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Steiner forms

Jan Hora

Abstract. A trilinear alternating form on dimension n can be defined based on
a Steiner triple system of order n. We prove some basic properties of these
forms and using the radical polynomial we show that for dimensions up to 15
nonisomorphic Steiner triple systems provide nonequivalent forms over GF (2).
Finally, we prove that Steiner triple systems of order n with different number of
subsystems of order (n− 1)/2 yield nonequivalent forms over GF (2).

Keywords: trilinear alternating form; Steiner triple system; radical polynomial

Classification: 15A69

1. Introduction

Let f : V 3 → F be a trilinear alternating form on a vector space V over
a field F , dim V = n < ∞. Two forms f1 and f2 on V are equivalent if there is an
automorphism of V satisfying f1(u, v, w) = f2(φ(u), φ(v), φ(w)) for all u, v, w ∈ V .
Classification of classes of this equivalence seems to be a very difficult problem
(unlike in the bilinear case) even for small dimensions of V and not much has been
done in this respect. This classification is known for the case n ≤ 7 for a large
family of fields including all finite fields (see [1]) and Gurevich [2], D. Djokovic
[3] and L. Noui [4] solved the case n = 8 for F = C, F = R and F alge-
braically closed field of arbitrary characteristics, respectively. Classification of
8-dimensional forms over GF (2) can be found in [7].

This paper concerns forms constructed from Steiner triple systems and the
main results are over the two-element field. The reason is that the original mo-
tivation for this research comes from the theory of doubly even binary codes, of
which trilinear alternating forms over the two-element field appear as important
invariants.

Let S be a Steiner triple system on a set X = {1, . . . , n} and let V be a
vector space with a basis {bi, i ∈ X}. A trilinear alternating form given by
f(bi, bj , bk) = 1 if {i, j, k} ∈ S, i < j < k, and f(bi, bj , bk) = 0 if {i, j, k} /∈ S is
called Steiner form. We show that these forms are nondegenerate and indecom-
posable. Moreover, using the classification of Steiner triple systems we show that
there is an invariant distinguishing among all Steiner forms up to dimension 15
over GF (2).
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2. Preliminaries

Let V be an n-dimensional vector space over a finite field F and fix a basis
B = {b1, . . . , bn} of V . Denote by B∗ = {b∗1, . . . , b

∗
n} its dual basis (defined as

usually by b∗i (bj) = δij). Given B and B∗ as above, a trilinear alternating form f
can be expressed as

fB =
∑

1≤i1<i2<i3≤n

αi1i2i3b
∗
i1 ∧ b∗i2 ∧ b∗i3 ,

where the index B indicates the dependence of the presentation upon the chosen
basis. Denote by ∆ the set

∆ = {(i1, i2, i3) | 1 ≤ i1 < i2 < i3 ≤ n, αi1i2i3 6= 0}.

Since the coefficients α of all forms presented in the paper are either 0 or 1, we
shall write forms as

fB =
∑

∆

i1i2i3.

Similar notation is also used for bilinear alternating forms.

Proposition 2.1. Let g be a bilinear alternating form on a vector space V of

dimension n. Then there exists a basis B = {b1, . . . , bn} and k ≤ n such that

gB = 12 + 34 + · · · + (k − 1)k.

Let f be a trilinear alternating form on V . We shall use the symbol f [v]
for the bilinear form f(v,−,−) and similarly f [v1, v2] shall denote the linear
form f(v1, v2,−). The group of automorphisms of f is denoted Aut(f). The set
{x ∈ V ; f [x] = 0} is called the radical of f and will be denoted Rad f . If it
contains only the zero vector then f is called nondegenerate. The radical of v is
the subspace

Rad(v) = {u ∈ V ; f [v, u] = 0}.

The rank of v ∈ V is the codimension of Rad(v) in V

r(v) = n − dimRad(v).

To show nonequivalence of forms (over finite fields) we shall use an invariant
introduced in [7], called the radical polynomial

P (f) =
∑

v∈V

xr(v)yn−r(v).

