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Spaces with property (DC(ω1))

Wei-feng Xuan, Wei-xue Shi

Abstract. We prove that if X is a first countable space with property (DC(ω1))
and with a Gδ-diagonal then the cardinality of X is at most c. We also show
that if X is a first countable, DCCC, normal space then the extent of X is at
most c.
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1. Introduction

Diagonal property is useful in estimating the cardinality of a space. For ex-
ample, Ginsburg and Woods in [6] proved that the cardinality of a space with
countable extent and a Gδ-diagonal is at most c. Therefore, if X is Lindelöf and
has a Gδ-diagonal then |X | ≤ c. However, the cardinality of a regular space with
the countable Souslin number and a Gδ-diagonal need not have an upper bound
[11], [12]. Buzyakova in [4] proved that if a space X with the countable Souslin
number has a regular Gδ-diagonal then the cardinality of X does not exceed c.
Recently, Xuan and Shi in [13] show that if X is a DCCC space with a rank
3-diagonal then the cardinality of X is at most c.

In this paper, we prove that if X is a first countable space with property
(DC(ω1)) (defined below) and with a Gδ-diagonal then the cardinality of X is at
most c. We also show that if X is a first countable, DCCC, normal space then
the extent of X is at most c.

2. Notation and terminology

All the spaces are assumed to be Hausdorff unless otherwise stated.
The cardinality of a set X is denoted by |X |, and [X ]2 will denote the set of

two-element subsets of X . We write ω for the first infinite cardinal and c for the
cardinality of the continuum.

Definition 2.1. We say that a topological space X has a Gδ-diagonal if there
exists a sequence{Gn : n ∈ ω} of open sets in X2 such that ∆X =

⋂

{Gn : n < ω},
where ∆X = {(x, x) : x ∈ X}.
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Definition 2.2. A space X has a strong rank 1-diagonal [2] if there exists a
sequence {Un : n < ω} of open covers of X such that for each x ∈ X , {x} =
⋂

{St(x,Un) : n < ω}.

Note that a space having a strong rank 1-diagonal always has a Gδ-diagonal.

Definition 2.3. A topological space X is pracompact if it has a dense subspace
every infinite subset of which has a limit point in X .

Clearly, every countably compact space is pracompact and it is easy to see
that every countably pracompact space is DFCC, i.e., every infinite family ξ of
open sets of X has an accumulation point in X . It should be pointed out that for
Tychonoff spaces DFCC is equivalent to pseudocompactness, i.e., every continuous
real-valued function on X is bounded.

(DC(ω1)) is a property which is the analog of countable pracompactness.

Definition 2.4. A topological space X has property (DC(ω1)) if it has a dense
subspace every uncountable subset of which has a limit point in X .

This notion was first introduced and studied in [7] by Ikenaga. It is clear
that every countably pracompact space and every space with a dense subspace of
countable extent is (DC(ω1)).

Definition 2.5. We say that a space X satisfies the Discrete Countable Chain
Condition (DCCC for short) if every discrete family of non-empty open subsets
of X is countable.

All notation and terminology not explained here is given in [5].

3. Results

We will use the following countable version of a set-theoretic theorem due to
Erdös and Radó.

Lemma 3.1 ([8, p. 8]). Let X be a set with |X | > c and suppose [X ]2 =
⋃

{Pn :
n ∈ ω}. Then there exist n0 < ω and a subset S of X with |S| > ω such that

[S]2 ⊂ Pn0
.

Theorem 3.2. Let X be a first countable space with property (DC(ω1)) and

with a Gδ-diagonal. Then the cardinality of X is at most c.

Proof: Since X has a Gδ-diagonal, there exists a sequence {Gk : k < ω} of open
sets of X2 such that ∆X =

⋂

{Gk : k < ω}. For each k ∈ ω and x ∈ X , there
exists an open subset Vk(x) of X such that (x, x) ∈ Vk(x) × Vk(x) ⊂ Gk. Thus
without loss of generality, we assume that Gk =

⋃

{Vk(x) × Vk(x) : x ∈ X} and
Gk+1 ⊂ Gk.

Assume that Y is a dense subspace of X which witnesses that X has property
(DC(ω1)). We shall show that |Y | ≤ c. Suppose not. For n < ω, let

Pn =
{

{x, y} ∈ [Y ]2 : (x, y) /∈ Gn

}

.
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Clearly, for any {x, y} ∈ [Y ]2, there exists n < ω such that {x, y} ∈ Pn. Thus,
[Y ]2 =

⋃

{Pn : n < ω}. Then by Lemma 3.1 there exists a subset S of Y with
|S| > ω and [S]2 ⊂ Pn0

for some n0 < ω. Since X has property (DC(ω1)), it
follows that S has a limit point x ∈ X . Since X is T1 each neighborhood of x
meets infinitely many members of S. In particular, there exist distinct points
y and z in S ∩ Vn0

(x). Thus (y, z) ∈ Vn0
(x) × Vn0

(x) ⊂ Gn0
. However, since

{y, z} ∈ Pn0
, (y, z) /∈ Gn0

, which is a contradiction. This shows |Y | ≤ c.
From Theorem 4.4 of [8, p. 55] that every first countable Hausdorff space with

a dense subset of cardinality ≤ c has cardinality ≤ c, we conclude that |X | ≤ c.
This completes the proof. �

The authors do not know whether the condition “first countable” is necessary
in Theorem 3.2. However, we know that if we drop the condition “property
(DC(ω1))” or “Gδ-diagonal”, the conclusion will be no longer true, as can be
seen in the following examples.

