Hanan Darwish; Abdel Moneim Lashin; Bashar Hassan
An application of the generalized Bessel function

Mathematica Bohemica, Vol. 142 (2017), No. 1, 75–84

Persistent URL: http://dml.cz/dmlcz/146010

Terms of use:

© Institute of Mathematics AS CR, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz
AN APPLICATION OF THE GENERALIZED BESSEL FUNCTION

HANAN DARWISH, ABDEL MONEIM LASHIN, BASHAR HASSAN, Mansoura

Received January 18, 2016. First published November 8, 2016.
Communicated by Grigore Stefan Sălăgean

Abstract. We introduce and study some new subclasses of starlike, convex and close-to-convex functions defined by the generalized Bessel operator. Inclusion relations are established and integral operator in these subclasses is discussed.

Keywords: Bessel operator; starlike function; convex function; close-to-convex function

MSC 2010: 30C45

1. Introduction

Let A denote the class of functions of the form:

\begin{equation}
 f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad a_n \geq 0, \quad n \in \mathbb{N},
\end{equation}

which are analytic in the unit disk $U = \{ z : z \in \mathbb{C}, |z| < 1 \}$. A function $f \in A$ is said to be in the class $S^\ast(\alpha)$ of starlike functions of order α if it satisfies

\begin{equation}
 \Re \left(\frac{zf'(z)}{f(z)} \right) > \alpha, \quad 0 \leq \alpha < 1, \quad z \in U.
\end{equation}

We write $S^\ast(0) = S^\ast$ for the class of starlike functions in U. A function $f \in A$ is said to be in the class $C(\alpha)$ of convex functions of order α if it satisfies

\begin{equation}
 \Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha, \quad 0 \leq \alpha < 1, \quad z \in U.
\end{equation}

The class of convex functions in U is denoted by $C = C(0)$. It follows from (1.2) and (1.3) that

\begin{equation}
 f(z) \in C(\alpha) \iff zf'(z) \in S^\ast(\alpha).
\end{equation}
A function \(f \in A \) is said to be close-to-convex of order \(\beta \) and type \(\gamma \) in \(U \) if there exists a function \(g \in S^*(\gamma) \) such that

\[
\Re\left(\frac{zf'(z)}{g(z)}\right) > \beta, \quad 0 \leq \beta, \gamma < 1, \quad z \in U.
\]

We denote by \(K(\beta, \gamma) \) the class of close-to-convex functions of order \(\beta \) and type \(\gamma \). The class \(K(\beta, \gamma) \) was studied by Libera [11]. For some recent investigation on starlikeness of analytic functions, one can refer to [1], [10], [16], [17], [18], [19], [21], [20].

For functions \(f_j(z), j = 1, 2 \) defined by

\[
f_j(z) = z + \sum_{n=2}^{\infty} a_{n,j} z^n, \quad n \in \mathbb{N}
\]

we denote the Hadamard product (or convolution) of \(f_1(z) \) and \(f_2(z) \) by

\[
f_1(z) \ast f_2(z) = z + \sum_{n=2}^{\infty} a_{n,1}a_{n,2} z^n.
\]

We recall here a generalized Bessel function \(w \) of the first kind of order \(\gamma \), defined in [8] and given by

\[
w_{\gamma,b,c}(z) = \sum_{n=0}^{\infty} \frac{(-c)^n}{n! \Gamma(\gamma + n + \frac{1}{2}(b + 1))} \left(\frac{z}{2} \right)^{2n+\gamma}, \quad z \in U,
\]

where \(\Gamma(z) \) stands for \(\Gamma \)-Euler function. Here \(w_{\gamma,b,c}(z) \) is the particular solution of the second-order homogenous differential equation (see [24])

\[
z^2 w''(z) + bw'(z) + (cz^2 - \gamma^2 + (1 - b)\gamma)w(z) = 0,
\]

where \(z \in U \). Now we consider function \(\varphi(z) \) defined by

\[
\varphi_{\gamma,b,c}(z) = 2^\gamma \Gamma\left(\gamma + \frac{b + 1}{2}\right) z^{1-\gamma/2} w_{\gamma,b,c}(\sqrt{z}).
\]

