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The weak Gelfand-Phillips property

in spaces of compact operators

Ioana Ghenciu

Abstract. For Banach spaces X and Y , let Kw∗ (X∗, Y ) denote the space of all
w∗ −w continuous compact operators from X∗ to Y endowed with the operator
norm. A Banach space X has the wGP property if every Grothendieck subset
of X is relatively weakly compact. In this paper we study Banach spaces with
property wGP . We investigate whether the spaces Kw∗ (X∗, Y ) and X ⊗ǫ Y

have the wGP property, when X and Y have the wGP property.
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1. Introduction

A bounded subset A of a Banach space X is called a limited subset of X if for
each w∗-null sequence (x∗

n) in X∗,

lim
n

(sup{|x∗

n(x)| : x ∈ A}) = 0.

If A is a limited subset of X , then T (A) is relatively compact for any operator
T : X → c0 ([2, p. 56], [31, p. 23]).

The space X has the Gelfand-Phillips (GP) property if every limited subset of
X is relatively compact. The following spaces have the Gelfand-Phillips property:
Schur spaces; spaces with w∗-sequential compact dual unit balls (for example
subspaces of weakly compactly generated spaces, separable spaces, Asplund spaces
(or spaces whose duals have the Radon-Nikodým property), reflexive spaces, and
spaces whose duals do not contain ℓ1); dual spaces X∗ with X not containing ℓ1;
Banach spaces with the separable complementation property, i.e., every separable
subspace is contained in a complemented separable subspace (for example L1(µ)
spaces, where µ is a positive measure) [31, p. 31], [2, Proposition], [11, Theorem 3.1
and p. 384], [10, Proposition 5.2], [14, Corollary 5].

The space X has the BD property if every limited subset of X is relatively
weakly compact [13]. Gelfand-Phillips spaces and spaces not containing ℓ1 have
the BD property ([2, Proposition], [31, p. 47, 67]).
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36 Ghenciu I.

A subset A of X is called a Grothendieck set if every operator T : X → c0 maps
A onto a relatively weakly compact set [23]. A Banach space X has the weak

Gelfand-Phillips (wGP ) property if every Grothendieck subset of X is relatively
weakly compact [23].

Every limited set is a Grothendieck set. If X has the wGP property, then X

has the BD property. Properties BD and wGP are inherited by closed subspaces.
In [20, Corollary 4.11] it was shown that if Lw∗(X∗, Y ) = Kw∗(X∗, Y ) and

both X and Y have the BD property, then Kw∗(X∗, Y ) has the BD property. In
[23, Theorem 2] it was shown that if X has the wGP property and the Gelfand-
Phillips property and Y has the wGP property, then Kw∗(X∗, Y ) has the wGP

property.
In this note we study Banach spaces with the wGP property. We prove that X

has the wGP property if and only if every Grothendieck operator T : Y → X is
weakly compact, for every Banach space Y . We show that if X does not contain
a copy of ℓ1, then X has the wGP property.

We prove that if Lw∗(X∗, Y ) = Kw∗(X∗, Y ), then Kw∗(X∗, Y ) has property
wGP if and only if X and Y have property wGP . We also show that if Lw∗(X∗, Y )
has property wGP , then at least one of the spaces X and Y does not contain ℓ2.

2. Definitions and notation

Throughout this paper, X , Y , E and F will denote Banach spaces. The unit
ball of X will be denoted by BX and X∗ will denote the continuous linear dual
of X . The canonical basis of ℓ1 will be denoted by (e∗n). An operator T : X → Y

will be a continuous and linear function. The set of all operators, weakly compact
operators, and compact operators from X to Y will be denoted by L(X, Y ),
W (X, Y ), and K(X, Y ). The w∗ − w continuous (resp. compact) operators from
X∗ to Y will be denoted by Lw∗(X∗, Y ) (resp. Kw∗(X∗, Y )). The injective (resp.
projective) tensor product of two Banach spaces X and Y will be denoted by
X ⊗ǫ Y (resp. X ⊗π Y ). The space X ⊗ǫ Y can be embedded into the space
Kw∗(X∗, Y ), by identifying x ⊗ y with the rank one operator x∗ → 〈x∗, x〉 y.