Example 3.3. Let D be the discrete space with |D| = 2c. It is evident that
D is first countable and has a Gδ-diagonal. However it does not have property
(DC(ω1)).

Example 3.4. Let X be the subspace of [0, 2c], consisting of all ordinals of count-
able cofinality, equipped with the ordered topology. Then X has cardinality 2c.
Moreover X is first countable and countably compact, and hence X is (DC(ω1)).
However, it does not have a Gδ-diagonal.

Clearly, every point of any space with a Gδ-diagonal is a Gδ-point. By applying
Lemma 2 of [3] that if every point of a regular DFCC space X is a Gδ-point then
X is first countable, we can conclude the following conclusion.

Corollary 3.5. Let X be a regular countably pracompact space with a Gδ-

diagonal. Then the cardinality of X is at most c.

However, a Tychonoff pseudocompact space with a Gδ-diagonal can have arbi-
trarily big cardinality.

Example 3.6. For every cardinal τ , there exists a pseudocompact space of car-
dinality > τ but having a Gδ-diagonal [9, p. 34].

Theorem 3.7. Let X be a regular DFCC space with a strong rank 1-diagonal.

Then the cardinality of X is at most c.

Proof: By Theorem 3.7 of [2], it is easy to deduce that X is a Moore space, and
hence X is perfect. Moreover, every DFCC, perfect space has countable chain
condition (short for CCC) [10, Proposition 2.3]. Since the cardinality of a first
countable, CCC space is at most c, it follows that |X | ≤ c. �

Recall that the extent e(X) of X is the supremum of the cardinalities of closed
discrete subsets of X . A space X is star countable if whenever U is an open cover
of X , there is a countable subset A ⊂ X such that St(A,U) = X . It is clear that
a space with countable extent is star countable.
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Theorem 3.8. Let X be a first countable, DCCC, normal space. Then the extent

e(X) of X is at most c.

Proof: Suppose that e(X) > c. Then there exists a closed and discrete subset
Y of X such that |Y | > c. Let B(x) = {Bn(x) : n < ω} be a local base for x.
Assume Bn+1(x) ⊂ Bn(x) for any n < ω. For each n < ω let

Pn =
{

{x, y} ∈ [Y ]2 : Bn(x) ∩ Bn(y) = ∅}
}

.

Thus, [Y ]2 =
⋃

{Pn : n ∈ ω}. Then by Lemma 3.1 there exists a subset S of Y
with |S| > ω and [S]2 ⊂ Pn0

for some n0 < ω. Since S ⊂ Y , one easily sees that
S is closed and discrete. Besides, it is evident that for any two distinct points
x, y ∈ S, Bn0

(x) ∩ Bn0
(y) = ∅.

Since X is normal, there exists an open subset U of X such that S ⊂ U ⊂ U ⊂
⋃

{Bn0
(x) : x ∈ S}. Let U = {Bn0

(x) ∩ U : x ∈ S}. It must have a cluster point

y ∈ X , since X is DCCC. Since Bn0
(x) ∩ U ⊂ U ⊂

⋃

{Bn0
(x) : x ∈ S}, we can

conclude that y ∈
⋃

{Bn0
(x) : x ∈ S}. Now we assume that y ∈ Bn0

(x0) for some
x0 ∈ S. It is clear to see that Bn0

(x0) ∩ Bn0
(x) = ∅ for any x ∈ S \ {x0}. This

shows that y is not a cluster point of {Bn0
(x)∩U : x ∈ S}. A contradiction! This

proves that e(X) ≤ c. �

Remark 3.9. Theorem 3.8 would be compared to a recent result of [1]: if X is
first countable and e(X) > c, then X is not star countable. It can be proved by
using our method in the proof of Theorem 3.8 that, clearly, X has an uncountable
closed discrete subset S whose points can be separated by pairwise disjoint open
sets. For each x ∈ S, let Ux ⊂ X be an open set containing x such that for each
y ∈ S \ {x}, Ux ∩ Uy = ∅. Then U = {Ux : x ∈ S} ∪ {X \ S} is an open cover for
which there is no countable A of X such that St(A,U) = X . This shows that X
is not star countable.

We finish this paper by the following question.

Question 3.10. Must a first countable, DCCC, normal space be star countable?
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