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Abstract. Given a groupoid 〈G, ⋆〉, and k > 3, we say that G is antiassociative if an only
if for all x1, x2, x3 ∈ G, (x1 ⋆ x2) ⋆ x3 and x1 ⋆ (x2 ⋆ x3) are never equal. Generalizing
this, 〈G, ⋆〉 is k-antiassociative if and only if for all x1, x2, . . . , xk ∈ G, any two distinct
expressions made by putting parentheses in x1 ⋆ x2 ⋆ x3 ⋆ . . . ⋆ xk are never equal.
We prove that for every k > 3, there exist finite groupoids that are k-antiassociative. We

then generalize this, investigating when other pairs of groupoid terms can be made never
equal.
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1. Introduction

Around fifteen years ago, the second two authors started to investigate finite

groupoids which were antiassociative. Instead of obeying the associative law that

(x1 ⋆ x2) ⋆ x3 and x1 ⋆ (x2 ⋆ x3) are always equal, a groupoid is antiassociative if and

only if (x1 ⋆ x2) ⋆ x3 and x1 ⋆ (x2 ⋆ x3) are never equal. This is a natural change to

make to the associative law.

We were aided by a program written by Ming Lei Wu, which went through all

the 416 possible 4-element groupoids and returned a list of 421,560 which were an-

tiassociative. About 97% of these antiassociative groupoids were what we called

“deranged”, and turned out to be constructible in the following way.

Let G be any set with 2 or more elements. First pick a function f : G → G with

the property that f(x) 6= x for all x (the “derangement”). Then define the binary

operation on G by x ⋆ y = f(x), or alternatively, by x ⋆ y = f(y). This makes 〈G, ⋆〉

a deranged groupoid. When x ⋆ y = f(x), we have (x1 ⋆ x2) ⋆ x3 = f(x1) ⋆ x3 =

DOI: 10.21136/MB.2017.0006-15 27

http://dx.doi.org/10.21136/MB.2017.0006-15


f(f(x1)) 6= f(x1) = x1 ⋆ (x2 ⋆ x3), showing 〈G, ⋆〉 is antiassociative. If x ⋆ y = f(y),

the proof is similar. This construction seems to first appear in Example 2.2 of the

paper [5] of Drápal and Kepka.

Of the remaining 3% of the antiassociative groupoids found by the program, al-

most all had ⋆ tables which were within a few entries of the table of one of the

deranged groupoids. But beyond that, we found few patterns in their construction.

We conjecture that a similar situation holds for the examples we give in this paper.

They probably will not be unique, since it will sometimes be possible to modify them

slightly in a haphazard way.

Before moving on to k-antiassociative groupoids, we will invest in some defini-

tions. Using terminology from universal algebra (see [4]), an algebra is a set with

some number of (finitary) operations on it. A term of an algebra is any expres-

sion on a finite number of variables that can be made by composing the (basic)

operations of the algebra. We will use the same notation both for terms as for-

mal expressions and for the resulting functions on an algebra, since the distinction

should be clear from context. This paper will focus on groupoids, which are algebras

with a single binary operation. We believe that many of our techniques can be used

for algebras with multiple operations of any arity, but will not pursue this avenue

here.

An ordered term on the variables xj , xj+1, xj+2, . . . , xj+k−1 is a k-ary term where

each variable appears once, in order of their indices. For clarity, we give an in-

ductive definition. Any single variable xj is a 1-ary ordered term. Now suppose

that f is an m-ary basic operation and that t1, . . . , tm are ordered terms on the

variables xj , xj+1, . . . , xj+n−1, respectively. (That is, t1 is a k1-ary ordered term on

xj , xj+1, . . . , xj+k1−1, t2 is a k2-ary ordered term on the next k2 variables, and so

on, where n = k1 + k2 + . . .+ km.) Then f(t1, t2, . . . , tm) is an n-ary ordered term

on the variables xj , xj+1, . . . , xj+n−1. We used ordered terms in groupoids in our

earlier papers [3] and [2] and called them formal products.

Focusing on groupoids with operation ⋆, we see that there are exactly 5 different

ordered terms on the 4 variables x1, x2, x3, x4. They are: ((x1 ⋆ x2) ⋆ x3) ⋆ x4,

(x1 ⋆ (x2 ⋆ x3)) ⋆ x4, (x1 ⋆ x2) ⋆ (x3 ⋆ x4), x1 ⋆ ((x2 ⋆ x3) ⋆ x4) and x1 ⋆ (x2 ⋆ (x3 ⋆ x4)).

As is well known (see [11]), a groupoid has C(k − 1) = (2k − 2)!/k!(k − 1)! many

distinct ordered terms on k variables, where C(m) is the m-th Catalan number.

Assume k > 3. Let s(x1, . . . , xk) and t(x1, . . . , xk) be distinct terms of some

groupoid 〈G, ⋆〉. If s(x1, . . . , xk) 6= t(x1, . . . , xk) for all x1, x2, . . . , xk ∈ G, then we

say that G separates s and t. The groupoid 〈G, ⋆〉 is k-antiassociative if and only if

it separates all the distinct pairs of ordered terms on x1, x2, . . . , xk.

Two observations are in order. If G is a groupoid that separates two terms s and t,

then every subgroupoid of G also separates s and t. Second, suppose G is a groupoid
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that separates s and t, and let H be an arbitrary groupoid (with the same operation

symbol). Then the Cartesian product G×H separates s and t.

There are infinite groupoids that are k-antiassociative for all k. One example is

〈F σ;⊙〉, the set of all formal products under a natural operation which is similar to

concatenation. (See [3] for a definition and proof.) The free groupoid (see [4]) on

one or more generators is another example, as can be shown by a modification of the

proof of Theorem 3.2. (At the end of the proof, where Theorem 3.1 is invoked, one

argues directly instead.)

There are no finite groupoids which are k-antiassociative for all k, since the number

of k-ary ordered terms increases without bound. Once there are more terms than

elements in the groupoid, the Pigeonhole Principle implies that there are terms which

will not be separated in the groupoid. This brings us to the following question, which

we posed in [2].

Q u e s t i o n 1.1. For all k > 3, is there a finite groupoid that is k-antiassociative?

By our observation above, this question may be reduced to the following one.

Q u e s t i o n 1.2. For each k > 3 and for all distinct ordered terms s and t on

x1, x2, . . . , xk, is there a finite groupoid that separates s and t?

An affirmative answer to the second question gives an affirmative answer to the

first. To see this, assume that for all distinct ordered terms s and t on x1, x2, . . . , xk,

there is a finite groupoid Gs,t that separates s and t. Then the product of these

groupoids separates all the k-ary ordered terms, and is k-antiassociative. The other

direction is immediate, so the two questions are equivalent.

