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PROVING THE CHARACTERIZATION OF
ARCHIMEDEAN COPULAS VIA DINI DERIVATIVES

Juan Fernández-Sánchez and Manuel Úbeda-Flores

In this note we prove the characterization of the class of Archimedean copulas by using Dini
derivatives.
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1. INTRODUCTION

Copulas are n-dimensional distribution functions that concentrate the probability mass
on [0, 1]n and whose univariate margins are uniformly distributed on [0, 1]. A (bivariate)
copula is a function C : [0, 1]2 −→ [0, 1] which satisfies:

(C1) the boundary conditions C(t, 0) = C(0, t) = 0 and C(t, 1) = C(1, t) = t for all
t ∈ [0, 1];

(C2) the 2-increasing property, i. e., C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0
for all u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2.

In particular, copulas are Lipschitz continuous functions in each variable with con-
stant 1.

The importance of copulas comes from Sklar’s Theorem [17], which shows that the
joint distribution H of a pair of random variables and the corresponding marginal dis-
tributions F and G are linked by a copula C in the following manner: H(x, y) =
C(F (x), G(y)) for all x, y in [−∞,∞]. If F and G are continuous, then the copula
is unique; otherwise, the copula is uniquely determined on RangeF×RangeG [2]. For a
complete review on copulas and some of their applications, we refer to [6, 9, 15].

Let ϕ : [0, 1] −→ [0,∞] be a continuous strictly decreasing function such that ϕ(1) =
0, and let ϕ[−1] be the pseudo-inverse of ϕ, i. e., ϕ[−1](x) = ϕ−1 (min(ϕ(0), x)) for
x ∈ [0,∞], and consider the function given by

Cϕ(u, v) = ϕ[−1](ϕ(u) + ϕ(v)), (u, v) ∈ [0, 1]2. (1)

The following result provides a characterization of the function given by (1) to be a cop-
ula [16].
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Theorem 1.1. The function Cϕ given by (1) is a copula if, and only if, ϕ is convex.

Copulas given by (1) are called Archimedean – the name is due to a property of
associative operations [10, 15] – and ϕ is the generator of Cϕ – for another different
characterization of Archimedean copulas, see [10]. Archimedean copulas became popular
since they model the dependence structure between risk factors, and are used in many
applications, such as finance, insurance, or reliability (see, for example, [4, 13]) due to
their simple forms and nice properties.

In [18], the author provides three characterizations of n-dimensional Archimedean
copulas: algebraic, differential and diagonal. Our purpose in this note is to provide
a new proof of Theorem 1.1 (Section 3) by using Dini derivatives, a known result of
Lebesgue from Real Analysis (Section 2) – which allow to reconstruct a function from
the Dini derivative D+f when this is finite – and a characterization of copulas given by
Jaworski and Durante [5].

2. PRELIMINARY RESULTS FROM REAL ANALYSIS

Derived numbers play an important role in several results on the differentiability of
monotone functions. We recall their definition [14].

Definition 2.1. The number λ (finite or infinite) is said to be a derived number of the
function f at the point x0 if there exists a sequence h1, h2, h3, . . . (hn 6= 0 for all n) such
that hn → 0 and

lim
n→∞

f(x0 + hn)− f(x0)
hn

= λ.

Symbolically, we say λ = Df(x0). If the (finite or infinite) derivative f ′(x0) exists at
the point x0, then it will be a derived number Df(x0), and in this case, the function f
will have no other derived numbers at the point x0.

We note that in Definition 2.1 it is possible to use the term derived number to the
right by imposing hn > 0.

There are some particularly important derived numbers, the Dini derivatives, whose
definition we recall now [11].

Definition 2.2. Let f : [a, b] −→ R be a continuous function, with a < b, and let x be
a point in [a, b[. The limit

D+f(x) = lim sup
h→0+

f(x+ h)− f(x)
h

is called the (rightside upper) Dini derivative of f at x. When it is substituted lim sup
by lim inf, we obtain the (rightside lower) Dini derivative D+f .

The following result provides conditions for which a function can be recovered as a
definite integral of one of its Dini derivatives [8].
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Lemma 2.3. If f is a continuous function that has a finite Dini derivative D+f(x) at
every point x of R, then

f(b)− f(a) =
∫ b

a

D+f(x) dx

for each interval [a, b].

Observe that, as an immediate consequence of Lemma 2.3, we have that if D+f ≡ 0
then f is constant.

We understand a strictly increasing (decreasing) singular function as a continuous and
strictly increasing (decreasing) function with derivative zero almost everywhere. Since
the Dini derivatives of a decreasing function cannot be positive, Lemma 2.3 implies that
a strictly decreasing singular function on an interval has a dense set of points in which
D+f is equal to −∞. Both Lemma 2.3 and these last observations remain true if we
replace D+f by D+f . Furthermore, we have the following lemma [3].

Lemma 2.4. If f is a strictly singular function, then the inverse f−1 is also strictly
singular.

3. A NEW PROOF OF THE CHARACTERIZATION
OF ARCHIMEDEAN COPULAS

We begin this section with some additional notation. For every function K : [x1, x2] ×
[y1, y2] −→ R and every y ∈ [y1, y2], let Ky denote the function from [x1, x2] onto R
given by Ky(x) = K(x, y).

The following result – whose proof can be found in [5] – provides a characterization
of copulas in terms of Dini derivatives.