By using the well-know Pochhammer symbol \((x)_\mu \) defined for \(x, \mu \in \mathbb{C} \) and in terms of the Euler gamma function by

\[
(x)_\mu = \frac{\Gamma(x + n)}{\Gamma(x)} = \begin{cases} 1 & \mu = 0, \\
x(x + 1)...(x + n - 1) & \mu \in \mathbb{N} = \{1, 2, 3, \ldots\}, \end{cases}
\]
we can express \(\varphi_{\gamma,b,c}(z) = \varphi_{k,c}(z) \) as

\[
\varphi_{\gamma,b,c}(z) = z + \sum_{n=1}^{\infty} \frac{(-c)^n}{4^n(k)n!} z^{n+1}, \quad k := \gamma + \frac{b+1}{2} \notin \mathbb{Z}_0^-,
\]

where \(\mathbb{Z}_0^- = \{0, -1, -2, \ldots\} \).

Now, using the idea of Dziok and Srivastava [9], Baricz et. al. [4] introduced the \(B_k^c \) operator as:

\[
(1.8) \quad B_k^c f(z) = \varphi_{k,c} \ast f(z) = z + \sum_{n=2}^{\infty} \frac{(-c)^{n-1}a_n}{4^{n-1}(k)n-1(n-1)!} z^n.
\]

It is easy to verify from definition (1.8) that

\[
(1.9) \quad z(B_{k+1}^c f(z))' = kB_k^c f(z) - (k - 1)B_{k+1}^c f(z),
\]

where \(k = \gamma + \frac{1}{2}(b+1) \notin \mathbb{Z}_0^- \).

Some subclasses of starlike and convex functions defined using Bessel function were introduced by [3], [2], [5], [7], [22], [23].

Using the \(B_k^c \) operator we now introduce the following classes:

\[
S_k^*(\alpha) = \{ f \in A : B_k^c f(z) \in S^*(\alpha) \},
\]
\[
C_k(\alpha) = \{ f \in A : B_k^c f(z) \in C(\alpha) \},
\]
\[
K_k(\beta, \gamma) = \{ f \in A : B_k^c f(z) \in K(\beta, \gamma) \}.
\]

In this paper, we shall establish inclusion relation for these classes and investigate integral operator in these classes.

2. Inclusion relation

In order to prove our main results, we shall require the following lemma.

Lemma 2.1 ([14], [15]). Let \(\varphi : D \rightarrow \mathbb{C}, D \subset \mathbb{C} \times \mathbb{C} \) (\(\mathbb{C} \) is the complex plane), and let \(u = u_1 + iu_2, v = v_1 + v_2 \). Suppose that the function \(\varphi(u,v) \) satisfies

(a) \(\varphi(u,v) \) is continuous in \(D \);

(b) \((1,0) \in D \) and \(\Re(\varphi(1,0)) > 0 \);

(c) for all \((iu_2,v_1) \in D \) such that \(v_1 < -\frac{1}{2}(1 + u_2^2) \), \(\Re(\varphi(iu_2,v_1)) \leq 0 \).
Let $p(z) = 1 + p_1 z + p_2 z^2 + \ldots$ be regular in the unit disc U, and $(p(z), zp'(z)) \in D$ for all $z \in U$. If $\Re(\varphi(p(z), zp'(z))) > 0$, $z \in U$, then $\Re(p(z)) > 0$, $z \in U$. Our first theorem is stated as:

Theorem 2.1. $S_k^*(\gamma) \subset S_{k+1}^*(\gamma)$, $k \geq 1 - \gamma$.

