Abstract. In this paper, we are concerned with G-rings. We generalize the Kaplansky’s theorem to rings with zero-divisors. Also, we assert that if $R \subseteq T$ is a ring extension such that $mT \subseteq R$ for some regular element m of T, then T is a G-ring if and only if so is R. Also, we examine the transfer of the G-ring property to trivial ring extensions. Finally, we conclude the paper with illustrative examples discussing the utility and limits of our results.

Keywords: G-ring; pullback; trivial extension

Classification: 13D05, 13D02

1. Introduction

All rings considered below are commutative with unit and all modules are unital. Let R be a commutative ring and let $Q(R)$ denote the total quotient ring of R. We call R a G-ring if $Q(R) = R[u^{-1}]$ for some regular element $u \in R$ (equivalently, if $Q(R)$ is finitely generated as a ring over R) [1]. This generalizes Kaplansky’s definition of G-domain [12]. Also, he shows that if $R \subseteq T$ are domains and if T is algebraic over R and finitely generated as a ring over R, then R is a G-domain if and only if so is T [12, Theorem 22].

In this paper, we are concerned with G-rings. Our main result of Section 2 is to generalize the above Kaplansky’s theorem to rings with zero-divisors. Also, we assert that if $R \subseteq T$ is a ring extension such that $mT \subseteq R$ for some regular element m of T, then T is a G-ring if and only if so is R. As an immediate consequence, we get a corollary on the transfer of the G-ring property to pullbacks issued from domains. Our main result of Section 3 examines the transfer of the G-ring property to trivial ring extensions; precisely, it states that if A is a ring, E is an A-module such that $Z(E) \subseteq Z(A)$ (where $Z(E) := \{a \in A; ae = 0$ for some $e \in E - \{0\}\}$ is the set of zero-divisors on E), then the trivial extension of A by E is a G-ring if and only if A is a G-ring. In Section 4, we conclude the paper with illustrative examples discussing the utility and limits of our results.

2. The G-ring property in a pullback

Let R be a ring and $R_u := R[1/u]$, where u is regular in R. We first give a zero-divisor extension of Kaplansky’s theorem [12, Theorem 22].
Theorem 2.1. Let R be a subring of T such that each regular element of R is regular in T (consequently, $K := Q(R) \subseteq L := Q(T)$). Assume that L is integral over K. Then:

(1) if R is a G-ring, then T is a G-ring;
(2) if T is a finitely generated R-algebra, then T is a G-ring if and only if R is a G-ring.

Proof: (1) Assume that R is a G-ring. Hence, $K := Q(R) = R_u$ for some regular element $u \in R$. But, $K := R_u \subseteq T_u \subseteq L := Q(T)$. Hence, L is integral over T_u since L is integral over K. Therefore, $L = T_u$ since L is a fraction ring of T_u and so T is a G-ring.

(2) If R is a G-ring, then T is a G-ring by (1). Conversely, assume that T is a G-ring. Hence, $L = T_u$ for some regular element $v \in T$ and $T = R[w_1, \ldots, w_k]$ for some $w_i \in T$ and for a positive integer k (since T is a finitely generated R-algebra). Then, the elements v^{-1}, w_1, \ldots, w_k are integral over K. So, we get Kaplansky’s equations (see proof of [12, Theorem 22]) with a, b_i being regular elements of R. Let $R_1 := R[a^{-1}, b_1^{-1}, \ldots, b_k^{-1}]$. As argued by [12, Theorem 22], $L = R_1[w_1, \ldots, w_k, v^{-1}]$ and L is integral over R_1. Then, K is integral over R_1 and so $K = R_1$ since K is a fraction ring of R_1. Hence, R is a G-ring and this completes the proof of Theorem 2.1. □

Now, we provide a somewhat analogue of a zero-divisor extension of Kaplansky’s result mentioned above. Precisely, we have:

Theorem 2.2. Let $R \subseteq T$ be a ring extension such that $mT \subseteq R$, for some regular element $m \in T$. Then T is a G-ring if and only if R is a G-ring.