A subset S of X is said to be weakly precompact provided that every sequence
from S has a weakly Cauchy subsequence. Every limited set is weakly precompact,
e.g., see [2, Proposition]. The operator T : X → Y is weakly precompact (or almost

weakly compact) if T (BX) is weakly precompact.
A topological space S is called dispersed (or scattered) if every nonempty closed

subset of S has an isolated point. A compact Hausdorff space K is dispersed if
and only if ℓ1 6 →֒ C(K) [28, Main theorem].

The operator T : X → Y is called completely continuous (or Dunford -Pettis)
if T maps weakly convergent sequences to norm convergent sequences. A Banach
space X has the Dunford-Pettis property (DPP ) if every weakly compact operator
T : X → Y is completely continuous, for every Banach space Y . Schur spaces,
C(K) spaces, and L1(µ) spaces have the DPP . The reader can check [5], [6], and
[7] for a guide to the extensive classical literature dealing with the DPP .
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A Banach space X has the Grothendieck property if every w∗-convergent se-
quence in X∗ is weakly convergent [7, p. 179].

A series
∑

xn of elements of X is weakly unconditionally convergent (wuc) if∑
|x∗(xn)| < ∞, for each x∗ ∈ X∗. An operator T : X → Y is called uncondi-

tionally converging if T maps weakly unconditionally convergent (wuc) series in
X into unconditionally convergent series in Y . A Banach space X has property

(V ) if every unconditionally converging operator T from X to any Banach space
Y is weakly compact [27]. C(K) spaces and reflexive spaces have property (V )
([27, Theorem 1, Proposition 7]).

The Banach-Mazur distance d(E, F ) between two isomorphic Banach spaces
E and F is defined by inf(‖T ‖‖T−1‖), where the infimum is taken over all iso-
morphisms T from E onto F . A Banach space E is called an L∞-space (resp.
L1-space) [1, p. 7] if there is a λ ≥ 1 so that every finite dimensional subspace of
E is contained in another subspace N with d(N, ℓn

∞
) ≤ λ (resp. d(N, ℓn

1
) ≤ λ) for

some integer n. Complemented subspaces of C(K) spaces (resp. L1(µ) spaces)
are L∞-spaces (resp. L1-spaces) ([1, Proposition 1.26]). The dual of an L1-space
(resp. L∞-space) is an L∞-space (resp. L1- space) ([1, Proposition 1.27 ]). The
L∞-spaces, L1-spaces, and their duals have the DPP ([1, Corollary 1.30]).

3. Banach spaces with property wGP

For better clarity, we start with two diagrams that show the implications among
several properties of sets and properties of Banach spaces. The first one shows
the implications among the displayed properties of sets which hold in any Ba-
nach space. In the second one classes of Banach spaces which are defined or
characterized by the validity of an implication (not valid in general) are included.

An operator T : X → Y is called a Grothendieck operator if T ∗ takes w∗-null
sequences in Y ∗ to weakly null sequences in X∗ [9].

The following result [9, Lemma 1.3] appeared with no proof. We include its
proof for the convenience of the reader.
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Proposition 1. Let T : Y → X be an operator. The following are equivalent.

(i) T (BY ) is a Grothendieck set.

(ii) If S : X → c0 is an operator, then ST : Y → c0 is weakly compact.

(iii) T is a Grothendieck operator.

Proof: (i) ⇔ (ii) follows from definitions.
(ii) ⇒ (iii) Suppose (x∗

n) is w∗-null in X∗. Let S : X → c0 be defined by S(x) =
(x∗

n(x)). Note that S∗(e∗n) = x∗

n. Since T ∗S∗ is weakly compact, (T ∗S∗(e∗n)) =
(T ∗(x∗

n)) is relatively weakly compact. Thus (T ∗(x∗

n)) is weakly null, and T is a
Grothendieck operator.

(iii) ⇒ (ii) Let S : X → c0 be an operator. If (x∗

n) = (S∗(e∗n)), then (x∗

n) is
w∗-null and (T ∗(x∗

n)) is weakly null, since T is a Grothendieck operator. Note
that T ∗S∗(Bℓ1) is contained in the closed and absolutely convex hull of {T ∗(x∗

n) :
n ∈ N}, which is relatively weakly compact ([7, p. 51]). Thus T ∗S∗ is weakly
compact. Hence ST is weakly compact. �

Corollary 2. (i) ([23, p. 177]) If X has the Grothendieck property, then X

has property wGP if and only if X is reflexive.

