g) 6 T (r,G)−N(r,∞; g)−N(r, 0; g(k)) + T (r, p) + S(r, g)

6 N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G)

−N(r,∞; g)−N(r, 0; g(k)) +O(log r) + S(r, g)
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6 N(r, 0; g) +N(r, 0; g(k)) +N(r,∞; f)

+N(r, 0; p)−N(r, 0; g(k)) + S(r, g)

6 N(r, 0; g) +N(r,∞; g) + S(r, g)

6
1

k + 1
N(r, 0; g) +N(r,∞; g) + S(r, g) 6

k + 2

k + 1
T (r, g) + S(r, g),

which is a contradiction since n > (k2 + 3k + 3)/(k + 1).

If b 6= −1, from (3.3) we obtain that

F −
(

1 +
1

b

)

≡
−a

b2
(

G+
a− b

b

)

.

So,

N
(

r,
b− a

b
;G

)

= N(r,∞;F ) = N(r,∞; f) +N(r, 0; p).

Using Lemma 3.10 and the same argument as the one used in the case when b = −1

we get a contradiction.

Case 2. Let b 6= 0 and a = b.

If b = −1, then from (3.3) we have

FG ≡ 1,

i.e.,

fnf (k)gng(k) ≡ p2.

If b 6= −1, from (3.3) we have

1

F
≡

bG

(1 + b)G− 1
.

Therefore

N
(

r,
1

1 + b
;G

)

= N(r, 0;F ).

So, in view of Lemmas 3.2, 3.10 and the second fundamental theorem we get

(n− 1)T (r, g) 6 T (r,G)−N(r,∞; g)−N(r, 0; g(k)) + S(r, g)

6 N(r,∞;G) +N(r, 0;G) +N
(

r,
1

1 + b
;G

)

−N(r,∞; g)−N(r, 0; g(k)) + S(r, g)

6 N(r, 0; g) +N(r, 0; g(k)) +N(r, 0;F )−N(r, 0; g(k)) + S(r, g)

6 N(r, 0; g) +N(r, 0; f) +N(r, 0; f (k)|f 6= 0) + S(r, g)
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6 N(r, 0; g) +N(r, 0; f) + kN(r, 0; f |>k) + kN(r,∞; f) + S(r, g)

6
1

k + 1
T (r, g) +

1

k + 1
T (r, f) +

k

k + 1
T (r, f) + kT (r, f) + S(r, f).

Without loss of generality, we suppose that there exists a set I with infinite measure

such that T (r, f) 6 T (r, g) for r ∈ I.

So, for r ∈ I we have

(n− 1)T (r, g) 6
k2 + 2k + 2

k + 1
T (r, g) + S(r, g),

which is a contradiction since n > (k2 + 3k + 3)/(k + 1).

Case 3. Let b = 0. From (3.3) we obtain

(3.4) F ≡
G+ a− 1

a
.

If a 6= 1 then from (3.4) we obtain

N(r, 1 − a;G) = N(r, 0;F ).

We can deduce a contradiction similarly to Case 2. Therefore a = 1 and from (3.4)

we obtain F ≡ G. �

Lemma 3.12. Let p(z) be a nonzero polynomial and n, k two positive inte-

gers such that n > (k2 + 2k + 2)/k. Let f , g be two transcendental meromorphic

functions such that either f and g have no zeros or the zeros of f and g are of

multiplicities at least k and let F = fnf (k)/p, G = gng(k)/p. If f , g share (∞, 0)

and H ≡ 0, then either FG ≡ 1 or F ≡ G.

P r o o f. We omit the proof since it can be carried out along the lines of the proof

of Lemma 3.11. �

Lemma 3.13 ([12]). Let f and g be two non-constant meromorphic functions.

Suppose that f and g share 0 and∞ CM, f (k) and g(k) share 0 CM for k = 1, 2, . . . , 6.