Proof. Let $f(z) \in S_k^*(\gamma)$ and set

\[
(2.1) \quad \frac{z(B_{k+1}^c f(z))'}{B_{k+1}^c f(z)} = \gamma + (1 - \gamma)h(z),
\]

where $h(z) = 1 + c_1 z + c_2 z^2 + \ldots$ Using identity (1.9) we have

\[
(2.2) \quad \frac{B_k^c f(z)}{B_{k+1}^c f(z)} = \frac{1}{k}(k - 1 + \gamma + (1 - \gamma)h(z)).
\]

Differentiating (2.2), we obtain

\[
\frac{z(B_k^c f(z))'}{B_k^c f(z)} = \frac{z(B_{k+1}^c f(z))'}{B_{k+1}^c f(z)} + \frac{(1 - \gamma)zh'(z)}{k - 1 + \gamma + (1 - \gamma)h(z)} = \gamma + (1 - \gamma)h(z) + \frac{(1 - \gamma)zh'(z)}{k - 1 + \gamma + (1 - \gamma)h(z)}
\]

or

\[
(2.3) \quad \frac{z(B_k^c f(z))'}{B_k^c f(z)} - \gamma = (1 - \gamma)h(z) + \frac{(1 - \gamma)zh'(z)}{k - 1 + \gamma + (1 - \gamma)h(z)}.
\]

Now we form the function $\varphi(u, v)$ by taking $u = h(z)$, $v = zh'(z)$ in (2.3) as

\[
(2.4) \quad \varphi(u, v) = (1 - \gamma)u + \frac{(1 - \gamma)v}{k - 1 + \gamma + (1 - \gamma)u}.
\]

It is easy to see that the function $\varphi(u, v)$ satisfies conditions (a) and (b) of Lemma 2.1 in $D = (\mathbb{C} - \{1 - k/(1 - \gamma)\}) \times \mathbb{C}$. To verify condition (c), we calculate as:

\[
\Re(\varphi(iu_2, v_1)) = \Re\left(\frac{(1 - \gamma)v_1}{k - 1 + \gamma + (1 - \gamma)iu_2}\right) = \frac{(1 - \gamma)(k - 1 + \gamma)v_1}{(k - 1 + \gamma)^2 + (1 - \gamma)^2u_2^2},
\]

\[
\leq -\frac{(1 - \gamma)(k - 1 + \gamma)(1 + u_2^2)}{2((k - 1 + \gamma)^2 + (1 - \gamma)^2u_2^2)} \leq 0,
\]

where $v_1 \leq -\frac{1}{2}(1 + u_2^2)$ and $(iu_2, v_1) \in D$. Therefore the function $\varphi(u, v)$ satisfies the conditions of Lemma 2.1. This shows that if $\Re(\varphi(h(z), zh'(z))) > 0$, $z \in U$, then $\Re(h(z)) > 0$, $z \in U$, that is if $f(z) \in S_k^*(\gamma)$, then $f(z) \in S_{k+1}^*(\gamma)$. The proof is complete. \[\square\]

78
Theorem 2.2. \(C_k(\gamma) \subset C_{k+1}(\gamma), k \geq 1 - \gamma. \)

Proof. Let

\[
f(z) \in C_k(\gamma) \iff B_k^c f(z) \in C(\gamma) \iff z(B_k^c f(z))' \in S^*(\gamma) \\
\iff B_k^c (z f'(z)) \in S^*(\gamma) \iff z f'(z) \in S_k^*(\gamma) \\
\Rightarrow z f'(z) \in S_{k+1}^*(\gamma) \iff B_{k+1}^c (z f'(z)) \in S^*(\gamma) \\
\iff z(B_{k+1}^c f(z))' \in S^*(\gamma) \iff B_{k+1}^c f(z) \in C(\gamma) \\
\iff f(z) \in C_k(\gamma),
\]

which evidently proves Theorem 2.2. \(\square\)

Theorem 2.3. \(K_k(\beta, \gamma) \subset K_{k+1}(\beta, \gamma), k \geq 1 - \gamma. \)