(ii) If X∗ has property (V ) and X is not reflexive, then X∗ does not have

property wGP .

Proof: (i) Suppose X has the Grothendieck property and the wGP property.
Let i : X → X be the identity map. Then i∗ : X∗ → X∗ maps w∗-null sequences
to weakly null ones, and BX is a Grothendieck set (by Proposition 1). Hence BX

is relatively weakly compact, and X is reflexive.
(ii) If X∗ has property (V ), then X∗ has the Grothendieck property ([6, p. 40],

[18, Corollary 32(ii)]). Apply (i). �

Proposition 3. Suppose X has the DPP and the Grothendieck property. Then

X has property BD if and only if X is weakly sequentially complete.

Proof: Since X has the DPP and the Grothendieck property, a subset of X is
weakly precompact if and only if it is limited ([2, p. 57], [31, Proposition 1.1.7,
p. 26], [18, Corollary 5(i)]). Suppose X has property BD. Then X is weakly
sequentially complete by the previous results and the second diagram.

Conversely, let A be a limited set in X . Since A is weakly precompact [2,
Proposition 4.], A is relatively weakly compact. �

Corollary 4. (i) If X has property BD, in particular if it has property

wGP , then X does not contain ℓ∞.

(ii) If X∗ has property BD, in particular if it has property wGP , then ℓ1 is

not complemented in X and c0 does not embed in X∗.

(iii) If X is an infinite dimensional L1-space, then X∗ does not have pro-

perty BD.

(iv) Let (Ω, Σ, µ) be a finite measure space. If Y is an infinite dimensional

complemented subspace of L1(µ), then Y ∗ does not have property BD.

(v) If X is an infinite dimensional L∞-space, then X∗∗ does not have pro-

perty BD.
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(vi) If X is complemented in a C(K) space, then X∗∗ does not have pro-

perty BD.

Proof: (i) The space ℓ∞ has the DPP and the Grothendieck property, and it is
not weakly sequentially complete (since it contains c0). By Proposition 3, ℓ∞ does
not have property BD (see also [31, Example 1.1.8]). Thus if X has property BD,
then X does not contain ℓ∞.

(ii) Suppose X∗ has property BD. Then X∗ does not contain ℓ∞ (by (i)). Hence

ℓ1 6
c
→֒ X and c0 6 →֒ X∗ ([3, Theorem 4], [5, Theorem 10, p. 48]).

(iii) Since X is an infinite dimensional L1-space, ℓ1

c
→֒ X ([1, Proposition 1.24]).

Apply (ii).
(iv) Since Y is a complemented subspace of L1(µ), Y is an L1-space ([1, Propo-

sition 1.26]). Apply (iii).
(v) If X is an L∞-space, then X∗ is an L1-space ([1, Proposition 1.27]). Ap-

ply (iii).
(vi) If X is complemented in a C(K) space, then X is an L∞-space ([1, Propo-

sition 1.26]). Apply (v). �

The next result gives elementary operator theoretic characterizations of weak
precompactness, relative weak compactness, and relative norm compactness for
Grothendieck sets.

Theorem 5. Let X be a Banach space. The following statements are equivalent.

(i) For every Banach space Y , every Grothendieck operator T : Y → X is

weakly precompact (weakly compact, resp. compact).
(ii) Same as (i) with Y = ℓ1.

(iii) Every Grothendieck subset of X is weakly precompact (relatively weakly

compact, resp. relatively compact).

Proof: We will show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i) in the relatively weakly compact
case. The arguments for the remaining implications of the theorem follow the same
pattern.

(i) ⇒ (ii) is obvious.
(ii) ⇒ (iii) Let K be a Grothendieck subset of X and let (xn) be a sequence

in K. Define T : ℓ1 → X by T (b) =
∑

bi xi. Note that T ∗(x∗) = (x∗(xi)).
Suppose (x∗

n) is w∗-null in X∗. Let S : X → c0 be defined by S(x) = (x∗

n(x)).
Note that S∗(e∗n) = x∗

n. Since K is a Grothendieck set, {ST (e∗n) : n ∈ N} =
{S(xn) : n ∈ N} is relatively weakly compact. Note that ST (Bℓ1) is contained
in the closed and absolutely convex hull of {S(xn) : n ∈ N}, which is relatively
weakly compact ([7, p. 51]). Then ST is weakly compact. Hence (T ∗(x∗

n)) =
(T ∗S∗(e∗n)) is weakly null, and T is a Grothendieck operator. Therefore T is
weakly compact. Hence (T (e∗n)) = (xn) has a weakly convergent subsequence.