Then f and g satisfy one of the following cases:

(i) f ≡ tg, where t (6= 0) is a constant,

(ii) f(z) = eaz+b, g(z) = ecz+d, where a, b, c and d are constants such that ac 6= 0,

(iii) f(z) = a/(1− beα(z)), g(z) = a/(e−α(z) − b), where a, b are nonzero constants

and α(z) is a non-constant entire function,

(iv) f(z) = a(1−becz), g(z) = d(e−cz−b), where a, b, c and d are nonzero constants.
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Lemma 3.14. Let n and k (1 6 k 6 6) be two positive integers such that

n > k + 2. Let f and g be two transcendental meromorphic functions such that

either f and g have no zeros or the zeros of f and g are of multiplicities at least

k + 1. Suppose f , g share ∞ IM and when k > 2, f (k) and g(k) share 0 CM. If

fnf (k) ≡ gng(k), then f ≡ tg, where t is a constant such that tn+1 = 1.

P r o o f. Suppose

(3.5) fnf (k) ≡ gng(k).

When k = 1, from (3.5) we get (fn+1)′ ≡ (gn+1)′ and so the result follows from

Lemma 3.5.

Next we suppose 2 6 k 6 6.

Since f and g share ∞ IM, it follows from (3.5) that f and g share ∞ CM. Also,

since f (k) and g(k) share 0 CM, it follows from (3.5) that f and g share 0 CM.

From (3.5) it is clear that S(r, f) = S(r, g).

Let h = g/f . We now consider the following cases:

Case 1 : Suppose h is not constant. Since f and g share 0 and ∞ CM, it follows

that h = eα, where α is a non-constant entire function. Now in view of Lemma 3.13

we have to consider the following subcases.

Subcase 1.1 : Suppose f(z) = eaz+b and g(z) = ecz+d, where a, b, c and d are

constants such that ac 6= 0. Now from (3.5) we get

(3.6)
(a

c

)k

e(n+1)(b−d)e(n+1)(a−c)z ≡ 1,

which implies that a = c. Thus h = ed−b, which is a contradiction since h is not

a constant.

Subcase 1.2 : f(z) = a/(1− beα) and g(z) = a/(e−α − b), where a, b are constants

and α(z) is a non-constant entire function. Clearly h = g/f = eα(z) and f , g have

no zeros. Also we have

T (r, f) = T (r, h) + S(r, h), T (r, g) = T (r, h) + S(r, h),

and so

S(r, f) = S(r, g) = S(r, h).

From (3.5) we see that

N(r, 1;hn) = N
(

r, 1;
f (k)

g(k)

)

6 T
(

r,
g(k)

f (k)

)

+O(1)(3.7)

6 N
(

r,∞;
g(k)

f (k)

)

+m
(

r,∞;
g(k)

f (k)

)
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6 m
(

r,∞;
g(k)

g

)

+m
(

r,∞;
f

f (k)

)

+m
(

r,∞;
g

f

)

6 T
(

r,
f (k)

f

)

+ S(r, g) + T (r, h)

6 N
(

r,∞;
f (k)

f

)

+ T (r, h) + S(r, h)

6 kN(r,∞; f) + T (r, h) + S(r, h) 6 (k + 1)T (r, h) + S(r, h).

Now by the second fundamental theorem and using Lemma 3.9, (3.7) we get

nT (r, h) = T (r, hn) 6 N(r, 0;hn) +N(r,∞;hn) +N(r, 1;hn) + S(r, h)

6 (k + 1)T (r, h) + S(r, h),

which is a contradiction since n > k + 1.

Subcase 1.3 : f(z) = a(1 − becz) and g(z) = d(e−cz − b), where a, b, c and d

are nonzero constants. Then all zeros of f and g are simple, which contradicts our

assumption.

Case 2 : Suppose h is a constant. Then from (3.5) we get hn+1 = 1. Thus we have

f ≡ tg, where t is a constant such that tn+1 = 1. �

Lemma 3.15 ([1]). Let f and g be non-constant meromorphic functions sharing

(1, k1), where 2 6 k1 6 ∞. Then

N(r, 1; f |=2) + 2N(r, 1; f |=3) + . . .+ (k1 − 1)N(r, 1; f |=k1) + k1NL(r, 1; f)

+ (k1 + 1)NL(r, 1; g) + k1N
(k1+1

E (r, 1; g) 6 N(r, 1; g)−N(r, 1; g).