The proof of this theorem requires the following lemma.

Lemma 2.3. Let R be a ring and $R_f = R[1/f]$, where f is regular in R. Then R is a G-ring if and only if R_f is a G-ring.

Proof: It is clear that $R_f = \{af^{-n}; a \in R$ and $n \in \mathbb{N}\}$. Hence, $Q(R_f) = Q(R)$ since af^{-n} is regular in R_f if and only if a is regular in R (because f is invertible in R_f).

Assume that R is a G-ring. Hence, $Q(R) = R_u$ for some regular element $u \in R$. But, $Q(R_f) = Q(R) = R_u \subseteq (R_f)_u \subseteq Q(R_f)$. Therefore, $Q(R_f) = (R_f)_u$ and so R_f is a G-ring.

Conversely, assume that R_f is a G-ring, that is, $Q(R_f) = (R_f)_u$ for some regular element $u \in R_f$. We may assume that $u \in R$ since $u = af^{-n}$ for some regular element $a \in R$ and $n \in \mathbb{N}$, and since f^{-n} is invertible in R_f. It is well-known and easy to see that $(R_f)_u = R_{fu}$. Therefore, $Q(R) = Q(R_f) = (R_f)_u \subseteq R_{fu} \subseteq Q(R)$ and so $Q(R) = R_{fu}$ and this completes the proof of Lemma 2.3. □
Proof of Theorem 2.2: Let \(R \subseteq T \) be a ring extension such that \(mT \subseteq R \), for some regular element \(m \) of \(T \). Clearly, \(m \in R \) and \(m \) is regular element of \(R \). But \(R_m = T_m \) since \(R_m \subseteq T_m = \{ am^{-n}; a \in T \text{ and } n \in \mathbb{N} \} = \{ (am)m^{-(n+1)}; (am) \in R \text{ and } n \in \mathbb{N} \} \subseteq R_m \). Therefore, \(R \) is a G-ring if and only if \(T \) is a G-ring by Lemma 2.3 since \(T_m = R_m \).

The above result generates new families of examples of G-domains not covered by Kaplansky’s result [12, Theorem 22] mentioned above. It also denies any similitude with this result as shown by the following corollary.

Corollary 2.4. Let \(D \) be a domain which is not a G-domain, \(K = Q(D) \) and \(T \) a domain such that \(T/M = K \) for some nonzero maximal ideal \(M \) of \(T \). Let \(f : T \rightarrow K \) be the canonical surjection and \(R = f^{-1}(D) \). Then:

1. \(T \) is a G-domain if and only if \(R \) is a G-domain;
2. \(T \) is not finitely generated as a ring over \(R \).

Proof: (1) Results by Theorem 2.2 because \(mT \subseteq M \subseteq kerf \subseteq R \) and \(R_m = T_m \) for each nonzero \(m \) in \(M \).

(2) Assume that \(T \) is finitely generated as a ring over \(R \). Then \(T = R[x_1, \ldots, x_n] \), for some \(x_i \in T \), where \(n \) is a positive integer. Hence, \(K = T/M = (R/M)[x_1, \ldots, x_n] = D[x_1, \ldots, x_n] \), a contradiction since \(D \) is not a G-domain. Therefore, \(T \) is not finitely generated as a ring over \(R \). □

Remark 2.5. Part (1) of Corollary 2.4 generalizes [9, Theorem 2.7 (a), p. 341].

A pair of rings \(A \subseteq B \) is called a G-ring pair if \(D \) is a G-ring for each ring \(D \) such that \(A \subseteq D \subseteq B \). In [6, Theorem 2.1], Dobbs gives necessary and sufficient conditions to have a G-domain pair. In the context of Theorem 2.2, we obtain:

Corollary 2.6. Let \(T, R, \) and \(m \) be as in Theorem 2.2. Then \((R,T)\) is a G-ring pair if and only if \(T \) (resp., \(R \)) is a G-ring.