(iii) ⇒ (i) Let T : Y → X be a Grothendieck operator. By Proposition 1,
T (BY ) is a Grothendieck subset of X . Hence T (BY ) is relatively weakly compact
and T is weakly compact. �
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Corollary 6. (i) ([23, p. 177]) If BX∗ is w∗-sequentially compact, then X

has the wGP property.

(ii) ([23, p. 177]) If X is separable, then X has the wGP property.

(iii) If X is any subspace of a weakly compactly generated Banach space, then

X has the wGP property.

(iv) If X∗ does not contain copies of ℓ1, then X has the wGP property.

(v) If X∗ has the Radon-Nikodým property, then X has the wGP property.

Proof: (i) Suppose BX∗ is w∗-sequentially compact and let T : Y → X be a
Grothendieck operator. Let us show that T is weakly compact. By Gantmacher
theorem it is enough to prove that T ∗ is weakly compact. Let (x∗

n) be a sequence
in BX∗ . By passing to a subsequence, we can suppose that (x∗

n) is w∗-convergent.
Then (T ∗(x∗

n)) is weakly convergent. Hence T ∗, thus T , is weakly compact. Apply
Theorem 5.

(ii) If X is separable, then BX∗ is w∗-sequentially compact ([5, p. 226]). Ap-
ply (i).

(iii) If X is a subspace of a weakly compactly generated Banach space, then
(BX∗ , w∗) is Eberlein compact (by [15, Theorem 13.20, p. 583], [16, Theorem 1.2.3,
p. 12]) and hence it is sequentially compact by Eberlein-Šmulian theorem. Ap-
ply (i).

(iv) If X∗ does not contain a copy of ℓ1, then BX∗ is weakly precompact, by
Rosenthal’s ℓ1 theorem ([5, p. 201]). Thus, by Alaoglu’s theorem, BX∗ is w∗-
sequentially compact ([5, p. 226]). Apply (i).

(v) If X∗ has the Radon-Nikodým property, then X is Asplund (by [15, The-
orem 11.8, p. 486, Theorem 11.15, p. 496], [16, Theorem 1.1.1, p. 6, p. 33]) and
hence BX∗ is w∗-sequentially compact as it is fragmented by the norm. �

Corollary 7. If X has the Grothendieck property and Y has property wGP

(resp. every Grothendieck subset of Y is weakly precompact), then every operator

T : X → Y is weakly compact (resp. weakly precompact).

Proof: We only prove the result when Y has property wGP . The proof of
the other case is similar. Let T : X → Y be an operator. Since X has the
Grothendieck property, BX is a Grothendieck set. Then T (BX) is a Grothendieck
set and T is a Grothendieck operator. Since Y has property wGP , T is weakly
compact, by Theorem 5. �

Hagler and Odell provided an example of a space without a copy of ℓ1 whose
dual ball is not weak∗ sequentially compact ([21], [5, p. 239]). Such a space has
property wGP (by Theorem 9). Thus Corollary 7 generalizes (ii) of [7, Theorem,
p. 179].

A Banach space X has property (CBH ) if X∗ contains a bounded sequence
which has no w∗-convergent convex block [31, p. 40].

Lemma 8 ([32, Lemma 1]). Let A be a bounded subset of a Banach space Y .

Then A is relatively weakly compact if and only if given any sequence (xn) in A,

there exists a sequence (yn) with yn ∈ co{xi : i ≥ n} that converges weakly.
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Theorem 9. If X does not have property (CBH), in particular if X does not

contain a copy of ℓ1, then X has the wGP property.

Proof: Suppose T : Y → X is a Grothendieck operator. Let (x∗

n) be a sequence
in BX∗ . Since X does not have property (CBH), every bounded sequence in X∗

has a w∗-convergent convex block. Let (y∗

n) be a w∗-convergent convex block
of (x∗

n). Let (kn) be a strictly increasing sequence of natural numbers and (an) a

sequence of positive real numbers with
∑kn+1−1

i=kn

ai = 1, so that

y∗

n =

kn+1−1∑

i=kn

aix
∗

i .