Lemma 3.16. Let p(z) be a nonzero polynomial with deg(p(z)) = l (6 3) and

n, k two positive integers such that n > 2l − 1. Let f and g be two transcendental

meromorphic functions such that either f and g have no zeros or the zeros of f and g

are of multiplicities at least k. If fnf (k)gng(k) ≡ p2 and f , g share ∞ IM, then

(i) if p(z) is not a constant, then f = c1e
cQ(z), g = c2e

−cQ(z), where Q(z) =
∫ z

0
p(t) dt, c1, c2 and c are constants such that c2(c1c2)

n+1 = −1,

(ii) if p(z) is a nonzero constant b, then f = c3e
dz, g = c4e

−dz, where c3, c4 and d

are constants such that (−1)k(c3c4)
n+1d2k = b2.

P r o o f. Suppose

(3.8) fnf (k)gng(k) ≡ p2.
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Since f and g share∞ IM we have from (3.8) that f and g are transcendental entire

functions. We consider the following cases.

Case 1 : Let deg(p(z)) = l (> 1).

First we suppose k > 2.

Let us assume that the zeros of f and g are of multiplicities at least k. Let z0 be

a zero of f(g) with multiplicity q (> k). Then z0 is a zero of f
nf (k) (gng(k)) with

multiplicity at least nq + q − k. Now from (3.8) it is clear that z0 must be a zero of

p2(z) with multiplicity at most 2l.

Note that since n > 2l, we must have

(3.9) nq + q − k > nk > 2lk.

Since k > 2 we cannot have 2lk = 2l and so one can conclude that f (g) has no

zero, which is a contradiction. Thus the case “zeros of f and g are of multiplicities

at least k” is discarded automatically. Hence when k > 2, one can easily conclude

that f and g have no zeros.

Next we suppose k = 1.

In this case we also want to prove that neither f nor g have zeros. Suppose f (g)

has a zero. Let z1 be a zero of f (g) with multiplicity q1. Then z1 is a zero of f
nf ′

(gng′) with multiplicity at least nq1 + q1− 1. Now from (3.8) it is clear that z1 must

be a zero of p2(z) with multiplicity at most 2l.

Note that since n > 2l, we must have

(3.10) nq1 + q1 − 1 > n > 2l.

Hence we must have q1 = 1 and n = 2l. So from (3.8) it is clear that z1 is a simple

zero of f (g) and at the same time z1 is the only zero of p(z). Also it is evident that

g (f) has no zero.

Therefore we can take

(3.11) f(z) = (z − z1)e
α1(z), g(z) = eβ1(z),

where α1(z) and β1(z) are two non-constant entire functions. Then from (3.8) we

get

(3.12) (1 + (z − z1)α
′

1(z))β
′

1(z)e
(2l+1)(α1(z)+β1(z)) ≡ b1.

First we suppose that α1 and β1 are transcendental.

Let α1 + β1 = γ. Clearly γ is not a constant. Then from (3.12) we get

(3.13) (1 + (z − z1)α
′

1)(γ
′ − α′

1)e
(2l+1)γ ≡ b1.
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We have T (r, γ′) = m(r, sγ′)+O(1) = m(r, (esγ)′/esγ) = S(r, esγ), where s = 2l+1.

Thus from (3.13) we get

T (r, esγ) 6 T
(

r,
1

(1 + (z − z1)α′

1)(γ
′ − α′

1)

)

+O(1)

6 2T (r, α′

1) + S(r, α′

1) + S(r, esγ),

which implies that T (r, esγ) = O(T (r, α′

1)) and so S(r, esγ) can be replaced by

S(r, α′

1). Thus we get T (r, γ
′) = S(r, α′

1) and so γ
′ is a small function with respect

to α′

1. In view of (3.13) and by Lemma 3.6, we get

T (r, α′

1) 6 N(r,∞;α′

1) +N(r, 0; 1 + (z − z1)α
′

1)

+N(r, 0;α′

1 − γ′) + S(r, α′

1) = S(r, α′

1),

which shows that α1 is a polynomial. Similarly we can prove that β1 is also a poly-

nomial. This contradicts the fact that α1 and β1 are transcendental.

