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INITIAL VALUE PROBLEMS FOR FRACTIONAL
FUNCTIONAL DIFFERENTIAL INCLUSIONS WITH

HADAMARD TYPE DERIVATIVE

Nassim Guerraiche, Samira Hamani, and Johnny Henderson

Abstract. We establish sufficient conditions for the existence of solutions of
a class of fractional functional differential inclusions involving the Hadamard
fractional derivative with order α ∈ (0, 1]. Both cases of convex and nonconvex
valued right hand side are considered.

1. Introduction

This paper deals with the existence of solutions for initial value problems (IVP
for short), for Hadamard fractional order differential functional inclusions. We
consider the initial value problem

HDαy(t) ∈ F (t, yt) , for almost all t ∈ J = [1, T ], 0 < α ≤ 1,(1)

y(t) = ϕ(t) t ∈ [1− r, 1] ,(2)

where HDα is the Hadamard fractional derivative, F : [1−r, T ]×C([1−r, T ],R)→
P(R) is a multivalued map, P(R) is the family of all nonempty subsets of R and
ϕ ∈ C([1−r, 1],R) with ϕ(1) = 0. For any continuous function y defined on [1−r, T ]
and any t ∈ J , we denote by yt the element of C([1− r, 1],R) which is defined by

yt(θ) = y(t+ θ) , θ ∈ [1− r, 1] .
Hence yt(·) represents the history of the state from times t− r up to the present
time t.

Differential equations of fractional order are valuable tools in the modeling of
many phenomena in various fields of science and engineering. Indeed, there are
numerous applications in viscoelasticity, electrochemistry, control, porous media,
electromagnetism, etc. There has been a significant development in fractional
differential equations in recent years; see the monographs of Hilfer [23], Kilbas et
al. [26], Podlubny [29], Momani et al. [28], and the papers by Agarwal et al. [1]
and Benchohra et al. [7, 6, 5].
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Applied problems require the definitions of fractional derivatives allowing the uti-
lization of physically interpretable initial data, which contain y(0), y′(0), and so on.
Caputo’s fractional derivative satisfies these demands. For more details concerning
geometric and physical interpretation of fractional derivatives of Riemann-Liouville
type and Caputo type, see [29].

However, the literature on Hadamard-type fractional differential equations has
not undergone as much development; see [2, 31]. The fractional derivative that
Hadamard [20] introduced in 1892, differs from the aforementioned derivatives in
the sense that the kernel of the integral in the definition of Hadamard derivative
contains a logarithmic function of arbitrary exponent. Detailed descriptions of the
Hadamard fractional derivative and integral can be found in [10, 11, 12].

In this paper, we shall present two existence results for the problem (1)–(2),
when the right hand side is convex as well as nonconvex valued. The first result
relies on the nonlinear alternative of Leray-Schauder type, while the second result
is based upon a fixed point theorem for contraction multivalued maps due to Covitz
and Nadler [14]. These results extend to the multivalued case some previous results
in the literature, and constitute a contribution for this emerging field.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that
will be used in the remainder of this paper.

Let C(J,R) be the Banach space of all continuous functions from J into R with
the norm

‖y‖∞ = sup{|y(t)| : 1 ≤ t ≤ T} ,
and we let L1(J,R) denote the Banach space of functions y : J → R that are
Lebesgue integrable with norm

‖y‖L1 =
∫ T

1
|y(t)|dt .

AC(J,R) is the space of functions y : J → R, which are absolutely continuous. Also
C([1− r, 1],R) is endowed with the norm

‖ϕ‖C = sup{|ϕ(θ)| : 1− r ≤ θ ≤ 1} .
Let (X, ‖ · ‖) be a Banach space. Let Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}
and Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.

A multivalued map G : X → P(X) is convex (closed) valued if G(X) is convex
(closed) for all x ∈ X. G is bounded on bounded sets if G(B) = ∪X⊂BG(X) is
bounded in X for all B ∈ Pb(X) (i.e. supx∈B

{
sup{|y| : y ∈ G(x)}

}
.