P (f) is a homogenous polynomial of degree n and if written in the form

(1) P (f) =

n−1∑

i=0

αix
iyn−i
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then every αi is a nonnegative integer and we have
∑n−1

i=0 αi = qn. Since for every
u ∈ V we have u ∈ Rad(u), the rank r(u) of any vector u is less than n and the
sum in (1) runs only to n − 1. Moreover, by Proposition 2.1 we get αi is equal
to zero whenever i is odd. In the Appendix the y parts of the polynomials are
omitted.

Fix a trilinear alternating form f on a vector space V . We say that vectors
u, v ∈ V are orthogonal , denoted by u⊥v, if u ∈ Rad(v). This relation is clearly
reflexive and symmetric. Two subspaces V1 and V2 of V are said to be orthogonal

if v1⊥v2 for any v1 ∈ V1 and v2 ∈ V2. We say that a nondegenerate form f on
V is decomposable if V = W1 ⊕ · · · ⊕ Wm, m ≥ 2, and Wi is orthogonal to Wj

whenever i 6= j. Unlike in the bilinear case, most of the trilinear alternating forms
are indecomposable.

3. Steiner forms

A pair S = (X, T ) is called Steiner triple system if X is an n-element set of
points (we shall assume X = {1, . . . , n}), n ≥ 3, and T is a system of three-
element subsets of X such that every pair of points is contained in exactly one
triple in T .

Theorem 3.1. Steiner triple system on n points exists iff n = 1, 3 mod 6, n ≥ 3.

We shall also use the quasigroup notation for Steiner triple systems, where
x · y = z if {x, y, z} ∈ T and x · x = x for every x ∈ X .

Let S = (X, T ) be an STS on n points. Define a trilinear alternating form fS

on an n-dimensional vector space V (over a field F ) with a basis B = {b1, . . . , bn}:

fS =
∑

{i,j,k}∈T

b∗i ∧ b∗j ∧ b∗k.

We assume i < j < k in the definition of fS above. Call this form a Steiner form

and B its Steiner basis. It is not clear how many Steiner bases there are, and
even whether it is possible that a form has two Steiner bases such that the Steiner
systems are nonisomorphic.

Proposition 3.2. Any Steiner form is nondegenerate.

Proof: Let fS be a Steiner form and let B = {b1, . . . , bn} be its Steiner basis.
Consider a nonzero vector v =

∑
αibi and assume without loss of generality that

α1 6= 0. Choose any triple of S containing 1, say {1, j, k} and assume j < k. Then
we have fS(v, bj , bk) =

∑
αifS(bi, bj , bk) = α1 and thus v /∈ Rad fS. �

Lemma 3.3. Let f be a decomposable form. Then the rank of any vector is at

most n − 2.

Proof: Consider an orthogonal decomposition V =
⊕m

i=1 Wi, m ≥ 2, and a
nonzero vector w. After changing the order of Wi’s, we can assume w =

∑p
i=1 wi,

where wi ∈ Wi and p ≤ m. Since f [w, wj ] =
∑

i f [wi, wj ] = 0, we get that the



530 Hora J.

radical of w contains the subspace 〈w1, . . . , wp〉. Moreover, Rad(w) contains also
subspaces Wp+1, . . . , Wm and thus the dimension of the radical of w is at least m.
Hence the rank of w is at most n − m < n − 1. �

Proposition 3.4. Any Steiner form is indecomposable.

Proof: Let fS be a Steiner form and let B = {b1, . . . , bn} be its Steiner basis
and put k = (n − 1)/2. By definition of fS the bilinear form fS [bj ] is equal to

fS [bj] = r1s1 + · · · + rksk,

where {j, ri, si} ∈ T , i = 1, . . . k, and thus the rank of any bj is equal to n − 1.
Hence fS is indecomposable by Lemma 3.3. �

From now on we assume that the underlying field is GF (2). A natural question
that arises is: are two STS isomorphic if and only if their Steiner forms are
equivalent? We shall give the answer up to dimension 15, but the result was
obtained using a computer. Table 1 shows the number of nonisomorpic STS for
small n. The trivial case n = 3 is omitted.

n Number of STS on n points
7 1 (Fano Plane)
9 1 (Affine Plane)
13 2
15 80
19 11084874829

Table 1. Number of STS

Example. The only Steiner triple system S on seven points is the Fano plane.
Its radical polynomial is equal to

y7 + 7x2y5 + 56x4y3 + 64x6y.