Next we suppose that α1 is a transcendental entire function and β1 is a polynomial.

Then α1+β1 is transcendental, i.e., γ is transcendental. Now proceeding as above

one can easily prove that α1 is also a polynomial. Clearly in this case we also arrive

at a contradiction.

Next we suppose that α1 is a polynomial and β1 is a transcendental entire function.

Then α1 + β1 is transcendental, i.e., γ is transcendental. Now from (3.12) we get

(3.14) (1 + (z − z1)γ
′ − (z − z1)β

′

1)β
′

1e
(2l+1)γ ≡ b1.

Also we have T (r, γ′) = S(r, esγ), where s = 2l+ 1. Thus from (3.14) we get

T (r, esγ) 6 T
(

r,
1

(1 + (z − z1)γ′ − (z − z1)β′

1)β
′

1

)

+O(1)

6 2T (r, β′

1) + S(r, β′

1) + S(r, esγ),

which implies that T (r, esγ) = O(T (r, β′

1)) and so S(r, esγ) can be replaced by

S(r, β′

1). Thus we get T (r, γ
′) = S(r, β′

1) and so γ
′ is a small function with respect

to β′

1. In view of (3.14) and by Lemma 3.6, we get

T (r, β′

1) 6 N(r,∞;β′

1) +N(r, 0; 1 + (z − z1)γ
′ − (z − z1)β

′

1)

+N(r, 0;β′

1) + S(r, β′

1) = S(r, β′

1),

which shows that β1 is a polynomial. This contradicts the fact that β1 is transcen-

dental.
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Finally we suppose that both α1 and β1 are polynomials. From (3.13) we can

conclude that α1(z) + β1(z) ≡ C for a constant C. If α′

1 is a polynomial then

1+(z− z1)α
′

1 must be a polynomial, which is impossible as b1 is a nonzero constant.

Clearly in this case we also arrive at a contradiction. Thus when k = 1, we conclude

that f and g have no zeros.

Finally let neither f nor g have zeros whatever the values of k. Therefore we can

take

(3.15) f(z) = eα(z), g(z) = eβ(z),

where α and β are non-constant entire functions.

We consider the following subcases.

Subcase 1.1 : Let k > 2. From (3.8) we see that

N(r, 0; (f)(k)) 6 N(r, 0; p2) = O(log r).

First we suppose that both α and β are transcendental. Using (3.8) we have

(3.16) N(r,∞; f) +N(r, 0; f) +N(r, 0; (f)(k)) = S(r, α′) = S
(

r,
f ′

f

)

.

Clearly (3.16) also holds for g instead of f . Then from (3.16) and Lemma 3.3 we

must have

(3.17) f(z) = eaz+b, g(z) = ecz+d,

where a 6= 0, b, c 6= 0 and d are constants. But these types of f and g do not agree

with the relation (3.8).

Next we suppose that both α and β are polynomials such that deg(α) > 2 and

deg(β) > 2.

From (3.8) we deduce that α+ β ≡ C, where C is a constant and

(3.18) ((α′)k + Pk−1(α
′))((β′)k +Qk−1(β

′))e(n+1)C ≡ p2,

where Pk−1(α
′) and Qk−1(β

′) are differential polynomials in α′ and β′ of degree at

most k − 1, i.e.,

(3.19) C1(α
′)2k ≡ p2 + P 2k−1(α

′),

where C1 is a nonzero constant and P 2k−1(α
′) is a differential polynomial in α′ of

degree at most 2k − 1.
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If l = 1, then we arrive at a contradiction with (3.19).

Suppose l = 2. Then from (3.19) we get deg(α′) = 1 and k = 2. Thus α′′ is

a nonzero constant. Now from (3.18) taking e(n+1)C by 1 we get

(3.20) ((sα′)2)2 − (sα′′)2 ≡ p2.

From (3.20) we see that 2 deg(α′′) = deg((α′′)2) > deg((α′)2) > 2 deg(α′′) and so

α′′ = 0, which is a contradiction.

Suppose l = 3. Then from (3.19) we get deg(α′) = 1 and k = 3. Thus α′′ is

a nonzero constant. Now from (3.18) taking e(n+1)C by 1 we get

(3.21) (3s2α′α′′)2 − ((sα′)3)2 ≡ p2.