Proof. Let \(f(z) \in K_k(\beta, \gamma). \) Then there exists a function \(k(z) \in S^*(\gamma) \) such that

\[
\Re\left(\frac{z(B_k^c f(z))'}{k(z)}\right) > \beta, \quad z \in U.
\]

Taking the function \(g(z) \) which satisfies \(B_k^c g(z) = k(z) \), we have \(g(z) \in S_k^*(\gamma) \) and

\[
\Re\left(\frac{z(B_k^c f(z))'}{B_k^c g(z)}\right) > \beta, \quad z \in U.
\]

Now put

\[
(2.5) \quad \frac{z(B_{k+1}^c f(z))'}{B_{k+1}^c g(z)} = \beta + (1 - \beta)h(z),
\]

where \(h(z) = 1 + c_1 z + c_2 z^2 + \ldots \) From (2.5) we have

\[
(2.6) \quad z(B_{k+1}^c f(z))' = B_{k+1}^c g(z)(\beta + (1 - \beta)h(z)).
\]

So from (2.6) and identity (1.9) we have

\[
(2.7) \quad k z(B_k^c f(z))' = z(B_{k+1}^c g(z))' (\beta + (1 - \beta)h(z)) + B_{k+1}^c g(z)((1 - \beta)zh'(z)) \\
+ (k - 1) z(B_{k+1}^c f(z))'.
\]

Now apply (1.9) to the function \(g(z) \) and use (2.7) to obtain

\[
(2.8) \quad \frac{z(B_k^c f(z))'}{B_k^c g(z)} = \beta + (1 - \beta)h(z) + \frac{B_{k+1}^c g(z)(1 - \beta)zh'(z)}{B_k^c g(z)}, \quad k
\]
Since \(g(z) \in S_k^*(\gamma) \) and \(S_k^*(\gamma) \subset S_{k+1}^*(\gamma) \), we let

\[
\frac{z(B_{k+1}^c g(z))'}{B_{k+1}^c g(z)} = \gamma + (1 - \gamma)H(z),
\]

where \(\Re(H(z)) > 0, \, z \in U \). Thus (2.8) can be written as

\[
(2.9) \quad \frac{z(B_{k}^c f(z))'}{B_{k}^c g(z)} = (1 - \beta)h(z) + \frac{(1 - \beta)zh'(z)}{k - 1 + \gamma + (1 - \gamma)H(z)}.
\]

Now we form the function \(\varphi(u, v) \) by taking \(u = h(z), \, v = zh'(z) \) in (2.9) as:

\[
\varphi(u, v) = (1 - \beta)u + \frac{(1 - \beta)v}{k - 1 + \gamma + (1 - \gamma)H(z)}.
\]

It is easy to see that the function \(\varphi(u, v) \) satisfies conditions (a) and (b) of Lemma 2.1, in \(D = \mathbb{C} \times \mathbb{C} \). To verify condition (c), we proceed as:

\[
\Re(\varphi(iu_2, v_1)) = \frac{(1 - \beta)v_1(k - 1 + \gamma + (1 - \gamma)h_1(x, y))}{(k - 1 + \gamma + (1 - \gamma)h_1(x, y))^2 + ((1 - \gamma)h_2(x, y))^2},
\]

where \(H(z) = h_1(x, y) + ih_2(x, y), \, h_1(x, y) \) and \(h_2(x, y) \) being functions of \(x \) and \(y \) and \(\Re(H(z)) = h_1(x, y) > 0 \). By putting \(v_1 \leq -\frac{1}{2}(1 + u_2^2) \), we have

\[
\Re(\varphi(iu_2, v_1)) = -\frac{(1 - \beta)(1 + u_2^2)(k - 1 + \gamma + (1 - \gamma)h_1(x, y))}{2(k - 1 + \gamma + (1 - \gamma)h_1(x, y))^2 + ((1 - \gamma)h_2(x, y))^2} < 0.
\]

Hence \(\Re(h(z)) > 0, \, z \in U, \) and \(f(z) \in K_{k+1}(\beta, \gamma) \). This completes the proof of Theorem 2.3. \(\square \)

3. Integral Operator

For \(c > -1 \) and \(f(z) \in A \) we define the integral operator \(J_c(f(z)) \) as

\[
(3.1) \quad J_c(f(z)) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) \, dt.
\]

The operator \(J_c \) \((c \in \mathbb{N}) \) was introduced by Bernardi [6]. In particular, the operator \(J_1 \) was studied earlier by Libera [12] and Livingston [13].