G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0)
is a nonempty closed subset of X, and for each open set N of X containing G(x0),
there exists an open neighborhood N0 of x0 such that G(N0) ⊂ N . G is said to be
completely continuous if G(B) is relatively compact for every B ∈ Pb(X).

If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph (i.e., xn → x∗, yn → y∗,
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yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ X such that
x ∈ G(x). The fixed point set of the multivalued operator G will be denoted by
FixG. A multivalued map G : J → Pcl(R) is said to be measurable if for every
y ∈ R, the function,

t→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)},

is measurable.

Definition 2.1. A multivalued map F : J ×R→ P(R) is said to be Carathéodory
if:

(1) t→ F (t, u) is measurable for each u ∈ R.
(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ J .

For each y ∈ AC(J,R), define the set of selections of F by

SF,y = {v ∈ L1([1, T ],R) : v(t) ∈ F (t, yt) a.e. t ∈ [1, T ]}.

Let (X, d) be a metric space induced from the normed space (X, | · |). Consider
Hd : P(X)× P(X)→ R+ ∪ {∞} given by:

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)} .

Definition 2.2. A multivalued operator N : X → Pcl(X) is called:
(1) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) , for each x, y ∈ X .

(2) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 2.3 ([14]). Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.

For more details on multivalued maps see the books of Aubin and Cellina [3],
Aubin and Frankowska [4], Deimling [15] and Castaing and Valadier[13].

Definition 2.4 ([26]). The Hadamard fractional integral of order r for a function
h : [1,+∞)→ R is defined as

Irh(t) = 1
Γ(r)

∫ t

1

(
log t

s

)r−1h(s)
s
ds , r > 0 ,

provided the integral exists.

Definition 2.5 ([26]). For a function h given on the interval [1,+∞), the r
Hadamard fractional-order derivative of h, is defined by

(HDrh)(t) = 1
Γ(n− r)

(
t
d

dt

)n ∫ t

1

(
log t

s

)n−r−1h(s)
s
ds ,

n− 1 < r < n, n = [r] + 1 .

Here [r] denotes the integer part of r and log(·) = loge(·).
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3. Main results

Definition 3.1. A function y ∈ C([1 − r, T ],R) ∩ AC([1, T ],R) is said to be a
solution of (1)–(2), if there exists a function v ∈ L1([1, T ],R) with v(t) ∈ F (t, yt),
for a.e. t ∈ [1, T ], such that

HDαy(t) = v(t) , a.e. t ∈ [1, T ], 0 < α ≤ 1 ,
and the function y satisfies condition (2).

Theorem 3.2. Assume the following hypotheses hold:
(H1) F : [1, T ]× R→ Pcp,c(R) is a Carathéodory multi-valued map.
(H2) There exist p ∈ C([1, T ],R+) and ψ : [0,∞) → (0,∞) continuous and

nondecreasing such that
‖F (t, u)‖P = sup{|v| : v(t) ∈ F (t, yt)} ≤ p(t)ψ(‖u‖C)

for t ∈ [1, T ] and each u ∈ C([1− r, 1],R) .

(H3) There exists l ∈ L1([1, T ],R+), with Iαl <∞, such that
Hd

(
F (t, u), F (t, ū)

)
≤ l(t)|u− ū| for every u, ū ∈ R

and

d(0, F (t, 0)) ≤ l(t) , a.e. t ∈ [1, T ] .

(H4) There exists a number M > 0 such that

(3) M

ψ(M)‖p‖∞
Γ(α+ 1) (log T )α

> 1 .

Then the IVP (1))–(2) has at least one solution on [1− r, T ].

Proof. Transform the problem (1)–(2) into a fixed point problem. Consider the
multivalued operator,

N(y)(t) =

h ∈ C([1− r, T ]), h(t) =


ϕ(t), if t ∈ [1− r, 1],

1
Γ(α)

∫ t

1

(
log t

s

)α−1 v(s)
s
ds, v ∈ SF,y,

if t ∈ [1, T ]

 .

We shall show that N satisfies the assumptions of the nonlinear alternative of
Leray-Schauder. The proof will be given in several steps.

Step 1: N(y) is convex for each y ∈ C([1− r, T ],R).