Note also that whenever 3 6 j < k, a groupoid 〈G, ⋆〉 that is k-antiassociative

is also j-antiassociative. For contradiction, suppose s(x1, x2, . . . , xj) and t(x1,

x2, . . . , xj) are j-ary ordered terms that are not separated in 〈G, ⋆〉. We let

r(xj+1 , . . . , xk) be some fixed (k − j)-ary ordered term, and form

s′(x1, x2, . . . , xk) = s(x1, x2, . . . , xj) ⋆ r(xj+1 , . . . , xk)

and

t′(x1, x2, . . . , xk) = t(x1, x2, . . . , xj) ⋆ r(xj+1, . . . , xk).

These are two k-ary ordered terms that are not separated in 〈G, ⋆〉, a contradiction.

Section 2 will present two preliminary examples. We will answer Question 1.2 in

the affirmative in Section 3, and generalize it to arbitrary groupoid terms in Section 4.
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2. Preliminary examples

We start with two simple constructions that often yield groupoids separating two

distinct k-ary ordered terms. The first is to simply take products of deranged op-

erations. For example, define the operation L2 on the universe of Z2 by setting

xL2y = (x+1) mod 2. Then we have (xL2y)L2z = (x+2) mod 2, ((xL2y)L2z)L2w =

(x+3) mod 2, and so on. The value of a term with leftmost variable x is (x+n) mod 2,

where n is the depth of x in the term. We also define R3 on the universe of Z3 by

setting x R3 y = (y + 1) mod 3. Similarly, we have that the value of a term with

rightmost variable z is (z + n) mod 3, where n is the depth of z in the term.

We consider the five possible 4-ary ordered terms, which we list as follows:

t1 = ((x1 ⋆ x2) ⋆ x3) ⋆ x4,

t2 = (x1 ⋆ (x2 ⋆ x3)) ⋆ x4,

t3 = (x1 ⋆ x2) ⋆ (x3 ⋆ x4),

t4 = x1 ⋆ ((x2 ⋆ x3) ⋆ x4),

t5 = x1 ⋆ (x2 ⋆ (x3 ⋆ x4)).

In 〈Z2,L2〉, we have

t1(w, x, y, z) = (w1 + 3) mod 2,

t2(w, x, y, z) = (w1 + 2) mod 2,

t3(w, x, y, z) = (w1 + 2) mod 2,

t4(w, x, y, z) = (w1 + 1) mod 2,

t5(w, x, y, z) = (w1 + 1) mod 2,

so all the terms in {t1, t4, t5} are separated from those in {t2, t3} in this groupoid.

Similarly, the terms in the sets {t1, t2}, {t3, t4} and {t5} are all separated from those

in the other sets in the groupoid 〈Z3,R3〉. Continuing, all five terms are separated

from each other in the product of the two groupoids.

The problem with this approach is that the value of a term only depends on the

depths of its leftmost and rightmost variables, so terms that have those two variables

at the same depth cannot be separated this way.

The next construction partially avoids this problem. Suppose that A = 〈A,+〉 is

an abelian group, that α and β are endomorphisms of 〈A,+〉, and that c is a fixed

element of A. We define an operation ⋆ on A by setting x ⋆ y = α(x) + β(y) + c, and

call the groupoid 〈A, ⋆〉 the affine endomorphism groupoid for A, α, β and c. We

denote this groupoid by E(A,α, β, c).
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As an example, suppose we want an affine endomorphism groupoid that separates

the terms s(v, w, x, y, z) = ((v⋆w)⋆(x⋆y))⋆z and t(v, w, x, y, z) = ((v⋆(w⋆x))⋆y)⋆z.

In both terms, v has depth 3 and z has depth 1, so the previous approach cannot

succeed.

In E(A,α, β, c), we get

s(v, w, x, y, z) = ((α(v) + β(w) + c) ⋆ (α(x) + β(y) + c)) ⋆ z

= (α2(v) + αβ(w) + α(c) + βα(x) + β2(y) + β(c) + c) ⋆ z

= α3(v) + α2β(w) + α2(c) + αβα(x) + αβ2(y) + αβ(c)

+ α(c) + β(z) + c.

This is quite messy, so we make the simplifying assumptions that α3 = α2, that

β2 = β, and that α and β commute. This gives us

s(v, w, x, y, z) = α2(v) + α2β(w) + α2β(x) + αβ(y) + β(z)

+ α2(c) + αβ(c) + α(c) + c.

And a similar calculation gives

t(v, w, x, y, z) = α2(v) + α2β(w) + α2β(x) + αβ(y) + β(z)

+ α2β(c) + α2(c) + α(c) + c.

Observe that both terms have the identical portion α2(v) + α2β(w) + α2β(x) +

αβ(y) + β(z), and only differ in their constants. (Our choice of simplifying assump-

tions was designed to do this.) So we can separate the terms by ensuring that

α2(c) + αβ(c) + α(c) + c and α2β(c) + α2(c) + α(c) + c have different values.

Fortunately, there are A, α, β and c that satisfy these conditions. We may work

over Z2, and consider 2 × 3 matrices with elements in Z2. This gives us that the

group A is isomorphic to Z
6
2, a 64-element group. The desired actions of α and β

on A can be realized by letting β copy the top row of A onto the bottom row, and by

letting α copy the left column of A onto the middle column and the middle column

onto the right column. That is,

α

[

d e f

g h i

]

=

[

d d e

g g h

]

and β

[

d e f

g h i

]

=

[

d e f

d e f

]

.

Finally, we take

c =

[

1 0 0

0 0 0

]

.
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This gives

αβ(c) =

[

1 1 0

1 1 0

]

and α2β(c) =

[

1 1 1

1 1 1

]

,

so

s(~0) =

[

0 1 1

1 1 0

]

and t(~0) =

[

0 1 0

1 1 1

]

.

The above technique requires making assumptions about α and β in order to

simplify the expressions for the terms. One has some latitude with the assumptions.

For example, one may take αk+1 = αk, or βk+1 = βk for any value of k, and no longer

require that α and β commute. But a point is reached where that no longer helps.

We were unable to use the above method to produce a groupoid that separated the

two 5-ary terms s = (x1 ⋆ (x2 ⋆ x3)) ⋆ (x4 ⋆ x5) and t = (x1 ⋆ x2) ⋆ ((x3 ⋆ x4) ⋆ x5).

(These terms are represented by trees in Figure 1.)

We note in passing that if αβ = βα, then

(w ⋆ x) ⋆ (y ⋆ z) = α2(w) + α(c) + αβ(x) + βα(y) + β(c) + β2(z)

= α2(w) + α(c) + αβ(y) + βα(x) + β(c) + β2(z) = (w ⋆ y) ⋆ (x ⋆ z).