Theorem 3.1. Let \(c > -\gamma \). If \(f(z) \in S_k^*(\gamma) \), then \(J_c(f(z)) \in S_k^*(\gamma) \).
Proof. Let \(f(z) \in S^*_k(\gamma) \). From (3.1) we have

\[
z(B_k^c J_c(f(z)))' = (c+1)B_k^c f(z) - cB_k^c J_c(f(z)).
\] (3.2)

Set

\[
\frac{z(B_k^c J_c(f(z)))'}{B_k^c J_c(f(z))} = \gamma + (1-\gamma)h(z),
\] (3.3)

where \(h(z) = 1 + c_1 z + c_2 z^2 + \ldots \), using the identity (3.2) we have

\[
\frac{B_k^c(f(z))}{B_k^c J_c(f(z))} = \frac{1}{c+1} (c + \gamma + (1-\gamma)h(z)).
\] (3.4)

Differentiating (3.4), we obtain

\[
\frac{z(B_k^c(f(z)))'}{B_k^c(f(z))} - \gamma = (1-\gamma)h(z) + \frac{(1-\gamma)zh'(z)}{c + \gamma + (1-\gamma)h(z)}.
\] (3.5)

Now we form the function \(\varphi(u, v) \) by taking \(u = h(z) \), \(v = zh'(z) \) in (2.3) as:

\[
\varphi(u, v) = (1-\gamma)u + \frac{(1-\gamma)v}{c + \gamma + (1-\gamma)u}.
\]

It is easy to see that the function \(\varphi(u, v) \) satisfies conditions (a) and (b) of Lemma 2.1, in \(D = (C - \{(c + \gamma)/(\gamma - 1)\}) \times C \). To verify condition (c), we calculate as:

\[
\Re(\varphi(\alpha u_2, v_1)) = \Re\left(\frac{(1-\gamma)v_1}{c + \gamma + (1-\gamma)\alpha u_2} \right) = \frac{(1-\gamma)(c + \gamma)v_1}{(c + \gamma)^2 + (1-\gamma)^2u_2^2} \\
\leq -\frac{(1-\gamma)(c + \gamma)(1 + u_2^2)}{2((c + \gamma)^2 + (1-\gamma)^2u_2^2)} < 0,
\]

where \(v_1 \leq -\frac{1}{\beta}(1 + u_2^2) \) and \((\alpha u_2, v_1) \in D \). Therefore the function \(\varphi(u, v) \) satisfies the conditions of Lemma 2.1. This shows that if \(\Re(\varphi(h(z), zh'(z))) > 0 \), \(z \in U \), then \(\Re(h(z)) > 0 \), \(z \in U \), that is if \(f(z) \in S^*_k(\gamma) \), then \(J_c(f(z)) \in S^*_k(\gamma) \). The proof is complete. \(\square \)

Theorem 3.2. Let \(c > -\gamma \). If \(f(z) \in C_k(\gamma) \), then \(J_c(f(z)) \in C_k(\gamma) \).

Proof. Let

\[
f(z) \in C_k(\gamma) \implies zf'(z) \in S^*_k(\gamma) \implies J_c(zf'(z)) \in S^*_k(\gamma) \\
\leftrightarrow z(J_c f(z))' \in S^*_k(\gamma) \iff J_c(f(z)) \in C_k(\gamma).
\]

This completes the proof of Theorem 3.2. \(\square \)
Theorem 3.3. Let $c > -\gamma$. If $f(z) \in K_k(\beta, \gamma)$, then $J_c(f(z)) \in K_k(\beta, \gamma)$.