Since T is a Grothendieck operator, (T ∗(y∗

n)) is weakly convergent. Note that
y∗

n ∈ co{x∗

i : i ≥ n} and T ∗(y∗

n) ∈ co{T ∗(x∗

i ) : i ≥ n} for each n. Then T ∗(BX∗)
is relatively weakly compact, by Lemma 8. Then T ∗, and thus T , is weakly
compact. By Theorem 5, X has the wGP property.

If X does not contain a copy of ℓ1, then every bounded sequence in X∗ has
a w∗-convergent convex block ([22, Lemma 3A, p. 4], [31, Lemma 2.2.1, p. 47]). �

The fact that X has the wGP property if X does not contain a copy of ℓ1 was
remarked in [23, p. 178].

Corollary 10. If X is generated by a weakly precompact set, then X has pro-

perty wGP .

Proof: Suppose X is generated by a weakly precompact set. Then X does not
have property (CBH), by [31, Corollary 2.3.1]. Apply Theorem 9. �

Schlumprecht constructed a Banach space Y such that Y contains no copies
of ℓ1 and Y does not have the Gelfand-Phillips property ([31, Theorem 5.2.4,
p. 149]). The space Y has property wGP by Theorem 9. There is a C(K) space
which has the BD property, but does not have the Gelfand-Phillips property ([31,
Proposition 5.1.7, p. 144]). This space is generated by a weakly precompact set,
and thus it has property wGP by Corollary 10.

Corollary 11. (i) Suppose K is a dispersed compact Hausdorff space and

ℓ1 6 →֒ X . Then C(K, X) has property wGP .

(ii) Suppose ℓ1 6 →֒ X , ℓ1 6 →֒ Y , and L(X, Y ∗) = K(X, Y ∗). Then X ⊗π Y has

property wGP .

(iii) Suppose ℓ1 6 →֒ X and Y ∗ has the Radon-Nykodým property. Then

Kw∗(X∗, Y ) and X ⊗ǫ Y have property wGP .

Proof: (i) Suppose ℓ1 6 →֒ C(K) and ℓ1 6 →֒ X . Then ℓ1 6 →֒ C(K, X) [8, Theo-
rem 3.1.2]. Apply Theorem 9.

(ii) Suppose ℓ1 6 →֒ X , ℓ1 6 →֒ Y , and L(X, Y ∗) = K(X, Y ∗). Then ℓ1 6 →֒ X⊗π Y ,
by [12, Theorem 3]. Apply Theorem 9.
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(iii) If ℓ1 6 →֒X and Y ∗ has the Radon-Nykodým property, then ℓ1 6 →֒Kw∗(X∗, Y )
([4, Theorem 1.14], [17, Corollary 3]). By Theorem 9, Kw∗(X∗, Y ) has property
wGP . Hence X ⊗ǫ Y has property wGP . �

Proposition 12. If for every separable subspace L of the Banach space X there

exists a complemented subspace M of X containing L such that M has property

wGP (resp. BD), then X has property wGP (resp. BD).

Proof: We only prove the result for property wGP . The proof for property BD
is similar. It suffices to show that every countable Grothendieck subset of X is
relatively weakly compact. Let A be such a set, and let L be the separable closed
linear span of A. Suppose M is a complemented subspace M of X containing L

such that M has property wGP . Let P be a projection from X onto M . Note
that A = P (A). Then A is a Grothendieck subset of M . Hence A is relatively
weakly compact, since M has property wGP . �

Corollary 13 ([23, p. 179]). Let (Ω, Σ, µ) be a positive measure space. Then the

space Lp(µ), 1 ≤ p < ∞, has property wGP .

Proof: The space Lp(µ) has the separable complementation property ([25, The-
orem 1.b.8], [24, Proposition 1]), i.e., every separable subspace L of Lp(µ) is con-
tained in a complemented separable subspace M of Lp(µ). Since M has property
wGP (by Corollary 6), Lp(µ) has property wGP by Proposition 12. �

4. Property wGP in spaces of operators

In this section we give sufficient conditions for the relative weak compactness of
Grothendieck subsets of spaces of compact operators. If Kw∗(X∗, Y ) has property
wGP , then X and Y have property wGP , since this property is inherited by
subspaces.