Notice the coefficient 7 at x2y5, which is by Proposition 3.10 the number of Steiner
subsystems of order 3. Using the radical polynomial classification in [7] we see
that the Fano form is equivalent to the form f6 = 123+145+167+357 (notation
used both in [1] and [7]) and that in this case the Steiner basis is not the most
efficient to express the form.

It is clear that for any Steiner triple system Aut(S) ≤ Aut(fS) holds. For the
Fano plane we have |Aut(S) |= 168. In [1], the group of automorphisms Aut(f6)
is computed (|Aut(f6)| = 688128 = 4096 · 168) and we get Aut(Fano Plane) 6=
Aut(fFano Plane). Hence there are 4096 Steiner bases.

The radical polynomial of the only Steiner form on dimension 9 is

y9 + 21x4y5 + 210x6y3 + 280x8y
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and is given here just for the sake of completeness.
For n equal to 13 there are two nonisomorphic Steiner triple systems and their

radical polynomials are

y13 + 25x6y7 + 476x8y5 + 4634x10y3 + 3056x12y,

y13 + 26x6y7 + 442x8y5 + 4615x10y3 + 3108x12y.

Steiner triple systems used as an input for the program computing these polyno-
mials (as well as the ones for n = 15) were taken from the Loops package of GAP
(programmed by Gábor Nagy and Petr Vojtěchovský) and thus the order of the
polynomials corresponds to the order of STS in [5], which they used as a source.

There are 80 nonisomorphic STS on 15 points and radical polynomials of these
forms are given in Appendix A. They are pairwise different. Current version of the
program computes radical polynomial of a 19-dimensional form approximately 30
seconds, using one core of a modern computer1.

Theorem 3.5. Let n be at most 15. Then two Steiner triple systems on n points

are isomorphic iff their Steiner forms over GF (2) are equivalent.

Looking at the polynomials in Appendix A one can see that the coefficient at
x2 is precisely the number of Steiner subsystems of order 7 of the corresponding
STS. We shall show this fact in general in Theorem 3.12, the proof uses several
statements, some of them are trivial or well known.

Lemma 3.6. Let S = (X, T ) be a Steiner triple system on n points and suppose

that it contains a subsystem S′ = (X ′, T ′) of order (n − 1)/2. Then

(1) for every triple T ∈ T we have either |T ∩ X ′ |= 3 or |T ∩ X ′ |= 1;

(2) for every x ∈ X ′ the mapping Lx : y 7→ x · y is a permutation of both X ′

and X \ X ′;

(3) for every x ∈ X \ X ′ the mapping Lx : y 7→ x · y is a bijection of X ′ and

X \ (X ′ ∪ {x}).

Denote by V + the (n − 1)-dimensional subspace generated by vectors bi + bj,
1 ≤ i, j ≤ n.

Lemma 3.7. Let fS be a Steiner form over GF (2) derived from a Steiner triple

system S = (X, T ) and let B be its Steiner basis. Let X ′ ⊆ X be a subset of

order (n − 1)/2 such that the restriction of S to S′ is a Steiner triple system.

Then the vector v =
∑

i/∈X′ bi is of rank 2 and Rad(v) ⊆ V +.

Proof: Put k = (n − 1)/2 and denote by li the linear form the kernel of which
is generated by the set {bj, j 6= i}. Without loss of generality we can assume that
X ′ = {1, . . . , k} and thus v =

∑n
i=k+1 bi. We show that

(2) Rad(v) ⊇ {b1 + b2, b2 + b3, . . . , bk−1 + bk} ∪ {bk+1 + bk+2, . . . , bn−1 + bn}.