So if α and β commute, the groupoid satisfies the law (w⋆x)⋆(y⋆z) ≈ (w⋆y)⋆(x⋆z).

While this is not a generalized associative law, it is known as the medial or entropic

law, and has been extensively studied. Although there are now many articles on

specializations of this law, the best general survey seems to be the 1983 paper [8] by

Ježek and Kepka.

So we turn to another method, which we will present in the next section.

3. Finite k-antiassociative groupoids

We will use a somewhat involved construction, and will require some preliminary

definitions. Recall that a full binary tree is a rooted tree where every internal node

has exactly two children. (For further definitions and theorems, see [9] or a recent

text in discrete mathematics or data structures.)

When full binary trees are used as data structures, the two nodes directly below

each internal node are called its left and right children, and the subtrees with these

children as roots are the left and right subtrees of that node. As is well known,

groupoid terms correspond to full binary trees with leaves labeled by variables. If s is

a groupoid term, we will denote the corresponding tree by T (s). This correspondence

may be defined recursively as follows. If s is a single variable xi, then T (s) is a tree
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with one node, labeled xi. If s and t are groupoid terms, then T (s ⋆ t) is the tree

with a root that has T (s) as its left subtree and T (t) as its right subtree.

We will also label the nodes of binary trees with strings made from the characters ‘l’

and ‘r’. As is usual, we will write the set of all such strings as {l, r}∗. In dealing with

strings, we will show concatenation by simply writing the two strings next to each

other. We use Λ to denote the empty string, which is the identity for concatenation.

Our labeling may be defined recursively as follows.

The root is labeled Λ. If a node is labeled a, then its left and right children are

labeled al and ar, respectively. These labels may be thought of as directions for

how to get to a node by starting at the root and turning the correct way at each

branching.

Given a string p, an initial substring of p is a string q such that p = qu for some

string u. (This is sometimes called a prefix in the literature. Note that the empty

string Λ is an initial substring of every string.) A substring is proper if it is not equal

to the entire original string, and nontrivial if it is not equal to Λ.

Putting these two ideas together, occurrences of variables in a groupoid term s

correspond to leaves of T (s). The string that is the label of the leaf corresponding

to an occurrence of the variable xi will be called the path of that occurrence. If xi

only occurs once, we may also call this the path of xi. Generalizing this, for any

subterm b of s, we have that the path of b is also the label of the interior node of T (s)

corresponding to the root of subtree T (b).

For example, consider s = (x1 ⋆ (x2 ⋆ x3)) ⋆ (x4 ⋆ x5). We have path(x1) = ll,

path(x2) = lrl, path(x3) = lrr, path(x4) = rl, path(x5) = rr and path(x2 ⋆x3) = lr.

(When there is danger of confusion, we will write paths(xi) to show we mean the

path in the term s.) The tree for this term is on the left side of Figure 1.

x1

x2 x3

x4 x5

Λ

l r

rl rrll lr

lrrlrl

(x1 ⋆ (x2 ⋆ x3)) ⋆ (x4 ⋆ x5)

x1 x2

x3 x4

x5

Λ

l r

ll lr rl rr

rlrrll

(x1 ⋆ x2) ⋆ ((x3 ⋆ x4) ⋆ x5)

Figure 1. Trees for two terms.

If s is a groupoid term, we use Paths(s) for the set of all paths to variables in s.

Similarly, we have paths to the internal nodes of the tree T (s); these correspond to
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proper initial substrings of paths to the leaves of T (s). Given the term s with q the

path to a node of T (s), we let sq denote the subterm of s with T (sq) rooted at the

node q of T (s). Then for any subterm b of s, if we let q be the path of b in s, we

have b = sq.

Our long-term goal is to form a groupoid that separates any two distinct k-ary

ordered terms s and t. We will need some preliminary ideas in order to do this. Our

groupoids will be finite homomorphic images of an infinite groupoid with universe ZN

2 ,

where Z2 is the 2-element field. So the elements of the infinite groupoid will be vectors

with index set N = {0, 1, 2, . . .}. The groupoid operation ⋆ will be constructed below

in such a way that there exists an integer M such that for all u, v ∈ Z
N
2 , the j-th

components of u ⋆ v will be zero for all j > M . Any two terms that are separated by

the infinite groupoid on Z
N
2 will then be separated by its finite projection onto the

first M coordinates. We will usually leave this final reduction to a finite groupoid to

the reader.

We will actually be using only the additive structure of the field Z2, and viewing

it as an abelian group. Our groupoids will all be affine endomorphism groupoids,

although the endomorphisms will be built up from their actions on the components

of vectors. One nice consequence of this is that we will be able to add groupoid

operations pointwise. If ⋆1 and ⋆2 are two groupoid operations on vectors in Z
N

2 ,

their sum ⋆1 + ⋆2 will be defined by ~x (⋆1 + ⋆2) ~y = (~x ⋆1 ~y) + (~x ⋆2 ~y). Since we are

working over Z2, all additions of values such as the above are done modulo 2. We

will periodically note this fact, but not always.

We will define groupoid operations by their actions on components. In this section

we will use the convention that the vectors x, y and z are such that z = x ⋆ y for our

groupoid operation ⋆. We will also simply write x instead of ~x, and write x[a] for the

a-th component of the vector x. (For clarity, we will always use square brackets for

this.) To specify a groupoid operation, it then suffices to say what z[i] is for all i. We

will do this by giving a sequence of equations for the z[i]. To emphasize that values

are being assigned to the z[i], we will use := instead of the normal equality symbol.

One further convention is that each z[i] will be zero, unless that z[i] is explicitly

assigned a value.

For example, consider the groupoid operation which we will later call ‖2, lr, 0‖.

We define it by the two equations z[0] := x[a] and z[a] := y[2]. Here, a is some

index disjoint from {0, 2}, we take a = 1. Writing our operation as ⋆, we have

〈x[0], x[a], x[2], . . .〉 ⋆ 〈y[0], y[a], y[2], . . .〉 = 〈x[a], y[2], 0, 0, 0, . . . , 〉. Continuing to

use ⋆ for this operation, consider the term s = (u ⋆ v) ⋆ w. We have u ⋆ v =

〈u[a], v[2], 0, 0, 0, . . .〉, and (u ⋆ v) ⋆ w = 〈u[a], v[2], 0, 0, 0, . . .〉 ⋆ 〈w[0], w[a], w[2], . . .〉 =

〈v[2], w[2], 0, 0, 0, . . .〉. The 0-th component of s is the 2nd component of v, where

34



paths(v) = lr. This motivates calling the operation ‖2, lr, 0‖, since it takes the 2nd

component in the subterm slr to the 0-th component of s.