Indeed, if h1, h2 belong to N(y), then there exist v1, v2 ∈ SF,y such that for
each t ∈ [1, T ], we have

hi(t) = 1
Γ(α)

∫ t

1

(
log t

s

)α−1 vi(s)
s

ds ,
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for i = 1, 2. Let 0 ≤ γ ≤ 1. Then, for each t ∈ [1, T ], we have

(γh1 + (1− γ)h2)(t) = 1
Γ(α)

∫ t

1

(
log t

s

)α−1 1
s

[γv1(s) + (1− γ)v2(s)] ds .

Since SF,y is convex (because F has convex values), we have
γh1 + (1− γ)h2 ∈ N(y) .

Step 2: N maps bounded sets into bounded sets in C([1− r, T ],R).

Let Bµ∗ = {y ∈ C([1−r, T ],R) : ‖y‖∞ ≤ µ∗} be a bounded sets in C([1−r, T ],R)
and y ∈ Bµ∗ . Then for each h ∈ N(y), there exists v ∈ SF,y such that, for each
t ∈ [1, T ], we have

h(t) = 1
Γ(α)

∫ t

1

(
log t

s

)α−1 v(s)
s

ds .

By (H2), we have, for each t ∈ J ,

|h(t)| ≤ 1
Γ(α)

∫ t

1

(
log t

s

)α−1 |v(s)|
s

ds

≤ 1
Γ(α)

∫ t

1

(
log t

s

)α−1 p(s)ψ(‖y(s)‖C)
s

ds

≤ ψ(µ∗)‖p‖∞
Γ(α+ 1) (log T )α .

Thus
‖h‖∞ ≤

ψ(µ∗)‖p‖∞
Γ(α+ 1) (log T )α := ` .

Step 3: N maps bounded sets into equicontinuous sets of C([1− r, T ],R).

Let t1, t2 ∈ [1, b], t1 < t2, and Bµ∗ be a bounded set of C([1 − r, T ],R) as in
Step 2. Let y ∈ Bµ∗ and h ∈ N(y). Then

|h(t2)− h(t1)| = | 1
Γ(α)

∫ t1

1

[(
log t2

s

)α−1
−
(

log t1
s

)α−1
]
v(s)
s
ds

+ 1
Γ(α)

∫ t2

t1

(
log t2

s

)α−1 v(s)
s
ds|

≤ ‖p‖∞ψ(µ∗)
Γ(α)

∫ t1

1

[(
log t2

s

)α−1
−
(

log t1
s

)α−1
]
ds

s

+ ‖p‖∞ψ(µ∗)
Γ(α)

∫ t2

t1

(
log t2

s

)α−1 ds

s
.

As t1 → t2, the right hand side of the above inequality tends to zero. As a
consequence of Step 1 to 3, together with the Arzela-Ascoli theorem, we can
conclude that N : C([1− r, T ],R)→ P(C([1− r, T ],R)) is completely continuous.

Step 4: N has a closed graph.
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Let yn → y∗, hn ∈ N(yn) and hn → h∗. We need to show that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists vn ∈ SF,y, such that, for each t ∈ [1, T ]

hn(t) = 1
Γ(α)

∫ t

1

(
log t

s

)α−1 vn(s)
s

ds .

We must show that there exists v∗ ∈ SF,y such that, for each t ∈ [1, T ],

h∗(t) = 1
Γ(α)

∫ t

1

(
log t

s

)α−1 v∗(s)
s

ds .

Since F (t, ·) is upper semi-continuous, then for every ε > 0, there exist n0(ε) ≥ 0
such that, for every n ≥ n0, we have

vn(t) ∈ F (t, yn(t)) ⊂ F (t, y∗(t)) + εB(0, 1) , a.e. t ∈ [1, T ] .
Since F (·, ·) has compact values, then there exists a subsequence vnm(·) such that

vnm(·)→ v∗(·) as m→∞

and

v∗(t) ∈ F (t, y∗(t)), a.e. t ∈ [1, T ] .
For every w ∈ F (t, y∗(t)), we have

|vnm(t)− v∗(t)| ≤ |vnm(t)− w|+ |w − v∗(t)| .