We recall the following well-known isometries ([29, p. 60]):
1) Lw∗(X∗, Y ) ≃ Lw∗(Y ∗, X), Kw∗(X∗, Y ) ≃ Kw∗(Y ∗, X) (T → T ∗),
2) W (X, Y ) ≃ Lw∗(X∗∗, Y ) and K(X, Y ) ≃ Kw∗(X∗∗, Y ) (T → T ∗∗).

If H is a subset of Lw∗(X∗, Y ), x∗ ∈ X∗ and y∗ ∈ Y ∗, let H(x∗) = {T (x∗) :
T ∈ H} and H∗(y∗) = {T ∗(y∗) : T ∈ H}.

In the proofs of the next two theorems we will need the following results,
which give criterions for weak precompactness and relative weak compactness in
the space Kw∗(X∗, Y ).

Theorem 14 ([17, Theorem 2]). Let H be a subset of Kw∗(X∗, Y ) such that

either

(i) H(x∗) is relatively weakly compact for each x∗ ∈ X∗, and

(ii) H∗(y∗) is weakly precompact for each y∗ ∈ Y ∗, or

(i)’ H(x∗) is weakly precompact for each x∗ ∈ X∗, and

(ii)’ H∗(y∗) is relatively weakly compact for each y∗ ∈ Y ∗.

Then H is weakly precompact.
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Theorem 15 ([20, Theorem 4.8]). Suppose that Lw∗(X∗, Y ) = Kw∗(X∗, Y ). Let

H be a subset of Kw∗(X∗, Y ) such that

(i) H(x∗) is relatively weakly compact for each x∗ ∈ X∗, and

(ii) H∗(y∗) is relatively weakly compact for each y∗ ∈ Y ∗.

Then H is relatively weakly compact.

The following result extends slightly [23, Lemma 1].

Theorem 16. If X has the wGP property and every Grothendieck set in Y is

weakly precompact, or if Y has the wGP property and every Grothendieck set in

X is weakly precompact, then every Grothendieck set in Kw∗(X∗, Y ) is weakly

precompact.

Proof: Suppose X has the wGP property and every Grothendieck set in Y

is weakly precompact. Let H be a Grothendieck subset of Kw∗(X∗, Y ). For
fixed x∗ ∈ X∗, the map T → T (x∗) is a bounded operator from Kw∗(X∗, Y )
into Y . It is easily verified that continuous linear images of Grothendieck sets
are Grothendieck sets. Then H(x∗) is a Grothendieck subset of Y , hence weakly
precompact. For fixed y∗ ∈ Y ∗, the map T → T ∗(y∗) is a bounded operator from
Kw∗(X∗, Y ) into X . Then H∗(y∗) is a Grothendieck subset of X , hence relatively
weakly compact. By Theorem 14, H is weakly precompact. �

Theorem 17. Suppose Lw∗(X∗, Y ) = Kw∗(X∗, Y ). The following statements

are equivalent:

(i) X and Y have property wGP ;

(ii) Kw∗(X∗, Y ) has property wGP ;

(iii) X ⊗ǫ Y has property wGP .

Proof: Suppose X and Y have property wGP . Let H be a Grothendieck subset
of Kw∗(X∗, Y ). By the proof of Theorem 16 and Theorem 15, H is relatively
weakly compact. Then Kw∗(X∗, Y ), and thus X ⊗ǫ Y , has property wGP . That
(iii) implies (i) is clear. �

Corollary 18. Suppose X and Y have property wGP . If Y (or X) has the Schur

property, then Lw∗(X∗, Y ) = Kw∗(X∗, Y ) has property wGP . Further, X ⊗ǫ Y

has property wGP .

Proof: Let T ∈ Lw∗(X∗, Y ). Then T is weakly compact (since T ∗ is w∗ − w

continuous). If Y (or X) has the Schur property, then T is compact. Apply
Theorem 17. �

Corollary 19. If X has property wGP , then ℓ1[X ] has property wGP , where

ℓ1[X ] is the Banach space of all unconditionally convergent series in X with the

norm ‖(xn)‖ = sup{
∑

|x∗(xn)| : x∗ ∈ BX∗}.