1Intel Core i7 920
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By symmetry it suffices to prove it for the first and the last member of the set
in (2). Using twice Lemma 3.6 we get

fS [v, b1 + b2] =

n∑

i=k+1

(fS [bi, b1] + fS [bi, b2])

=
n∑

i=k+1

li·1 +
n∑

i=k+1

li·2 =
n∑

j=k+1

lj +
n∑

m=k+1

lm ≡ 0.

Similarly, for the last member we get

fS [v, bn−1 + bn] =
n∑

i=k+1

(fS [bi, bn−1] + fS [bi, bn])

=

n∑

i=k+1

li·(n−1) +

n∑

i=k+1

li·n =

n∑

i=k+1

i6=n−1

li·(n−1) +

n∑

i=k+1

i6=n−1

li·n

=
k∑

j=1

lj +
k∑

m=1

lm ≡ 0,

and thus the dimension of Rad(v) is at least n − 2. By Proposition 3.2 the form
fS is nondegenerate and there must be equality in (2). �

Lemma 3.8. Let g be a bilinear alternating form on V over GF (2) and let B be

a basis of V . If g is of rank 2 then B is a disjoint union B = B0∪B1∪B2∪B3 such

that for b, b′ ∈ B we have g(b, b′) = 1 if and only if b ∈ Bi, b′ ∈ Bj , i, j ∈ {1, 2, 3}
and i 6= j.

Proof: Since Rad(g) has dimension n − 2 the intersections of B with the four
cosets of Rad(g) in V satisfy the statement provided that B0 = B ∩ Rad(g). �

Lemma 3.9. Let n be an odd integer, n ≥ 1. Then 3 divides 2n + 2 if and only

if n = 6m + 5.

Proposition 3.10. Let S = (X, T ) be a Steiner triple system of order n and fS

be the corresponding Steiner form over GF (2) with a Steiner basis B. The rank

of a vector v is equal to 2 if and only if v =
∑

i∈K bi, where X \ K is a Steiner

subsystem of S of order (n − 1)/2.

Proof: The if part holds by Lemma 3.7 and we shall prove the other direction.
Let v =

∑
i∈K bi be a nonzero vector of rank 2 and let k denote the size of K.

Consider the bilinear form fS [v] with respect to the Steiner basis B as a graph G
on the set B, where bi is connected to bj iff fS(v, bi, bj) = 1. By Lemma 3.8
the graph G is a complete tripartite graph with possible isolated vertices in the
subset B0. But since the rank of any basis vector bi is equal to n − 1, the size
of K is greater than 1 and thus the degree of any vertex is at least 1 and B0 is
empty.
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We want to show that G is actually bipartite, so we shall now assume that
the sets Bi, i = 1, 2, 3, are nonempty. The degree of a vertex bi is equal to
k − 1 if i ∈ K and to k if i /∈ K. Since vertices in the same part of a complete
tripartite (or bipartite) graph have the same degree, there are without loss of
generality two possibilities, either K = B1 or K = B1 ∪ B2. First, assume
K = B1. The degree of all vertices in B2 ∪ B3 is equal to k and thus we must
have |B2| = |B3| = (n − k)/2. Moreover, this degree (which is k) is equal to
|B1| + |B3| = k + (n − k)/2 implying k = 0, a contradiction. Second, assume
K = B1∪B2. Again, we have |B1| = |B2| = k/2. The degree (k−1) of any vertex
in B1 is equal to |B2| = |B3| = k/2+(n−k). This equation yields k = (2n+2)/3.
By Lemma 3.9 we get n = 6m + 5, a contradiction with Theorem 3.1.

Thus, G is a bipartite graph. Part K has k elements each with degree k−1, part
B\K has n−k elements of degree k, from which we get k−1 = n−k, equivalently
k = (n+1)/2. It remains to prove that X\K is a Steiner subsystem of S. Consider
bi and bj in X \ K. If i · j is in K then fS(v, bi, bj) = 1, a contradiction with bi

and bj being in the same part of G. �

Corollary 3.11. Let f be a Steiner form on a vector space V over GF (2). Then

the set of vectors of rank at most two is a subspace of V .