When using the operation ‖2, lr, 0‖, we will be looking only at the 0-th component

of the output, and ignoring the a-th component. With this understanding, it makes

little difference what the index a is. So we will assume that indices such as a, b and so

on are always chosen to minimize collisions. This means that no indices will be equal

unless they are explicitly represented with equivalent expressions. This can be easily

achieved by appropriate choices of values for a, b and so on, and will not jeopardize

the finiteness of any groupoids we produce. As long as there are no collisions, the

finite groupoids obtained via the projection homomorphism for different values of a

will be isomorphic. Accordingly, we will speak of the groupoid operation ‖2, lr, 0‖,

and so on.

Definition 3.1. Let p = p0p1p2 . . . pj be a nonempty string in {l, r}
∗, and let m

and n be natural numbers. Then the operation ‖m, p, n‖ is defined via the following

equations, where we assume that a, a+1, . . . , a+ j− 1 are distinct from m and n. If

j = 0, we set z[n] := x[m] if p0 = l, and z[n] := y[m] if p0 := r. If j > 0, we proceed

as follows.

If p0 is l, the first equation is z[n] := x[a], and if p0 is r, it is z[n] := y[a]. If

p1 = l, the next equation is z[a] := x[a+1], and if p1 = r, it is z[a] := y[a+1]. This

pattern continues, with z[a+ i] := x[a + i+ 1] if pi+1 = l, or z[a+ i] := y[a+ i+ 1]

if pi+1 = r, for all i 6 j − 2. The last equation is z[a+ j − 1] := x[m] if pj = l, and

it is z[a+ j − 1] := y[m] if pj = r.

The idea is that ‖m, p, n‖ transfers the value of the m-th component of the vector

with path p in the term s to the n-th component of the result of s. Here is a more

detailed example to illustrate this definition.

Let s be (((v1 ⋆ v2) ⋆ v3) ⋆ v4) ⋆ (v5 ⋆ v6), so the path of v2 is lllr. We let n = 0 and

m = 4. The operation ‖4, lllr, 0‖ will take the value of v2[4] and assign it to s[0]. In

the definition, we have p = lllr = p0p1p2p3, and j = 3. We let a = 1, so a + 1 = 2,

and a+ j − 1 = 1 + 3− 1 = 3.

Then p0 = l, giving z[0] := x[1]. Next, p1 = l, giving z[1] := x[2]. Continuing,

p2 = l and z[2] := x[3]. Finally, z[3] := y[4] since p3 is r.

Thus we have z = 〈z[0], z[1], z[2], z[3], z[4], . . .〉 = 〈x[1], x[2], x[3], y[4], 0, 0, . . .〉,

when z = x ⋆ y. Letting the operation ⋆ be ‖4, p, 0‖ does make s[0] = v2[4]. When

s = (((v1⋆v2)⋆v3)⋆v4)⋆(v5⋆v6), we have that the output z is s and the left input x is

((v1 ⋆v2)⋆v3)⋆v4. Since z[0] := x[1], we have s[0] = ((v1 ⋆v2)⋆v3)⋆v4[1]. Continuing

in this fashion, we get s[0] = ((v1⋆v2)⋆v3)⋆v4[1] = (v1⋆v2)⋆v3[2] = v1⋆v2[3] = v2[4].

We want our functions ‖m, p, n‖ to have as few side effects as possible. To ac-

complish this, we are assuming throughout that none of the indices used to define
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‖m, p, n‖ is equal to any of the others, except that possibly m = n. In other words,

the operation ‖m, p, n‖ is duplicate-free. If m1 is distinct from both m2 and m0,

and p and q are strings in {l, r}∗, then the operation ‖m2, q,m1‖ + ‖m1, p,m0‖ is

duplicate-free by our convention that indices are chosen to minimize collisions. In

isolation, the sum ‖m2, q,m1‖+ ‖m1, p,m0‖ is equivalent to ‖m2, pq,m0‖. The one

difference is that the former explicitly mentions the index m1. We will henceforth

assume that all our groupoid operations are duplicate-free.

Lemma 3.1. Let ⋆ be a duplicate- and collision-free groupoid operation that

contains ‖m, p, n‖ as a summand, and let s be a groupoid term where p is the path

to a node of T (s). Letting sp be the subterm of s at that node, s[n] = sp[m] for all

values of the variables of s.

P r o o f. Since ⋆ is duplicate- and collision-free, the only summand of ⋆ that

affects the value of s[n] is ‖m, p, n‖. So we may ignore the rest of ⋆, and as-

sume ⋆ is ‖m, p, n‖. Writing p = p0p1p2 . . . pj where the pi are r or l, we will

prove the lemma by induction on j. Our basis is when j = 0, making the operation

‖m, p0, n‖. We will show the case where p0 = l, the one for p0 = r is similar. Now

s = sl ⋆ sr, where ⋆ is ‖m, l, n‖. The one relevant assignment is z[n] := x[m], giving

s[n] = z[n] = x[m] = sl[m], as desired.

For the induction step, assume the statement is true for j − 1, and that we

want to show it for the path p = p0p1p2 . . . pj . We write ⋆ = ‖m, p, n‖ as

‖m, pj, b‖ + ‖b, p0p1p2 . . . pj−1, n‖ for some new index b, and let q be p0p1 . . . pj−1,

so p = qpj. By the statement for j − 1, s[n] = sq[b]. We have sq[b] = (sql ⋆ sqr)[b] =

(sql ‖m, pj, b‖ sqr)[b], where the last step follows because indices are chosen to min-

imize collisions. There are now two cases. We will show the one for pj = r; the

case for pj = l is similar. Since pj = r, we have z[b] := y[m] in ‖m, pj , b‖. So

sq[b] = sqr[m] = sp[m], since qr = qpj = p. Thus s[n] = sq[b] = sp[m], as desired.

�

Given the groupoid operation ‖m, p, n‖, we define the tweaked operation ‖m, p, n‖′

to be identical to ‖m, p, n‖ except for one assignment. Writing p as p0q, ‖m, p, n‖

has an assignment of the form z[n] := x[k] if p0 = l and one of the form

z[n] := y[k] if p0 = r. Whichever one occurs, we modify it by adding 1, giving

z[n] := (x[k] + 1) mod 2 if p0 = l or giving z[n] := (y[k] + 1) mod 2 if p0 = r.

A slight modification of the proof of the previous lemma then establishes the

following.

Lemma 3.2. Let ⋆ be a duplicate- and collision-free groupoid operation that

contains ‖m, p, n‖′ as a summand, and let s be a groupoid term where p is the
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path to a node of T (s). Letting t = sp be the subterm of s at that node, s[n] =

(t[m] + 1) mod 2.

We are now ready to establish a powerful theorem, which holds for all groupoid

terms regardless of any conditions on the order or number of appearances of variables.