Proof. Let $f(z) \in K_k(\beta, \gamma)$. Then by the definition there exists a function $g(z) \in S_k^*(\gamma)$ such that
\[
\Re\left(\frac{z(B_k^c f(z))'}{B_k^c g(z)}\right) > \beta, \quad z \in U.
\]
Put
\[
(3.6) \quad \frac{z(B_k^c f(z))'}{B_k^c g(z)} = \beta + (1 - \beta)h(z),
\]
where $h(z) = 1 + c_1 z + c_2 z^2 + \ldots$ From (3.2) we have
\[
(3.7) \quad (c + 1)z(B_k^c f(z))' = z(B_k^c J_c(g(z)))'((\beta + (1 - \beta)h(z)) + B_k^c J_c(g(z))((1 - \beta)zh'(z)) + cz(B_k^c J_c(f(z)))'.
\]
Now apply (3.2) to the function $g(z)$ and use (3.7) to obtain
\[
(3.8) \quad \frac{z(B_k^c f(z))'}{B_k^c g(z)} = \beta + (1 - \beta)h(z) + \frac{B_k^c J_c(g(z))((1 - \beta)zh'(z)) + cz(B_k^c J_c(f(z))'}{c + 1}.
\]
Since $g(z) \in S_k^*(\gamma)$, then from Theorem 3.1 $J_c(f(z)) \in S_k^*(\gamma)$, we let
\[
\frac{z(B_k^c J_c(g(z))'}{B_k^c J_c(g(z))} = \gamma + (1 - \gamma)H(z),
\]
where $\Re(H(z)) > 0, z \in U$. Thus (3.9) can be written as
\[
(3.9) \quad \frac{z(B_k^c f(z))'}{B_k^c g(z)} - \beta = (1 - \beta)h(z) + \frac{(1 - \beta)zh'(z)}{c + \gamma + (1 - \gamma)H(z)}.
\]
Now we form the function $\varphi(u, v)$ by taking $u = h(z)$, $v = zh'(z)$ in (3.10) as:
\[
\varphi(u, v) = (1 - \beta)u + \frac{(1 - \beta)v}{c + \gamma + (1 - \gamma)H(z)}.
\]
It is easy to see that the function $\varphi(u, v)$ satisfies conditions (a) and (b) of Lemma 2.1, in $D = \mathbb{C} \times \mathbb{C}$. To verify condition (c), we proceed as:
\[
\Re(\varphi(iu_2, v_1)) = \frac{(1 - \beta)v_1(c + \gamma + (1 - \gamma)h_1(x, y))}{(c + \gamma + (1 - \gamma)h_1(x, y))^2 + ((1 - \gamma)h_2(x, y))^2},
\]
where $H(z) = h_1(x, y) + ih_2(x, y), h_1(x, y)$ and $h_2(x, y)$ being functions of x and y, respectively, and $\Re(H(Z)) = h_1(x, y) > 0$. By putting $v_1 \leq -\frac{1}{2}(1 + u_2^2)$, we have
\[
\Re(\varphi(iu_2, v_1)) = \frac{(1 - \beta)(1 + u_2^2)(c + \gamma + (1 - \gamma)h_1(x, y))}{2((c + \gamma + (1 - \gamma)h_1(x, y))^2 + ((1 - \gamma)h_2(x, y))^2)} \leq 0.
\]
Hence $\Re(h(z)) > 0, z \in U$, and $J_c(f(z)) \in K_k(\beta, \gamma)$. This completes the proof of Theorem 3.3. \qed
Acknowledgement. The authors would like to thank the referee for helpful comments and suggestions.

References

Authors’ address: Hanan Darwish, Abdel Moneim Lashin, Bashar Hassan, Department of Mathematics, Faculty of Science, Mansoura University, El Gomhouria St., 35516 Mansoura, Egypt, e-mail: darwish333@yahoo.com, aylashin@mans.edu.eg, basharfalh@yahoo.com.