Proof: Let B = {b1, . . . , bn} be a Steiner basis of f . By Proposition 3.10 and
Lemma 3.7 the radical of any vector v of rank 2 satisfies Rad(v) ⊆ V +. Let
v1 and v2 be distinct vectors of rank 2. Since f [v1 + v2] 6≡ 0, the subspaces
Rad(v1) and Rad(v2) must be distinct (we use that the field is GF (2)). Thus
we have dim(Rad(v1) + Rad(v2)) = dimV + = n − 1, which implies n − 3 =
dim(Rad(v1)∩Rad(v2)) ⊆ dim(Rad(v1+v2)). But the codimension of Rad(v1+v2)
is even and we get the result. �

Theorem 3.12. Let S1 and S2 be Steiner triple systems of order n. If they have

distinct number of subsystems of order (n − 1)/2 then the corresponding Steiner

forms over GF (2) are nonequivalent.

Proof: By Proposition 3.10 there is one-to-one correspondence between the num-
ber of Steiner subsystems of order (n − 1)/2 and vectors of rank 2. �

Whether the other coefficients of radical polynomial can be computed from the
underlying Steiner triple system remains an open question.

Appendix A

1. 1x0 + 15x2 + 560x4 + 448x6 + 15360x8 + 0x10 + 0x12 + 16384x14

2. 1x0 + 7x2 + 96x4 + 568x6 + 5472x8 + 10240x10 + 0x12 + 16384x14

3. 1x0 + 3x2 + 40x4 + 420x6 + 3120x8 + 8704x10 + 8192x12 + 12288x14

4. 1x0 + 3x2 + 20x4 + 192x6 + 2216x8 + 8320x10 + 8704x12 + 13312x14

5. 1x0 + 3x2 + 28x4 + 392x6 + 2520x8 + 8832x10 + 8704x12 + 12288x14

6. 1x0 + 3x2 + 4x4 + 140x6 + 1324x8 + 7104x10 + 12928x12 + 11264x14

7. 1x0 + 3x2 + 4x4 + 480x6 + 2008x8 + 6976x10 + 15104x12 + 8192x14
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8. 1x0 + 1x2 + 14x4 + 144x6 + 1592x8 + 6248x10 + 13248x12 + 11520x14