Theorem 3.1. Let s and t be any groupoid terms. Suppose that the variable x

has an occurrence in s where the path to that occurrence is p, and that x has an

occurrence in t where the path to that occurrence is q. Then if q is a proper initial

substring of p, the terms s and t can be separated.

P r o o f. Let s, t, x, p and q be as above. By hypothesis, p = qw for a nonempty

string w. We let ⋆ be ‖1, q, 0‖+ ‖1, w, 1‖′.

First consider the value of t[0] for this ⋆. Since ‖1, w, 1‖′ does not have an as-

signment to z[0], ‖1, w, 1‖′ makes t[0] = 0, and we can ignore it. As for ‖1, q, 0‖,

Lemma 3.1 gives t[0] = tq[1] = x[1]. This implies that ⋆ sets t[0] = x[1].

Now consider the value of s[0] for the above ⋆. As in our calculation for t[0], we

have s[0] = sq[1]. But now sq is a nontrivial subterm of s, so we compute sq[1]. The

operation ‖1, q, 0‖ has no effect on sq[1], so we ignore it and just consider the effect

of ‖1, w, 1‖′. It gives sq[1] = sqw[1] + 1, by Lemma 3.2. Putting these together, we

have s[0] = sq[1] = sqw[1] + 1 = sp[1] + 1 = x[1] + 1. This shows that s and t always

have different values in a finite groupoid, since it is always true that s[0] 6= t[0]. �

Theorem 3.2. For all k > 3 there is a k-antiassociative finite groupoid.

P r o o f. It is enough to produce a finite groupoid that separates any two distinct

k-ary ordered terms s and t. Given any two distinct terms s and t with k > 3, we

let xm be the leftmost variable on which s and t do not agree, in the sense that

paths(xi) = patht(xi) for all i < m, and paths(xm) 6= patht(xm).

We claim that for any two such distinct k-ary terms s and t, one of paths(xm) or

patht(xm) is a proper initial substring of the other. To see this, suppose we have

a counterexample consisting of terms s and t where xm is the leftmost variable on

which they disagree but neither paths(xm) nor patht(xm) is a proper initial substring

of the other. Letting j be the minimum of the lengths of paths(xm) and patht(xm),

we assume that our counterexample has the least possible value of j.

If our counterexample has j = 0, then either s = xm or t = xm. Without loss of

generality, assume s = xm. Then paths(xm) = Λ. If patht(xm) is also Λ, we have

s = xm = t, a contradiction. So patht(xm) 6= Λ, and patht(xm) has paths(xm) as

a proper initial substring. This shows our minimal counterexample must have j > 0.

Then s = sl ⋆ sr and t = tl ⋆ tr for some terms sl, sr, tl and tr. We have two cases,

depending on where xm occurs.
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If xm occurs in sr, then xm also occurs in tr since sl = tl because s and t agree for

all i < m. But then xm is the leftmost variable on which sr and tr disagree. Since

s and t form a minimal counterexample, sr and tr are not a counterexample and so

one of pathsr (xm) and pathtr (xm) is a proper initial substring of the other. Since

paths(xm) is r followed by pathsr (xm) and patht(xm) is r followed by pathsr (xm),

one of them is also a proper initial substring of the other, a contradiction.

So xm occurs in sl. As in the previous paragraph, if xm occurred in tr, we would

get that xm occurred in sr. Thus xm occurs in tl. Then a similar argument also

yields a contradiction. This proves the claim.

Now let distinct k-ary s and t with k > 3 be given. The claim gives us that

one of patht(xm) and paths(xm) is a proper initial substring of the other. We apply

Theorem 3.1, and obtain a finite groupoid that separates s and t. �

4. Separating arbitrary groupoid terms

We can generalize the questions of the previous section, by relaxing the condition

that each variable appears once in every term in order of their indices.

As before, we can reduce everything to the problem of finding finite algebras that

separate pairs of terms. We would like to have a nice characterization of which pairs

of groupoid terms can be separated in a finite groupoid. So we will also investigate

when it is impossible to separate a pair of terms in any groupoid.

We need a bit of preliminary material on free algebras. A more detailed ex-

position may be found in [4]. We use G for the class of all groupoids, and let

FG(y0, y1, . . . , yn−1) denote the free groupoid with generators y0, y1, . . . , yn−1. The

key feature of FG(y0, y1, . . . , yn−1) is that it has the Universal Mapping Property for

the class of groupoids. That is, if G is any groupoid with elements g0, g1, . . . , gn−1,

then there is a unique homomorphism ϕ from FG(y0, y1, . . . , yn−1) into G where

ϕ(yi) = gi for all i.

Theorem 4.1. Let s and t be groupoid terms, each on a set of variables that is

a subset of {y0, y1, . . . , yn−1}. Then the following are equivalent:

(1) s and t are separated in some groupoid,

(2) s and t are separated in FG(y0, y1, . . . , yn−1),

(3) s and t are separated in FG(x), the free groupoid on one variable.

P r o o f. Let s and t be groupoid terms with all their variables in {y0, y1, . . . ,

yn−1}. It is clear that (2) implies (1). To see that (3) implies (2), suppose

that (2) fails. Then there are terms h0, h1, . . . , hn−1 in FG(y0, y1, . . . , yn−1) with

s(h0, h1, . . . , hn−1) = t(h0, h1, . . . , hn−1). The hi are all generated from {y0, . . . ,
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yn−1} by repeatedly using the groupoid operation. Now consider the homomor-

phism ϕ from FG(y0, y1, . . . , yn−1) into FG(x) that takes all of the yi to x. Denoting

the image of each hi by h′

i, we have that s(h
′

0, h
′

1, . . . , h
′

n−1) = t(h′

0, h
′

1, . . . , h
′

n−1)

in FG(x), so (3) fails.

To see that (1) implies (3), assume that (3) fails. So we have f0, f1, . . . , fn−1 ∈

FG(x) with s(f0, f1, . . . , fn−1) = t(f0, f1, . . . , fn−1). Letting G be any groupoid, we

pick any c ∈ G, and consider the homomorphism ϕ from FG(x) to G that takes

x to c. Letting the image of each fi be f ′

i , we have that s(f ′

0, f
′

1, . . . , f
′

n−1) =

t(f ′

0, f
′

1, . . . , f
′

n−1) in G, so (1) fails. �

The free groupoid FG(x) is easy to work with, since all of its elements may be

viewed as groupoid terms in the single variable x. Terms s and t are separated in

FG(x) if and only if there are no terms f0(x), f1(x), . . . , fn−1(x) ∈ FG(x) that can

be substituted for the variables of s and t to yield s(f0(x), f1(x), . . . , fn−1(x)) =

t(f0(x), f1(x), . . . , fn−1(x)).