Lemma 3.1. A function C : [0, 1]2 −→ [0, 1] is a copula if, and only if, C satisfies (C1)
and the following conditions:

1. C is continuous;

2. there exists a countable set S ⊂ [0, 1] such that, for every u ∈ [0, 1]\S, the following
conditions hold:

(a) D+Cv(u) is finite for every v ∈ [0, 1];

(b) D+Cv1(u) ≤ D+Cv2(u) whenever 0 ≤ v1 ≤ v2 ≤ 1.

We are now in position to provide a new proof of Theorem 1.1 by using Dini derivatives
and derived numbers – compare, for example, with the ones given in [1, 7, 12].

P r o o f of Theorem 1.1. Suppose Cϕ is a copula given by (1). Since ϕ is monotone,
we have that ϕ is derivable almost everywhere. Let u ∈]0, 1[ be a point such that ϕ′(u)
exists and ϕ′(u) 6= 0, and suppose (Cϕ)v (u) 6= 0. By writing

(Cϕ)v (u+ h)− (Cϕ)v (u)
h

=
(Cϕ)v (u+ h)− (Cϕ)v (u)

ϕ(u+ h)− ϕ(u)
· ϕ(u+ h)− ϕ(u)

h
,
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and by taking supremum limits when h→ 0+ in both sides, the existence of the derivative
of ϕ in u assures

D+ (Cϕ)v (u) = λ · ϕ′(u),

where λ is the inverse of a derived number of ϕ at (Cϕ)v (u). To be precise, with
h̃ := (Cϕ)v (u+ h)− (Cϕ)v (u), we get h̃→ 0+ for h→ 0+ – as Cϕ is non-decreasing –
and

λ = lim sup
h→0+

(Cϕ)v (u+ h)− (Cϕ)v (u)
ϕ(u+ h)− ϕ(u)

= lim sup
h→0+

(Cϕ)v (u+ h)− (Cϕ)v (u)
ϕ(u+ h) + ϕ(v)− [ϕ(u) + ϕ(v)]

= lim sup
h→0+

(Cϕ)v (u+ h)− (Cϕ)v (u)
ϕ
(
(Cϕ)v (u+ h)

)
− ϕ

(
(Cϕ)v (u)

)
= lim sup

h→0+

(Cϕ)v (u+ h)− (Cϕ)v (u)
ϕ
(
(Cϕ)v (u) + (Cϕ)v (u+ h)− (Cϕ)v (u)

)
− ϕ

(
(Cϕ)v (u)

)
= lim sup

h̃→0+

h̃

ϕ
(

(Cϕ)v (u) + h̃
)
− ϕ

(
(Cϕ)v (u)

)
=

1

lim inf
h̃→0+

ϕ
(

(Cϕ)v (u) + h̃
)
− ϕ

(
(Cϕ)v (u)

)
h̃

=
1

D+ϕ
(
(Cϕ)v (u)

) .
From Lemma 3.1, we have D+ (Cϕ)v1

(u) ≤ D+ (Cϕ)v2
(u) as long as 0 ≤ v1 ≤ v2 ≤ 1,

which implies
ϕ′(u)

D+ϕ
(

(Cϕ)v1
(u)
) ≤ ϕ′(u)

D+ϕ
(

(Cϕ)v2
(u)
) ,

and therefore D+ϕ
(

(Cϕ)v1
(u)
)
≤ D+ϕ

(
(Cϕ)v2

(u)
)

– since ϕ is strictly decreasing –
i. e. D+ϕ is increasing in ]0, u[.

We now prove that there exists a sequence {un} → 1 as n→ +∞ such that ϕ′(un) 6= 0
for every n. Suppose, on the contrary, this is not true, that is, we have ϕ′(u) = 0 almost
everywhere in an interval [a0, 1] ⊂ [0, 1] and ϕ is not derivable in the rest of the points,
i. e. ϕ is a strictly decreasing singular function. From Lemma 2.4, we have that ϕ−1 is a
strictly decreasing singular function in [0, ϕ(a0)]. In this case, there exists a set of real
points {xn : n ∈ N} such that {xn} → 0 as n→ +∞ with D+

(
ϕ−1

)
(xn) = −∞.

Now, let x be a real point such that D+

(
ϕ−1

)
(x) = −∞, and let u and v be two real

points such that ϕ(u)+ϕ(v) = x, with u such that any derived number to the right of ϕ
at u is different from 0 – we note that the existence of u and v is due to the continuity
of ϕ and as a consequence of the fact that the derived numbers to the right cannot be
greater than D+ϕ.

Since (Cϕ)v verifies the Lipschitz condition with constant 1, we have

β ·D+ϕ
−1 (ϕ(u) + ϕ(v)) ≤ 1,

where β is a derived number to the right of ϕ at u. Since D+ϕ
−1 (ϕ(u) + ϕ(v)) = −∞

and β < 0, that upper bound is not possible, so we obtain a contradiction; therefore,
there exists a sequence {un} → 1 as n→ +∞ such that ϕ′(un) 6= 0 for every n.
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All this reasoning leads to the fact that D+ϕ is non-decreasing in ]0, 1[. Therefore, if
s and s′ are two numbers in [0, 1] such that s > s′, from Lemma 2.3 we have

ϕ(s) + ϕ(s′)
2

− ϕ
(
s+ s′

2

)
=

1
2

[
ϕ(s)− ϕ

(
s+ s′

2

)]
− 1

2

[
ϕ

(
s+ s′

2

)
− ϕ(s′)

]
=

1
2

(∫ s

s+s′
2

D+ϕ(t) dt−
∫ s+s′

2

s′
D+ϕ(t) dt

)
≥ 0,

and we conclude that ϕ is convex.
Conversely, we only need to follow the same steps backwards, which completes the

proof. �
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