9. 1x0 + 1x2 + 8x4 + 56x6 + 950x8 + 5320x10 + 14912x12 + 11520x14

10. 1x0 + 1x2 + 8x4 + 90x6 + 1012x8 + 5736x10 + 14912x12 + 11008x14

11. 1x0 + 1x2 + 2x4 + 30x6 + 446x8 + 4196x10 + 17900x12 + 10192x14

12. 1x0 + 1x2 + 6x4 + 48x6 + 719x8 + 5313x10 + 15672x12 + 11008x14

13. 1x0 + 1x2 + 8x4 + 126x6 + 1344x8 + 5304x10 + 14208x12 + 11776x14

14. 1x0 + 1x2 + 10x4 + 120x6 + 1452x8 + 5456x10 + 13696x12 + 12032x14

15. 1x0 + 1x2 + 4x4 + 68x6 + 834x8 + 4916x10 + 16576x12 + 10368x14

16. 1x0 + 1x2 + 28x4 + 266x6 + 2312x8 + 7504x10 + 9856x12 + 12800x14

17. 1x0 + 1x2 + 4x4 + 150x6 + 1292x8 + 5112x10 + 16480x12 + 9728x14

18. 1x0 + 1x2 + 4x4 + 54x6 + 820x8 + 4624x10 + 16384x12 + 10880x14

19. 1x0 + 1x2 + 0x4 + 44x6 + 302x8 + 4148x10 + 18416x12 + 9856x14

20. 1x0 + 1x2 + 0x4 + 24x6 + 310x8 + 3628x10 + 17956x12 + 10848x14

21. 1x0 + 1x2 + 0x4 + 0x6 + 251x8 + 2975x10 + 19292x12 + 10248x14

22. 1x0 + 1x2 + 0x4 + 0x6 + 205x8 + 2883x10 + 19150x12 + 10528x14

23. 1x0 + 0x2 + 4x4 + 21x6 + 332x8 + 3367x10 + 18103x12 + 10940x14

24. 1x0 + 0x2 + 4x4 + 13x6 + 292x8 + 3110x10 + 17996x12 + 11352x14

25. 1x0 + 0x2 + 4x4 + 25x6 + 445x8 + 3333x10 + 17856x12 + 11104x14

26. 1x0 + 0x2 + 5x4 + 32x6 + 513x8 + 3760x10 + 17389x12 + 11068x14

27. 1x0 + 0x2 + 2x4 + 15x6 + 241x8 + 2748x10 + 18841x12 + 10920x14

28. 1x0 + 0x2 + 2x4 + 13x6 + 222x8 + 2668x10 + 18578x12 + 11284x14

29. 1x0 + 0x2 + 4x4 + 18x6 + 381x8 + 3145x10 + 17823x12 + 11396x14

30. 1x0 + 0x2 + 2x4 + 7x6 + 200x8 + 2370x10 + 18884x12 + 11304x14

31. 1x0 + 0x2 + 4x4 + 24x6 + 376x8 + 3423x10 + 17988x12 + 10952x14

32. 1x0 + 0x2 + 2x4 + 6x6 + 173x8 + 2338x10 + 18716x12 + 11532x14

33. 1x0 + 0x2 + 1x4 + 8x6 + 133x8 + 2090x10 + 18699x12 + 11836x14

34. 1x0 + 0x2 + 1x4 + 9x6 + 150x8 + 2182x10 + 18973x12 + 11452x14

35. 1x0 + 0x2 + 1x4 + 6x6 + 146x8 + 2000x10 + 19158x12 + 11456x14

36. 1x0 + 0x2 + 0x4 + 6x6 + 144x8 + 1845x10 + 18748x12 + 12024x14

37. 1x0 + 0x2 + 0x4 + 0x6 + 102x8 + 1981x10 + 19012x12 + 11672x14

38. 1x0 + 0x2 + 0x4 + 5x6 + 105x8 + 1561x10 + 19196x12 + 11900x14

39. 1x0 + 0x2 + 1x4 + 2x6 + 138x8 + 1758x10 + 18916x12 + 11952x14

40. 1x0 + 0x2 + 1x4 + 4x6 + 163x8 + 1989x10 + 18774x12 + 11836x14

41. 1x0 + 0x2 + 1x4 + 5x6 + 162x8 + 1991x10 + 18924x12 + 11684x14

42. 1x0 + 0x2 + 0x4 + 1x6 + 105x8 + 1660x10 + 18901x12 + 12100x14

43. 1x0 + 0x2 + 0x4 + 4x6 + 147x8 + 1721x10 + 18915x12 + 11980x14

44. 1x0 + 0x2 + 0x4 + 4x6 + 101x8 + 1628x10 + 18778x12 + 12256x14

45. 1x0 + 0x2 + 0x4 + 4x6 + 102x8 + 1630x10 + 19055x12 + 11976x14

46. 1x0 + 0x2 + 0x4 + 2x6 + 87x8 + 1534x10 + 19040x12 + 12104x14

47. 1x0 + 0x2 + 1x4 + 0x6 + 113x8 + 1835x10 + 18806x12 + 12012x14

48. 1x0 + 0x2 + 0x4 + 2x6 + 94x8 + 1582x10 + 18765x12 + 12324x14

49. 1x0 + 0x2 + 0x4 + 1x6 + 88x8 + 1394x10 + 18740x12 + 12544x14

50. 1x0 + 0x2 + 0x4 + 4x6 + 95x8 + 1707x10 + 18985x12 + 11976x14

51. 1x0 + 0x2 + 0x4 + 3x6 + 111x8 + 1568x10 + 18925x12 + 12160x14
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52. 1x0 + 0x2 + 0x4 + 3x6 + 107x8 + 1559x10 + 18942x12 + 12156x14