From (3.21) we see that 2 deg(α′α′′) = deg((α′α′′)2) > deg((α′)3) > 2 deg(α′α′′) and

so α′′ = 0, which is a contradiction.

Subcase 1.2 : Let k = 1. Suppose that α and β are transcendental. Then from (3.8)

we get

(3.22) α′β′e(n+1)(α+β) ≡ p2(z).

Let α+ β = γ and s = n+1. From (3.22) we know that γ is not a constant since in

that case we get a contradiction. Now from (3.22) we get

(3.23) α′(γ′ − α′)esγ ≡ p2(z).

We have T (r, γ′) = m(r, sγ′)+O(1) = m(r, (esγ)′/esγ) = S(r, esγ). Thus from (3.23)

we get

T (r, esγ) 6 T
(

r,
p2

α′(γ′ − α′)

)

+O(1)

6 T (r, α′) + T (r, γ′ − α′) +O(log r) + O(1)

6 2T (r, α′) + S(r, α′) + S(r, esγ),

which implies that T (r, esγ) = O(T (r, α′)) and so S(r, esγ) can be replaced by

S(r, α′). Thus we get T (r, γ′) = S(r, α′) and so γ′ is a small function with respect

to α′. In view of (3.23) and by Lemma 3.6 we get

T (r, α′)6N(r,∞;α′) +N(r, 0;α′) +N(r, 0;α′ − γ′) + S(r, α′)6O(log r) + S(r, α′),

which shows that α′ is a polynomial and so α is a polynomial. Similarly we can

prove that β is also a polynomial. This contradicts the fact that α and β are tran-

scendental. Next suppose without loss of generality that α is a polynomial and β is
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a transcendental entire function. Then γ is transcendental. So in view of (3.23) we

obtain

sT (r, eγ) 6 T
(

r,
p2

α′(γ′ − α′)

)

+O(1)

6 T (r, α′) + T (r, γ′ − α′) + S(r, eγ) 6 T (r, γ′) + S(r, eγ) = S(r, eγ),

which leads to a contradiction. Thus both α and β are polynomials. From (3.22) we

can conclude that α(z)+ β(z) ≡ C for a constant C and so α′(z)+ β′(z) ≡ 0. Again

from (3.22) we get esγα′β′ ≡ p2(z). By computation we get

(3.24) α′ = cp(z), β′ = −cp(z).

Hence

(3.25) α = cQ(z) + l1, β = −cQ(z) + l2,

where Q(z) =
∫ z

0 p(t) dt and l1, l2 are constants. Finally we take f and g as

f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z),

where c1, c2 and c are constants such that c2(c1c2)
n+1 = −1.

Case 2 : Let p(z) be a nonzero constant b. Then from (3.8) we get

(3.26) fnf (k)gng(k) ≡ b2,

where f and g are transcendental entire functions. Clearly f and g have no zeros

and so we can take f and g as

(3.27) f = eα, g = eβ ,

where α(z), β(z) are two non-constant entire functions.

We now consider the following two subcases.

Subcase 2.1 : Let k > 2.

From (3.26) it is clear that ff (k) 6= 0 and gg(k) 6= 0. Then by Lemma 3.4 we have

(3.28) f(z) = eaz+b, g(z) = ecz+d,

where a 6= 0, b, c 6= 0 and d are constants. But from (3.26) we see that a+ c = 0.

Subcase 2.2 : Let k = 1.

Suppose that α and β are transcendental. Then from (3.26) we get

(3.29) α′β′e(n+1)(α+β) ≡ b2.
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Let α+ β = γ and s = n+ 1. Clearly γ is non-constant. Now from (3.29) we get

(3.30) α′(γ′ − α′)esγ ≡ b2.