This relates to the notion of unification of terms, which has been extensively stud-

ied in computer science. The introduction of the topic was by Herbrand, in [6]. Mod-

ern work was pioneered by Robinson, in [10]. A good survey article is by Baader and

Snyder (in [1]). Consider two terms s(x0, . . . xm−1) and t(y0, . . . yn−1). The terms

are unifiable if there are terms r0, . . . , rm−1 and u0, . . . un−1 such that substituting

the ri for the xi in s and the uj for the yj in t makes the two resulting terms identical.

This identical term is a unifier and the corresponding substitution is a unification.

In other words, the terms s and t can be unified if and only if they cannot be sepa-

rated in a free algebra. In view of the previous theorem, two terms cannot be unified

if and only if there is a groupoid where they are separated.

While much work on unification is concerned with algorithms, we will follow the

more abstract approach in [1], which was first presented by Huet in [7]. As in his

Definition 2.11, we consider equivalence relations on groupoid terms, which we call

term relations. (A term relation is said to be homogeneous if terms f(. . .) and g(. . .)

are never equivalent for distinct operation symbols f and g. All term relations on

groupoid terms are of course homogeneous, so we modify the standard definition to

omit this condition.) A term relation is acyclic if no term is equivalent to one of its

proper subterms. This leads to the following definition.

Definition 4.1. A groupoid term relation ≡ is a unification relation if and only

if it is acyclic and satisfies the following unification axiom: For all terms s, t, u

and v, s ⋆ t ≡ u ⋆ v implies s ≡ u and t ≡ v.

Referring again to [1] for the details, we have that terms s and t can be unified if

and only if there is a unification relation ≡ with s ≡ t. If there is such a unification

relation, then there is a unique minimal one, the unification closure of s and t. If s
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and t can be unified, they also have a most general unifier or mgu, where any unifier

of s and t can be obtained from their mgu by uniformly substituting terms for its

variables. This most general unifier is unique up to renaming its variables, and can

be easily constructed from the unification closure of s and t.

For example, consider s = (x ⋆ y) ⋆ (z ⋆ y) and t = z ⋆ ((x ⋆ y) ⋆ (x ⋆ x)). We

will attempt to construct their unification closure ≡ and the corresponding mgu.

We must have s ≡ t, and start with this. Using the unification axiom, we obtain

x⋆y ≡ z and z ⋆y ≡ (x⋆y)⋆ (x⋆x). Applying the unification axiom again to the last

equivalence, we get z ≡ x ⋆ y (a duplicate) and y ≡ x ⋆ x. The non-singleton classes

of ≡ that contain variables are now {y, x ⋆ x} and {z, x ⋆ y}, where x is in a class by

itself.

To construct the mgu, we pick a representative of each class, where we must pick

a nonvariable term if there is one in the class. Letting u, v and w be arbitrary

terms, we let ς(w) be the representative of the class of w. In our example, this gives

ς(y) = x ⋆ x, ς(z) = x ⋆ y, and ς(x) = x. Now we recursively define the function σ

from terms to terms by letting σ(w) be ς(w) if ς(w) is a variable, and letting σ(w)

be σ(u) ⋆ σ(v) if ς(w) is u ⋆ v. In our example, this gives

σ(s) = σ(x ⋆ y) ⋆ σ(z ⋆ y) = (σ(x) ⋆ σ(y)) ⋆ (σ(z) ⋆ σ(y))

= (x ⋆ (σ(x) ⋆ σ(x))) ⋆ ((σ(x) ⋆ σ(y)) ⋆ (σ(x) ⋆ σ(x)))

= (x ⋆ (x ⋆ x)) ⋆ ((x ⋆ (x ⋆ x)) ⋆ (x ⋆ x)),

where the last term is the mgu of s and t.

If we try to separate the two groupoid terms s(x, y) = x⋆ y and t(x, y) = y ⋆ x, we

rapidly run into trouble. When x = y, both terms reduce to their mgu, x ⋆ x, so it is

impossible to separate them in any groupoid. This trick of identifying variables can

be applied whenever s and t have the same shape, which we can define rigorously as

follows. Let χ be a distinguished variable symbol, which we agree to use nowhere

else. Then we simply define the shape of a term s(x1, x2, . . . , xk) to be the term

s(χ, χ, . . . , χ).

As an aside, note that we can easily make the term functions x ⋆ y and y ⋆ x not

equal whenever x 6= y, for instance by letting ⋆ be − over Z3. This prompts the

following question, which we will not deal with further in this paper.

Q u e s t i o n 4.1. Suppose that s and t are two terms of the same shape, and

let x1, x2, . . . , xk be all the variables appearing in either of them. View s and t as

operations on all these variables, whether or not they actually appear. Let ≡ be the

unification closure of s and t, and for any finite set A let RA be the k-ary relation

on A defined by 〈y1, y2, . . . , yk〉 ∈ RA if and only if yi = yj for all i, j 6 k with
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xi ≡ xj . Thus 〈y1, y2, . . . , yk〉 ∈ RA forces s(y1, y2, . . . , yk) = t(y1, y2, . . . , yk) on A,

regardless of how the groupoid operation is defined on A.

For which s and t is there a groupoid with finite universe A, where

s(y1, y2, . . . , yk) 6= t(y1, y2, . . . , yk) whenever 〈y1, y2, . . . , yk〉 /∈ RA?

From now on, we will focus on separating two groupoid terms of different shapes.

Since we are now dealing with arbitrary terms, variables may occur more than once

in a given term. For clarity, we will usually use primes to distinguish occurrences of

a variable from the variable itself, so that x′ might denote some particular occurrence

of x. We will say that terms s and t are finitely separated whenever they are separated

in some finite groupoid.

Observe that any groupoid term s has a natural order to the occurrences of its

variables, the order produced by an inorder transversal of the leaves of its full binary

tree T (s). We will always write terms by listing occurrences of variables in this natu-

ral order. In this case, we call x′

1 the leftmost variable occurrence in s(x1, . . .). Each

variable occurrence in s corresponds to a leaf in T (s), so occurrences of a given vari-

able may be distinguished by their paths in T (s). The leftmost variable occurrence

in s is then the only one with a path in {l}∗.

By the depth of an occurrence of a variable in the term s, we mean its height

in T (s). We will denote the depth in s of the variable occurrence x′ by ds(x
′). Note

that this is the same as the length of the string paths(x
′).

A naive intuition would be that terms s and t could not be separated when there

were a number of variables occurring in one term and not the other. It is certainly

true that having more variables of this sort gives more possibilities to assign values

to them that would unify s and t. For example, let s be (x ⋆ y) ⋆ z, and let t be

(x⋆x)⋆(x⋆x). Then substituting x for y and x⋆x for z in s, it becomes (x⋆x)⋆(x⋆x),

which is t. So s and t cannot be separated in any groupoid.