Proof: Let \(S \) be a ring such that \(R \subseteq S \subseteq T \). Hence, \(mS \subseteq mT \subseteq R \) and \(m \) is regular in \(S \). Therefore, Theorem 2.2 completes the proof of Corollary 2.6. □

Remark 2.7. In Theorem 2.2, the hypothesis “\(m \) is a regular element of \(T \)” is necessary (see Example 4.4).

3. G-ring property in trivial extension

Let \(A \) be a ring, \(E \) be an \(A \)-module and \(R = A \otimes E \) be the set of pairs \((a,e)\) with pairwise addition and multiplication given by: \((a,e)(b,f) = (ab,af + be)\). \(R \) is called the trivial ring extension of \(A \) by \(E \). Recall that a maximal ideal of \(R \) has always the form \(M \otimes E \), where \(M \) is a maximal ideal of \(A \) [11, Theorem 25.1(3)]. The author of [11] also confirms by a private communication that [11, Theorem 25.1] is not true, that is, an ideal \(J \) of \(R \) has not always the form: \(J = I \otimes E' \), where \(I = \{ a \in A | (a,e) \in J \text{ for some } e \in E \} \) and \(E' = \{ e \in E | (a,e) \in J \text{ for some } a \in A \} \). We only have that \(J \subseteq I \otimes E' \).
(see [14]). Nevertheless, it is easily seen that \(J = I \preceq E' \) if and only if \(0 \preceq E' \subseteq J \) if and only if \(I \preceq 0 \subseteq J \).

In this section, we study the possible transfer of the G-ring property for various trivial extension contexts.

Theorem 3.1. Let \(A \) be a ring, \(E \) be an \(A \)-module such that \(Z(E) \subseteq Z(A) \) (where \(Z(E) \) denotes the set of zero-divisors on \(E \)), and \(R := A \preceq E \) be the trivial ring extension of \(A \) by \(E \). Then \(R \) is a G-ring if and only if \(A \) is a G-ring.

Proof: Set \(S = A - Z(A) \). Then \(Z(R) = Z(A) \preceq E \) and \(Q(R) = Q(A) \preceq E_S \) by [11, p. 164–165]. Assume that \(A \) is a G-ring. Hence, \(Q(A) = A_\alpha \) for some \(\alpha \in S \). Then, \((a, 0) \notin Z(R) \) and \(E_a := E \otimes_A A_\alpha = E \otimes_A Q(A) = E_S \). So, \(Q(R) = Q(A) \preceq E_S = A_\alpha \preceq E_a = \{ (xa^{-n}, ea^{-m}) ; (x, e) \in R \) and \(n, m \in \mathbb{N} \} = \{ (xa^{-n}, ea^{-m})(a, 0)^{-p}; (x, e) \in R, n, m \in \mathbb{N} \) and \(p = \sup(n, m) \} \subseteq R_{(a,0)} \subseteq Q(R) \). Therefore, \(Q(R) = R_{(a,0)} \) and then \(R \) is a G-ring.

Conversely, assume that \(R \) is a G-ring. Hence, \(Q(R) = R_{(a,0)} \) for some \((a, e) \notin Z(R) \). If \(Q(R) := Q(A) \preceq E_S \) and \(p : Q(R) \rightarrow Q(A) \) is the map \(p(x, y) = x \), we claim that \(Q(A) = p(R_{(a,0)}) = A_\alpha \). Indeed, let \((x, y)(a, e)^{-n} \in R_{(a,0)} \), where \((x, y) \in R \) and \(n \in \mathbb{N} \). Hence, \(a^n p((x, y)(a, e)^{-n}) = p((a, 0)^n(x, y)(a, e)^{-n}) = p((x, y)((a^{-n}, 0)(a, e)^n)^{-1}) = p((x, y)((a^{-n}, 0)(a, e_n)^{-1}) = p((x, y)(1, a^{-n}e_n)^{-1}) = p((x, y)(1, a^{-n}e_n)) = p(x, y-xa^{-n}e_n) = x \in A \), so \(p((x, y)(a, e)^{-n}) = xa^{-n} \in A_\alpha \). Therefore, \(Q(A) = A_\alpha \) and then \(A \) is a G-ring.