53. 1x0 + 0x2 + 1x4 + 2x6 + 125x8 + 1817x10 + 19090x12 + 11732x14

54. 1x0 + 0x2 + 1x4 + 1x6 + 131x8 + 1828x10 + 18966x12 + 11840x14

55. 1x0 + 0x2 + 0x4 + 3x6 + 107x8 + 1605x10 + 18852x12 + 12200x14

56. 1x0 + 0x2 + 0x4 + 2x6 + 110x8 + 1547x10 + 18968x12 + 12140x14

57. 1x0 + 0x2 + 0x4 + 1x6 + 83x8 + 1500x10 + 18847x12 + 12336x14

58. 1x0 + 0x2 + 1x4 + 1x6 + 109x8 + 1755x10 + 18869x12 + 12032x14

59. 1x0 + 0x2 + 1x4 + 3x6 + 147x8 + 2000x10 + 18888x12 + 11728x14

60. 1x0 + 0x2 + 0x4 + 2x6 + 108x8 + 1707x10 + 19134x12 + 11816x14

61. 1x0 + 1x2 + 0x4 + 0x6 + 142x8 + 2604x10 + 19796x12 + 10224x14

62. 1x0 + 0x2 + 1x4 + 0x6 + 106x8 + 1721x10 + 18935x12 + 12004x14

63. 1x0 + 0x2 + 1x4 + 7x6 + 124x8 + 1938x10 + 19145x12 + 11552x14

64. 1x0 + 0x2 + 1x4 + 3x6 + 107x8 + 1794x10 + 19078x12 + 11784x14

65. 1x0 + 0x2 + 0x4 + 1x6 + 91x8 + 1482x10 + 18993x12 + 12200x14

66. 1x0 + 0x2 + 0x4 + 2x6 + 81x8 + 1575x10 + 19101x12 + 12008x14

67. 1x0 + 0x2 + 0x4 + 2x6 + 78x8 + 1624x10 + 19059x12 + 12004x14

68. 1x0 + 0x2 + 0x4 + 1x6 + 89x8 + 1459x10 + 19010x12 + 12208x14

69. 1x0 + 0x2 + 0x4 + 2x6 + 79x8 + 1506x10 + 19012x12 + 12168x14

70. 1x0 + 0x2 + 0x4 + 5x6 + 103x8 + 1624x10 + 18867x12 + 12168x14

71. 1x0 + 0x2 + 0x4 + 1x6 + 78x8 + 1478x10 + 19006x12 + 12204x14

72. 1x0 + 0x2 + 0x4 + 1x6 + 83x8 + 1538x10 + 18881x12 + 12264x14

73. 1x0 + 0x2 + 0x4 + 2x6 + 82x8 + 1575x10 + 19276x12 + 11832x14

74. 1x0 + 0x2 + 0x4 + 4x6 + 101x8 + 1790x10 + 18808x12 + 12064x14

75. 1x0 + 0x2 + 0x4 + 3x6 + 86x8 + 1571x10 + 18847x12 + 12260x14

76. 1x0 + 0x2 + 0x4 + 10x6 + 120x8 + 1907x10 + 18630x12 + 12100x14

77. 1x0 + 0x2 + 0x4 + 1x6 + 67x8 + 1513x10 + 18978x12 + 12208x14

78. 1x0 + 0x2 + 0x4 + 2x6 + 74x8 + 1465x10 + 18650x12 + 12576x14

79. 1x0 + 0x2 + 0x4 + 6x6 + 80x8 + 1783x10 + 18722x12 + 12176x14

80. 1x0 + 0x2 + 0x4 + 0x6 + 45x8 + 870x10 + 19100x12 + 12752x14
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