However, there are terms with only a single variable in common that can still be

separated in a finite groupoid. For example, let s be x⋆p and let t be (x⋆y)⋆q, where

p and q can be arbitrary terms on any variables. For the leftmost occurrences of x,

we have paths(x) = l and patht(x) = ll. So Theorem 3.1 gives a finite groupoid that

separates s and t. Looking at this in terms of constructing the unification closure ≡

of s and t, we have x ⋆ y ≡ x by the unification axiom, so ≡ is not acyclic, showing

that s and t cannot be unified.

To continue our investigation, we need the following extension of Theorem 3.1,

which requires further definitions to state. If s and t are groupoid terms and y and z

are variables, we say that y occurs above z if there are occurrences y′ of y and z′ of z

such that either paths(y
′) is an initial substring of patht(z

′) or patht(y
′) is an initial
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substring of paths(z
′). In this situation, we also say that the occurrence y′ is above

the occurrence z′. Similarly, y occurs strictly above z if there are occurrences y′ of y

and z′ of z such that either paths(y
′) is a proper initial substring of patht(z

′) or

patht(y
′) is a proper initial substring of paths(z

′).

We say that terms s and t have a cycle if there is a sequence of variables

y0, y1, . . . , ym−1 where y0 occurs above y1, y1 occurs above y2, and so on, ending

with ym−1 occurring above y0, where at least one of these occurrences is strictly

above the other. The hypothesis of Theorem 3.1 is that a single variable x oc-

curs above itself, so that s and t have a cycle of length 1, where the sequence

y0, y1, . . . , ym−1 is just x. Our next theorem extends this result to cycles of arbitrary

length.

y0 y1 z0

z1 y0 z2 y1

y2 z3 y2

s = (y0 ⋆ y1) ⋆ (z0 ⋆ (z1 ⋆ y0)) t = ((z2 ⋆ y1) ⋆ y2) ⋆ (z3 ⋆ y2)

Figure 2. Two terms with a cycle.

The proof of the next theorem will be easier to follow if we have an example for

reference. It may be useful to refer back to this example while reading the proof, as

some of the notation it uses is defined in the proof. Figure 2 shows a cycle y0y1y2
of length 3, where s = (y0 ⋆ y1) ⋆ (z0 ⋆ (z1 ⋆ y0)) and t = ((z2 ⋆ y1) ⋆ y2) ⋆ (z3 ⋆ y2).

Matching the notation of the coming theorem, we use superscripts of u and d (for

“up”and “down”) to label the distinct occurrences of variables in the cycle, as shown

in Table 1.

index occurrence term path pi qi
0 yu0 s ll ll

yd1 t llr r

1 yu1 s lr lr

yd2 t lr Λ

2 yu2 t rr rr

yd0 s rrr r

Table 1. Occurrences in a cycle.
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In the cycle, y0 is strictly above y1, since the occurrence yu0 in s has path ll,

which is an initial substring of llr, the path in t of the occurrence yd1 . And y1 is

above (but not strictly above) y2, since the occurrence y
u
1 in s has path lr, which

is a (non-proper) initial substring of lr, the path in t of the occurrence yd2 . Finally,

y2 is strictly above y0, since the occurrence y
u
2 in t has path rr, which is an initial

substring of rrr, the path in s of the occurrence yd0 .

The theorem also defines relations ∼ and ≈ on the index set, which is I = {0, 1, 2}

in our example. We have 1 ∼ 2, since yu1 is not strictly above y
d
2 . The relation ≈

is the equivalence relation generated by ∼, so its classes are {0} and {1, 2}. The

function f that takes each i ∈ I to the least element in its ≈ class has f(0) = 0

and f(1) = f(2) = 1. Finally, the operation ⋆′ is ‖3, ll, 0‖+ ‖4, lr, 1‖+ ‖4, rr, 2‖ +

‖4, r, 3‖′+‖3, r, 4‖. The reader can verify that this operation makes s[0]+s[1]+s[2] =

y0[3]+y1[4]+(z1⋆
′y0)[4] = y0[3]+y1[4]+y0[3] = y1[4], where the last step follows since

we are adding values modulo 2. Similarly, t[0]+t[1]+t[2] = (z2⋆
′y1)[3]+y2[4]+y2[4] =

y1[4] + 1 + y2[4] + y2[4] = y1[4] + 1, which always has a different value.

Theorem 4.2. Let s and t be groupoid terms which have a cycle. Then s and t

are separated in a finite groupoid.

P r o o f. Let s and t be terms with a cycle as above. So we have a sequence of

variables y0, y1, . . . , ym−1 where y0 occurs above y1, y1 occurs above y2, and so on,

ending with ym−1 occurring above y0. We may assume that this cycle has minimal

length k for all cycles of s and t, and that k > 2 since cycles of length 1 are covered

by Theorem 3.1. This implies that all of the variables yi are distinct. We also adopt

the convention that our subscripts are calculated modulo k, so that yk is the same

as y0.

Each of the yi has two occurrences in the cycle. For each i, let y
u
i be the occurrence

of yi that is above an occurrence of yi+1, and let y
d
i be the occurrence of yi that is

below an occurrence of yi−1. A given occurrence y
′ of a variable may be either in

the term s or in the term t.

We denote whichever of s and t an occurrence y′ is in by term(y′). We will then

write path(y′) to denote the path of y′ in term(y′). Note that term(yui ) 6= term(ydi+1)

for all i, since path(yui ) is an initial substring of path(y
d
i+1) and yi 6= yi+1.

We will denote path(yui ) by pi. And since path(y
d
i+1) has pi as an initial substring,

we will write it as the concatenation piqi, where qi is possibly Λ.

We claim that none of the pi is an inital substring of any of the others. For

contradiction, suppose i 6= j and pi is an initial substring of pj . Since y
u
j corresponds

to a leaf of T (term(yuj )), we must have term(yui ) 6= term(yuj ). Now consider y
d
j+1. We

have that term(ydj+1) 6= term(yuj ), so term(ydj+1) = term(yui ). We also have that pi
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is an initial substring of pj, which is an initial substring of pjqj = path(ydj+1). In

T (term(yui )), this would place the leaf corresponding to the occurrence y
d
j+1 below the

leaf corresponding to yui . The only way this could happen is if y
u
i = ydj+1. So i = j+1,

and yui = ydi . But then term(yui−1) 6= term(ydi ) = term(yui ) 6= term(ydi+1), so yui−1

and ydi+1 are occurrences in the same term. Now path(yui−1) is an initial substring

of path(ydi ) = path(yui ), which is an initial substring of path(y
d
i+1), implying that

both path(yui−1) and path(ydi+1) label the same leaf of the tree they are in. So

i− 1 = i+1 = j, and our cycle consists of just yi and yj, with yui = ydi and y
u
j = ydj .