Proof: Since ℓ1 has the Schur property and property wGP and X has property
wGP , ℓ1 ⊗ǫ X has property wGP by Corollary 18. Recall that ℓ1 ⊗ǫ X ≃ ℓ1[X ]
[30, p. 48]. �
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Corollary 20. Suppose that W (X, Y ) = K(X, Y ). The following statements are

equivalent:

(i) X∗ and Y have property wGP ;

(ii) K(X, Y ) has property wGP ;

(iii) X∗ ⊗ǫ Y has property wGP .

Proof: Apply Theorem 17 (with X∗ instead of X) and the isometries 2) at the
beginning of this section. �

Observation 1. If X∗ has property wGP and Y ∗ has the Grothendieck property,
then every operator T : X → Y is weakly compact. To see this, let T : X → Y

be an operator. By Corollary 7, T ∗ : Y ∗ → X∗ is weakly compact. Thus T is
weakly compact.

We will need the following version of Corollary 18, replacing Y by Y ∗ and X

by X∗.

Corollary 21. Suppose X∗ has property wGP , Y ∗ has property wGP and

the Schur property, and Y ∗∗ has the Grothendieck property. Then L(X, Y ∗) =
K(X, Y ∗) has property wGP . Consequently, ℓ1 is not complemented in X ⊗π Y .

Proof: By Observation 1 applied to Y ∗ instead of Y , L(X, Y ∗) = W (X, Y ∗).
Taking into account the isometries 2) at the beginning of this section, the first
statement follows from Corollary 18 applied to X∗ instead of X and Y ∗ instead
of Y . Since L(X, Y ∗) ≃ (X ⊗π Y )∗ ([7, p. 230]) has property wGP , ℓ1 is not
complemented in X ⊗π Y , by Corollary 4(ii). �

Corollary 22. Suppose X∗ has property wGP , and Y is the second Bourgain-

Delbaen space or Y = c0. Then L(X, Y ∗) = K(X, Y ∗) has property wGP and ℓ1

is not complemented in X ⊗π Y .

Proof: The second Bourgain-Delbaen space Y is a separable L∞-space, some-
what reflexive, so that c0 6 →֒ Y and Y ∗ ≃ ℓ1 [1]. Note that Y and c0 satisfy the
hypotheses of Corollary 21. Apply Corollary 21. �

Corollary 23. Suppose that W (X∗, Y ∗) = K(X∗, Y ∗), both X∗∗, Y ∗ have

property wGP , and Y ∗∗ has the Grothendieck property. Then L(X∗, Y ∗) =
K(X∗, Y ∗) and this space has property wGP . The dual of the space of all nu-

clear operators N1(X, Y ) also has property wGP . Consequently, ℓ1 is not com-

plemented in N1(X, Y ).

Proof: By Corollary 20 applied to X∗ instead of X and Y ∗ instead of Y ,
K(X∗, Y ∗) has property wGP . By Observation 1 applied to X∗ instead of X and
Y ∗ instead of Y , L(X∗, Y ∗) = W (X∗, Y ∗); hence by assumption L(X∗, Y ∗) =
K(X∗, Y ∗). Note that L(X∗, Y ∗) ≃ (X∗ ⊗π Y )∗. It is known that N1(X, Y ) is a
quotient of X∗⊗π Y ([30, p. 41]). Hence the dual of N1(X, Y ) is a closed subspace
of (X∗ ⊗π Y )∗, so it inherits property wGP of (X∗ ⊗π Y )∗ ≃ L(X∗, Y ∗). Apply
Corollary 4(ii). �
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Theorem 24. Suppose that Lw∗(X∗, Y ) has property wGP . Then X and Y

have property wGP and either ℓ2 6 →֒ X or ℓ2 6 →֒ Y . If moreover Y is a dual

space Z∗, the condition ℓ2 6 →֒ Y implies ℓ1 6 →֒ Z.

Proof: Suppose that Lw∗(X∗, Y ) has property wGP . Then X and Y have
property wGP , since property wGP is inherited by closed subspaces. Suppose
ℓ2 →֒ X and ℓ2 →֒ Y . Then c0 →֒ Kw∗(X∗, Y ) by [19, Theorem 20]. Since c0 →֒
Lw∗(X∗, Y ) and X and Y do not have the Schur property, ℓ∞ →֒ Lw∗(X∗, Y ) by
[19, Corollary 2]. This contradiction proves the first assertion.