Then

|vnm(t)− v∗(t)| ≤ d(vnm(t), F (t, y∗(t)) .
By an analogous relation, obtained by interchanging the roles of vnm and v∗, it
follows that

|vnm(t)− v∗(t)| ≤ Hd(F (t, yn(t)), F (t, y∗(t))) ≤ l(t)‖yn − y∗‖∞.
Then

|hn(t)− h∗(t)| ≤
1

Γ(α)

∫ t

1

(
log t

s

)α−1
|vn(s)− v∗(s)| ds

≤ 1
Γ(α)

∫ t

1

(
log t

s

)α−1
l(s)ds‖ynm − y∗‖∞ .

Hence

‖hn(t)− h∗(t)‖∞ ≤
1

Γ(α)

∫ t

1

(
log t

s

)α−1
l(s)ds‖ynm − y∗‖∞ → 0

as m→∞.

Step 5: A priori bounds on solutions.

Let y be such that y ∈ λN(y) with λ ∈ (0, 1]. Then there exists v ∈ SF,y such
that, for each t ∈ [1, T ],

h(t) = 1
Γ(α)

∫ t

1

(
log t

s

)α−1 v(s)
s

ds .
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This implies by (H2) that, for each t ∈ [1, T ], we have

|y(t)| ≤ 1
Γ(α)

∫ t

1

(
log t

s

)α−1 |v(s)|
s

ds

≤ 1
Γ(α)

∫ t

1

(
log t

s

)α−1 p(s)ψ(‖ys‖C)
s

ds

≤
ψ(‖y‖[1−r,T ])‖p‖∞

Γ(α+ 1) (log T )α .

Thus
‖y‖[1−r,T ]

ψ(‖p‖∞‖y‖[1−r,T ])
(log T )α

Γ(α+ 1)

< 1 .

Then by condition (3), there exist M > 0 such that ‖y‖∞ 6= M . Let U =
{y ∈ C(J,R) : ‖y‖∞ < M}. The operator N : Ū → P(C([1 − r, T ],R)) is upper
semi continuous and completely continuous. From the choice of U , there is no
y ∈ δU such that y ∈ λN(y) for some λ ∈ (0, 1]. As a consequence of the nonlinear
alternative of Leray-Shauder , we deduce that N has a fixed point y ∈ Ū which is
a solution of the problem (1)–(2). This completes the proof. �

We present now a result for the problem (1)–(2) with a nonconvex valued right
hand side. Our considerations are based on the fixed point theorem for contraction
multivalued maps given by Covitz and Nadler, that is Lemma 2.3.

Theorem 3.3. Assume (H3) and the following hypothesis holds:

(H5) F : [1, T ] × R → Pcp(R) has the property that F (·, u) : [1, T ] → Pcp(R) is
measurable for each u ∈ R.
If

(4) ‖l‖∞(log T )α

Γ(α+ 1) < 1

then the IVP (1)–(2) has at least one solution on [1− r, T ].

Proof. We shall show that N , as defined in the proof of Theorem 3.2, satisfies the
assumptions of Lemma 2.3. The proof will be given in two steps.

Step 1: N(y) ∈ Pcl(C([1− r, T ],R)) for each y ∈ C([1− r, T ],R).

Indeed, let (yn)n≥0 ∈ N(y) such that yn → ȳ in C([1 − r, T ],R). Then, ȳ ∈
C([1− r, T ],R) and there exists vn ∈ SF,y such that, for each t ∈ [1, T ],

yn(t) = 1
Γ(α)

∫ t

1

(
log t

s

)α−1 vn(s)
s

ds .

Using the fact that F has compact values and from (H3), we may pass to a
subsequence if necessary to get that (vn) converges weakly to some v in L1

w([1, T ],R)
(the space endowed with the weak topology). An application of Mazur’s theorem
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implies that (vn) converges strongly to v and hence v ∈ SF,y. Then for each
t ∈ [1, T ],

yn(t)→ ȳ(t) = 1
Γ(α)

∫ t

1

(
log t

s

)α−1 v(s)
s

ds .