This is a contradiction, since at least one variable occurrence in a cycle must be

strictly above the next occurrence. The claim is established.

Without loss of generality, assume that the occurrence yu0 is strictly above y
d
1 , so

path(yd1) is p0q0 where q0 6= Λ. Let I = {0, 1, 2, . . . , k − 1} be our set of indices for

the yi, and let N be {i ∈ I : qi 6= Λ}. So 0 ∈ N .

Define the relation ∼ on I by i ∼ j if and only if j = (i + 1) mod k and qi = Λ,

and let ≈ be the equivalence relation generated by ∼. Intuitively, the classes of ≈

are runs of consecutive indices, with each class ending at an element of N .

Finally, define f : I → I by letting f(i) be the least element of the ≈ equivalence

class of i. This gives us that f(i) = f(i + 1) when qi = Λ. (We usually have

f(i) 6= f(i+ 1) when qi 6= Λ. The one exception is when only one of the qj is not Λ,

so i and i+ 1 are related by ≈ the long way around the cycle.)

Now we define the groupoid operation ⋆ to be the sum [‖k + f(0), p0, 0‖ + ‖k +

f(1), p1, 1‖+ . . .+ ‖k+ f(k− 1), pk−1, k− 1‖]+
∑

i∈N

‖k+ f(i+1), qi, k+ f(i)‖. Then

the operation ⋆′ will be ⋆+ ‖k+ f(1), q0, k+ f(0)‖′−‖k+ f(1), q0, k+ f(0)‖, a slight

variation of ⋆ where the operation ‖k+f(1), q0, k+f(0)‖ is replaced with the tweaked

operation ‖k+f(1), q0, k+f(0)‖′, while all of the other operations remain unchanged.

We will show that in the groupoid with operation ⋆, the sum modulo 2 of s[0] +

s[1]+. . .+s[k−1] will always equal the sum modulo 2 of t[0]+t[1]+. . .+t[k−1]. Then

we will confirm that in the groupoid with operation ⋆′, the two corresponding sums

of components will differ. This difference will be caused by the tweaked operation

‖k + f(1), q0, k + f(0)‖′, which will only produce an effect in the final output in

term(yd1), the term where the occurrence y
d
1 lies. For the moment, we will be working

with the operation ⋆.

First, we establish that for any i, the value of the i-th component of term(yui ) will

be yi[k+f(i)]. Without loss of generality, let term(yui ) be s. The only summand of ⋆

that assigns a value to s[i] is ‖k + f(i), pi, i‖, so s[i] will have the value it assigns.

We apply Lemma 3.1, and get that s[i] is equal to r[k+ f(i)], where r is the subterm

of s with path pi. In this case, r = yi, so s[i] = r[k + f(i)] = yi[k + f(i)], as

desired.
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Given any i, we let j = i + 1 mod k. We now show that for any yj, the value of

the i-th component of term(ydj ) is also yj [k + f(j)]. Without loss of generality, let

term(ydj ) be t. As before, t[i] will be equal to w[k + f(i)], where w is the subterm

of t with path pi. We now have two cases. If i /∈ N , then qi = Λ and path(ydj ) = pi,

making w = yj and t[i] = yj [k + f(i)] = yj [k + f(j)] since i ∼ j. So assume i ∈ N .

Then w is a nontrivial subterm of t, where pathw(y
d
j ) is qi. The only term in ⋆

that assigns a value to w[k + f(i)] is ‖k + f(i + 1), qi, k + f(i)‖, so w[k + f(i)] is

yj [k + f(i+ 1)] = yj[k + f(j)], as desired.

For each i, we do not know which of s and t the occurrences yui and ydi+1 are

in. This turns out not to be an obstacle, since we do know that yui and ydi+1 occur

in different terms. Working modulo 2, we have that s[0] + s[1] + . . . + s[k − 1] +

t[0] + t[1] + . . .+ t[k − 1] = [y0[k + f(0)] + y1[k + f(1)] + . . .+ yk−1[k + f(k − 1)]] +

[y1[k+ f(1)]+ y2[k+ f(2)] + . . .+ yk[k+ f(k)]], where the second group on the right

hand side comes from the ydj . But the latter expression is equal to 2[y0[k+f(0)]+. . .+

yk−1[k + f(k − 1)]] = 0 modulo 2. Since s[0] + . . .+ s[k − 1] and t[0] + . . .+ t[k − 1]

sum to 0, they have the same parity.

Now we turn to the groupoid with operation ⋆′, and consider the effect of

the tweaked operation ‖k + f(1), q0, k + f(0)‖′. The reader may verify that ev-

erything works as before, except in the calculation of the 0-th component of

term(yd1). As before, we may assume that s is term(yd1). We then get s[0] =

r[k + f(0)], where r[k + f(0)] is found using ‖k + f(1), q0, k + f(0)‖′. This makes

r[k] = y1[k + f(1)] + 1 mod 2, giving s[0] = y1[k + f(1)] + 1 mod 2. This in turn

changes the parity of s[0] + s[1] + . . . + s[k − 1] in whichever term we are calling s,

as desired.

As in Theorem 3.1, this yields a finite groupoid that separates s and t. �

There are pairs of terms without a cycle which still cannot be unified. For example,

let s = (x ⋆ y) ⋆ (z ⋆ y) and let t = z ⋆ ((y ⋆ y) ⋆ (x ⋆ x)). Working left to right, we see

that x and y occur below z, y occurs below z and x occurs below y. This is consistent

with the ordering x < y < z. Since there is a consistent ordering of the variables

like this, there are no cycles. However, s and t cannot be unified. If we attempt to

construct the unification closure ≡ of s and t, we get z ≡ y⋆y, z ≡ y⋆y and y ≡ x⋆x

by repeated applications of the unification axiom. Then x ⋆ y ≡ z ≡ y ⋆ y, and so

x ≡ y by the unification axiom. Thus x ≡ y ≡ x ⋆ x, and ≡ cannot be acyclic in the

sense of Definition 4.1.

Although Theorem 4.2 does not apply to this last example, we had no problem

separating the terms using a similar construction. Letting

⋆′ = ‖3, l, 0‖+ ‖3, rl, 1‖+ ‖4, rr, 2‖+ ‖4, l, 3‖+ ‖4, l, 4‖′,
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we calculate

s[0] + s[1] + s[2] = (x ⋆′ y)[3] + z[3] + y[4] = x[4] + z[3] + y[4],

while

t[0] + t[1] + t[2] = z[3] + (y ⋆′ y)[3] + (x ⋆′ x)[4] = z[3] + y[4] + x[4] + 1,

which has the opposite parity.

Based on many examples similar to the above, we make the following conjecture.

C o n j e c t u r e 4.1. Whenever two groupoid terms can be separated in an infinite

groupoid, they can also be separated in a finite groupoid.
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