We have T (r, γ′) = m(r, sγ′)+O(1) = m(r, (esγ)′/esγ) = S(r, esγ). Thus from (3.30)

we get

T (r, esγ) 6 T
(

r,
b2

α′(γ′ − α′)

)

+O(1) 6 2T (r, α′) + S(r, α′) + S(r, esγ),

which shows that S(r, esγ) can be replaced by S(r, α′). Thus we get T (r, γ′) = S(r, α′)

and so γ′ is a small function with respect to α′. In view of (3.30) and by Lemma 3.6

we get

T (r, α′) 6 N(r,∞;α′) +N(r, 0;α′) +N(r, 0;α′ − γ′) + S(r, α′) = S(r, α′),

which shows that α is a polynomial. Similarly we can prove that β is also a poly-

nomial. This contradicts the fact that α and β are transcendental. Next suppose

without loss of generality that α is a polynomial and β is a transcendental entire

function. Then γ is transcendental. So in view of (3.30) we obtain

sT (r, eγ) 6 T
(

r,
b2

α′(γ′ − α′)

)

+O(1) 6 T (r, γ′) + S(r, eγ) = S(r, eγ),

which leads to a contradiction. Thus both α and β are polynomials. From (3.29)

we conclude that α(z) + β(z) ≡ C for a constant C and so α′(z) + β′(z) ≡ 0. Again

from (3.29) we get esγα′β′ ≡ b2. By computation we get

(3.31) α′ = a1, β′ = −a1.

Hence

(3.32) α = a1z + b1, β = −a1z + b2

and so

(3.33) f(z) = ea1z+b1 , g(z) = e−a1z+b2 ,

where a1 6= 0, b1 and b2 are constants.

Thus in either cases we can take f and g as

f(z) = c3e
dz, g(z) = c4e

−dz,

where c3, c4 and d are nonzero constants such that (−1)k(c3c4)
n+1d2k = b2.

This completes the proof. �
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4. Proofs of the theorems

P r o o f of Theorem 2.1. Let F = fnf (k)/p and G = gng(k)/p.

Note that f and g are transcendental meromorphic functions, so p(z) is a small

function with respect to both fnf (k) and gng(k). Also F , G share (1,m) except for

the zeros of p(z) and f , g share (∞, 0).

Case 1. Let H 6≡ 0.

From (3.1) it can be easily calculated that the possible poles of H occur at

(i) multiple zeros of F and G,

(ii) those 1 points of F and G whose multiplicities are different,

(iii) those poles of F and G whose multiplicities are different,

(iv) the zeros of F ′(G′) which are not zeros of F (F − 1)(G(G− 1)).

Since H has only simple poles we get

N(r,∞;H) 6 N∗(r,∞; f, g) +N∗(r, 1;F,G) +N(r, 0;F |>2)(4.1)

+N(r, 0;G|>2) +N0(r, 0;F
′) +N0(r, 0;G

′),

where N0(r, 0;F
′) is the reduced counting function of those zeros of F ′ which are

not the zeros of F (F − 1) and N0(r, 0;G
′) is similarly defined.

Let z0 be a simple zero of F − 1 but p(z0) 6= 0. Then z0 is a simple zero of G− 1

and a zero of H . So,

(4.2) N(r, 1;F |=1) 6 N(r, 0;H) 6 N(r,∞;H) + S(r, f) + S(r, g).

Using (4.1) and (4.2) we get

N(r, 1;F ) 6 N(r, 1;F |=1) +N(r, 1;F |>2)(4.3)

6 N∗(r,∞; f, g) +N(r, 0;F |>2) +N(r, 0;G|>2) +N∗(r, 1;F,G)

+N(r, 1;F |>2) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)

6 N(r,∞; f) +N(r, 0;F |>2) +N(r, 0;G|>2) +N∗(r, 1;F,G)

+N(r, 1;F |>2) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g).