If \(A \) is a domain and \(E \) is a torsion-free \(A \)-module, we obtain by Theorem 3.1:

Corollary 3.2. Let \(A \) be a domain, \(E \) be a torsion-free \(A \)-module, and \(R := A \preceq E \) be the trivial ring extension of \(A \) by \(E \). Then \(R \) is a G-ring if and only if \(A \) is a G-domain.

If \(R := A \preceq E \) is a trivial extension of a ring \(A \) by an \(A \)-module \(E \), we do not have in general that \(R \) is a G-ring if and only if \(A \) is a G-ring, as shown by the following result.

Proposition 3.3. Let \((A, M) \) be a local ring and \(E \) an \(A \)-module such that \(ME = 0 \). Then the trivial ring extension of \(A \) by \(E \) is a G-ring.

Proof: The result holds since the trivial ring extension of \(A \) by \(E \) is a total ring (since \((M \preceq E)(0, 1) = (0, 0) \) and \(M \preceq E \) is a maximal ideal of a local ring \(A \preceq E \)).

4. Examples

In this section, we exhibit a non-Noetherian coherent G-domain (Example 4.1). Then, we give non-coherent G-rings (Examples 4.2 and 4.3). We also show that if \(f : R \rightarrow S \) is a faithfully flat ring extension such that \(S \) is a G-ring, then \(R \) is not a G-ring, in general (Examples 4.1(4) and 4.2(3)). Finally, we give a counter-example showing that the hypothesis “\(m \) is a regular element of \(T \)” is necessary in Theorem 2.1 (Example 4.4).
Example 4.1. Let $T = \mathbb{Q}[X] = \mathbb{Q} +XT$ be the formal power series ring over the field \mathbb{Q} and let $R = \mathbb{Z} + XT$. Then:

1. R is a G-domain by Theorem 2.2 since T is a local G-domain and $XT \subseteq R$;
2. R is a coherent domain by [8, Theorem 3] and is not Noetherian by [4, Theorem 4];
3. T is not finitely generated as a ring over R by Corollary 2.4;
4. $\mathbb{Z} \to R$ is a faithfully flat ring extension and \mathbb{Z} is not a G-domain.

Example 4.2. Let $T = \mathbb{R}X = \mathbb{R} + XT$, where X is an indeterminate over \mathbb{R}, and let $R = \mathbb{Z} + XT$. Then:

1. R is a G-domain by Theorem 2.2 since T is a local G-domain and $XT \subseteq R$;
2. R is not a coherent domain ([8, Theorem 3]);
3. $\mathbb{Z} \to R$ is a faithfully flat ring extension and \mathbb{Z} is not a G-domain.

Example 4.3. Let A be a G-domain which is not a field, $K = qf(A)$, and let $R := A \times K$ be the trivial ring extension of A by K. Then:

1. R is a G-ring by Corollary 3.2 since A is a G-domain;
2. R is not a coherent ring since $R(0,1)$ is a finitely generated ideal which is not finitely presented as shown by the exact sequence of R-modules:

$$0 \to 0 \times K \to R \xrightarrow{u} R(0,1) \to 0$$

where $u(a,e) = (a,e)(0,1) = (0,a)$ (since $0 \times K$ is not a finitely generated ideal of R).

Example 4.4. Let A be a non G-domain, $K = qf(A)$, $T = K \times K$ be the trivial ring extension of K by K, and let $R := A \times K$ be the trivial ring extension of A by K. Then:

1. T is a G-ring since it is a total ring;
2. R is not a G-ring by Corollary 3.2 since A is not a G-domain;
3. $(0,1)T = 0 \times K \subseteq R$.

Acknowledgment. I would like to thank the referee for a careful reading of this manuscript.

References

Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco

E-mail: mahdou@hotmail.com

(Received December 20, 2015, revised July 25, 2016)