Now suppose Y = Z∗ and ℓ1 →֒ Z. Then L1 →֒ Z∗ ([26, Theorem 3.4], [5,
p. 212]). Also, the Rademacher functions span ℓ2 inside of L1, hence ℓ2 →֒ Z∗. �

A similar argument shows that if Lw∗(X∗, Y ) has property wGP , then X and
Y have property wGP and either ℓp 6 →֒ X or ℓq 6 →֒ Y , for 1 < p′ ≤ q < ∞,
where p and p′ are conjugate (c0 →֒ Kw∗(X∗, Y ) by [19, Theorem 20] applied to
G = ℓq).

Corollary 25. Suppose that W (X, Y ) has property wGP . Then X∗ and Y have

property wGP and either ℓ1 6 →֒ X or ℓ2 6 →֒ Y . If moreover Y is a dual space Z∗,

the condition ℓ2 6 →֒ Y implies ℓ1 6 →֒ Z.

Proof: Apply Theorem 24 and the isometries 2) at the beginning of this section.
�

Corollary 26. Suppose that X and Y have the DPP and Y ∗∗ has the Grothen-

dieck property. The following statements are equivalent:

(i) X∗ and Y ∗ have property wGP and either ℓ1 6 →֒ X or ℓ1 6 →֒ Y ;

(ii) L(X, Y ∗) = K(X, Y ∗) has property wGP .

Proof: (i) ⇒ (ii) Suppose ℓ1 6 →֒ Y . Since Y also has the DPP , Y ∗ has the Schur
property ([6, Theorem 3]). Hence L(X, Y ∗) = K(X, Y ∗) has property wGP by
Corollary 21. Suppose ℓ1 6 →֒ X . Then X∗ has the Schur property [6]. By looking
at adjoints, W (X, Y ∗) = K(X, Y ∗). By Corollary 20 applied to Y ∗ instead of Y ,
K(X, Y ∗) has property wGP . By Observation 1 applied to Y ∗ instead of Y ,
L(X, Y ∗) = W (X, Y ∗). Thus L(X, Y ∗) = K(X, Y ∗) has property wGP .

(ii) ⇒ (i) Apply Corollary 25. �

Observation 2. If T : Y → X∗ is an operator such that T ∗|X is compact, then T

is compact. To see this, let T : Y → X∗ be an operator such that T ∗|X is compact.
Let S = T ∗|X . Suppose x∗∗ ∈ BX∗∗ and choose a net (xα) in BX which is w∗-

convergent to x∗∗. Then (T ∗(xα))
w∗

→ T ∗(x∗∗). Now, (T ∗(xα)) ⊆ S(BX), which is

a relatively compact set. Then (T ∗(xα)) → T ∗(x∗∗). Hence T ∗(BX∗∗) ⊆ S(BX),
which is relatively compact. Therefore T ∗(BX∗∗) is relatively compact, and thus
T is compact.

It follows that if L(X, Y ∗) = K(X, Y ∗), then L(Y, X∗) = K(Y, X∗).
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Corollary 27. Suppose that X = C(K1), Y = C(K2), where K1 and K2 are

infinite compact Hausdorff spaces. If K1 or K2 is dispersed, then L(X, Y ∗) =
K(X, Y ∗) has property wGP . Further, ℓ1 is not complemented in X ⊗π Y .

Proof: Since Y ∗ is an L1(µ) space, it has property wGP by Corollary 13. Simi-
larly, X∗ has property wGP . Suppose that K2 is dispersed. Then ℓ1 6 →֒ C(K2),
Y ∗∗ = C(K2)

∗∗ is isomorphic to ℓ∞(I) for some set I (by [28, Main theorem]),
and Y ∗∗ has the Grothendieck property ([7, p. 156]). By Corollary 26, L(X, Y ∗) =
K(X, Y ∗) has property wGP . Now suppose that K1 is dispersed. A similar argu-
ment shows that X∗∗ has the Grothendieck property and L(Y, X∗) = K(Y, X∗)
has property wGP . Then L(X, Y ∗) = K(X, Y ∗) has property wGP (by Obser-
vation 2 and Corollary 20). Apply Corollary 4(ii). �
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