Now in view of Lemmas 3.2 and 3.15 for k1 = m we get

N0(r, 0;G
′) +N(r, 1;F |>2) +N∗(r, 1;F,G)(4.4)

6 N0(r, 0;G
′) +N(r, 1;F |=2) +N(r, 1;F |=3) + . . .+N(r, 1;F |=m)

+N
(m+1

E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N∗(r, 1;F,G)
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6 N0(r, 0;G
′)−N(r, 1;F |=3)− . . .− (m− 2)N(r, 1;F |=m)

− (m− 1)NL(r, 1;F )−mNL(r, 1;G)− (m− 1)N
(m+1

E (r, 1;F )

+N(r, 1;G)−N(r, 1;G) +N∗(r, 1;F,G)

6 N0(r, 0;G
′) +N(r, 1;G)−N(r, 1;G)

− (m− 2)NL(r, 1;F )− (m− 1)NL(r, 1;G)

6 N(r, 0;G′|G6= 0)− (m− 2)NL(r, 1;F )− (m− 1)NL(r, 1;G)

6 N(r, 0;G) +N(r,∞; g)− (m− 2)NL(r, 1;F )− (m− 1)NL(r, 1;G)

= N(r, 0;G) +N(r,∞; g)− (m− 2)N∗(r, 1;F,G)−NL(r, 1;G).

Hence using (4.3), (4.4) and Lemma 3.1 we get from the second fundamental theorem

that

T (r, F ) 6 N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )−N0(r, 0;F
′)(4.5)

6 2N(r,∞, f) +N2(r, 0;F ) +N(r, 0;G|>2) +N(r, 1;F |>2)

+N∗(r, 1;F,G) +N0(r, 0;G
′) + S(r, f) + S(r, g)

6 3N(r,∞; f) +N2(r, 0;F ) +N2(r, 0;G)

− (m− 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 3N(r,∞; f) + 2N(r, 0; f) +N2(r, 0; f
(k)) + 2N(r, 0; g)

+N2(r, 0; g
(k))− (m− 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 3N(r,∞; f) + 2N(r, 0; f) +N(r, 0; f (k)) + 2N(r, 0; g) +Nk+2(r, 0; g)

+ kN(r,∞; g)− (m− 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 (3 + k)N(r,∞; f) + 2N(r, 0; f) + 2N(r, 0; g) +N(r, 0; g)

+N(r, 0; f (k))− (m− 2)N∗(r, 1;F,G) + S(r, f) + S(r, g).

Now using Lemmas 3.8 for s = k + 1, 3.10 we get from (4.5)

(n− 1)T (r, f) 6 T (r, F )−N(r,∞; f)−N(r, 0; f (k)) + S(r, f)(4.6)

6 (2 + k)N(r,∞; f) + 2N(r, 0; f) + 2N(r, 0; g) +N(r, 0; g)

− (m− 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6
(k + 1)(k + 2)

(k + 1)(n− k)
(N(r, 0; f) +N(r, 0; g)) +

2

k + 1
(N(r, 0; f)

+N(r, 0; g)) +N(r, 0; g) +
k + 2

n− k
N∗(r, 1;F,G)

− (m− 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6
(k + 5)n+ k2 + k + 4

(k + 1)(n− k)
T (r) + S(r).
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In a similar way we obtain

(4.7) (n− 1)T (r, g) 6
(k + 5)n+ k2 + k + 4

(k + 1)(n− k)
T (r) + S(r).

Combining (4.6) and (4.7) we see that

(n− 1)T (r) 6
(k + 5)n+ k2 + k + 4

(k + 1)(n− k)
T (r) + S(r),

i.e.,

(4.8) (k + 1)(n− k1)(n− k2)T (r) 6 S(r),

where

k1 =
k2 + 3k + 6 +

√

(k2 + 3k + 6)2 + 16(k + 1)

2(k + 1)

and

k2 =
k2 + 3k + 6−

√

(k2 + 3k + 6)2 + 16(k + 1)

2(k + 1)
.

Since k1 < (k2 + 3k + 7)/(k + 1) and n > (k2 + 3k + 7)/(k + 1), (4.8) leads to a con-

tradiction.

Case 2. Let H ≡ 0. Note that n > (k2 + 3k + 7)/(k + 1) > (k2 + 3k + 3)/(k + 1).

Then, theorem follows from Lemmas 3.11, 3.14 and 3.16. �

P r o o f of Theorem 2.2. When H 6≡ 0 we follow the proof of Theorem 2.1 while

for H ≡ 0 we follow Lemmas 3.5, 3.12 and 3.16. So we omit the detailed proof. �

A c k n ow l e d g em e n t. The author wish to thank the referee for his/her valu-

able comments and suggestions towards the improvement of the paper.
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