So, ȳ ∈ N(y).

Step 2: There exist γ < 1 such that Hd(N(y), N(ȳ)) ≤ γ‖y − ȳ‖[1−r,T ] for each y,
ȳ ∈ C([1− r, T ],R).

Let y, ȳ ∈ C([1− r, T ],R) and h1 ∈ N(y). Then, there exists v1 ∈ F (t, yt) such
that for each t ∈ [1, T ]

y1(t) = 1
Γ(α)

∫ t

1

(
log t

s

)α−1 v1(s)
s

ds .

From (H3) it follows that
Hd

(
F (t, y(t)

)
, F
(
t, ȳ)(t)

)
≤ l(t)|y(t)− ȳ(t)|.

Hence, there exists w ∈ F (t, ȳ(t)) such that
|v1(t)− w| ≤ l(t)|y(t)− ȳ(t)|, t ∈ [1, T ].

Consider U : [1, T ]→ P(R) given by
U(t) = {w ∈ R : |v1(t)− w| ≤ l(t)|y(t)− ȳ(t)|}.

Since the multivalued operator V (t) = U(t) ∩ F (t, ȳ(t)) is measurable, there exists
a function v2(t) which is measurable selection for V . So, v2 ∈ F (t, ȳt), and for each
t ∈ [1, T ]

|v1(t)− v2(t)| ≤ l(t)|y(t)− ȳ(t)| , t ∈ [1, T ].
Let us define for each t ∈ [1, T ],

y2(t) = 1
Γ(α)

∫ t

1

(
log t

s

)α−1 v2(s)
s

ds .

Then for each t ∈ [1, T ],

|h1(t)− h2(t)| ≤ 1
Γ(α)

∫ t

1

(
log t

s

)α−1
|v1(s)− v2(s)| ds

≤ 1
Γ(α)

∫ t

1

(
log t

s

)α−1
|l(s)||ys − ȳs| ds

≤ ‖l‖∞(log T )α

Γ(α+ 1) ‖y − ȳ‖∞ .

Thus

‖h1 − h2‖∞ ≤
‖l‖∞(log T )α

Γ(α+ 1) ‖y − ȳ‖∞.

For an analogous relation, obtained by interchanging the roles of y and ȳ it follows
that

Hd

(
N(y), N(ȳ)

)
≤ ‖l‖∞(log T )α

Γ(α+ 1) ‖y − ȳ‖[1−r,T ].
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So by (4), N is a contraction and thus, by Lemma 2.3, N has a fixed point y which
is a solution to (1)–(2). The proof is complete. �

4. An example

We apply Theorem 3.2 to the following fractional differential inclusion,
(5) HDαy(t) ∈ F (t, yt) , for almost all t ∈ J = [1, T ], 0 < α ≤ 1 ,

(6) y(t) = ϕ(t) , t ∈ [1− r, 1] ,
where HDα is the Hadamard fractional derivative, ϕ ∈ C([1−r, 1],R) with ϕ(1) = 0,
and F : [1− r, T ]× R→ P(R) is the multivalued map,

F (t, y) = {v ∈ R : f1(t, y) ≤ v ≤ f2(t, y)} ,
and where f1, f2 : [1− r, T ]×R 7→ R. We assume that for each t ∈ [1− r, T ], f1(t, ·)
is lower semi-continuous (i.e., the set {y ∈ R : f1(t, y) > µ} is open for each µ ∈ R),
and assume that for each t ∈ [1− r, T ], f2(t, ·) is upper semi-continuous (i.e., the
set the set {y ∈ R : f2(t, y) < µ} is open for each µ ∈ R). Assume that there are
p ∈ C([1− r, T ],R+) and ψ : [0,∞) 7→ (0,∞) continuous and nondecreasing such
that

max(|f1(t, y)|, |f2(t, y)| ≤ p(t)ψ(|y|) , t ∈ [1− r, T ] , and all y ∈ R.
It is clear that F is compact and convex valued, and also upper semi-continuous.
Since all the conditions of Theorem 3.2 are satisfied, problem (5)–(6) has at least
one solution y on [1− r, T ].
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