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Abstract. We derive a curvature identity that holds on any 6-dimensional Riemannian
manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian
manifold. Moreover, some applications of the curvature identity are given. We also define
a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic
manifold “a harmonic manifold is locally symmetric” and provide another proof of the
Lichnerowicz conjecture refined by Ledger for the 4-dimensional case under a slightly more
general setting.
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1. Introduction

Berger in [2] derived a curvature identity on 4-dimensional compact Riemannian

manifolds from the Chern-Gauss-Bonnet theorem based on the well-known fact that

the Euler number is a topological invariant. We demonstrated that the obtained cur-

vature identity holds on any 4-dimensional Riemannian manifold which is not nec-

essarily compact, see [11]. Further, Gilkey, Park and Sekigawa extended the result

to the higher dimensional setting, the pseudo-Riemannian setting, manifolds with

boundary setting and the Kähler setting, see [13], [14], [15], [16]. In this paper, we

give a curvature identity explicitly which holds on any 6-dimensional Riemannian

manifold using methods similar to those used in the 4-dimensional Chern-Gauss-
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Bonnet theorem, and also provide some applications of the obtained curvature iden-

tity. More precisely, we derive a symmetric 2-tensor valued curvature identity of de-

gree 6 which holds on any 5-dimensional Riemannian manifold, from which a scalar-

valued curvature identity can be derived ([13], Lemma 1.2 (3)). Furthermore, we

derive a symmetric 2-tensor valued curvature identity of degree 6 on 4-dimensional

Riemannian manifolds from the curvature identity on 5-dimensional Riemannian

manifolds. Based on these obtained identities, we shall also discuss a question that

arose in [6] related to the Lichnerowicz conjecture for a harmonic manifold “a har-

monic manifold is locally symmetric”. The original Lichnerowicz conjecture is the one

for 4-dimensional harmonic manifolds which was proved by Walker ([30] and Corol-

lary 1.2 in [6]). The Lichnerowicz conjecture was refined by Ledger since he showed

that a locally symmetric manifold is harmonic if and only if it is locally isometric

to a Euclidean space or a rank one symmetric space, see [20]. Concerning the Lich-

nerowicz conjecture, Szabó in [28] proved that the conjecture is true on the compact

harmonic manifolds. For the non-compact case, Damek and Ricci in [3], [9] provided

a counterexample demonstrating that the Lichnerowicz conjecture is not true for the

case of dimensions greater than or equel to 7. As mentioned above, the Lichnerowicz

conjecture is true for the 4-dimensional case. Further, Nikolayevsky in [23] showed

that the Lichnerowicz conjecture refined by Ledger is also true for the 5-dimensional

case. Presently, to the best of our knowledge, the Lichnerowicz conjecture is still

open for the 6-dimensional case. In the present paper, we provide another proof of

the Lichnerowicz conjecture, the refined version by Ledger for the 4-dimensional case

and a brief review of the proof of the Lichnerowicz conjecture for the 5-dimensional

case by Nikolayevsky under slightly general settings. For more detailed information

concerning the Lichnerowicz conjecture, refer to [22], [23], [24], [18].

2. Preliminaries

In this section, we shall prepare several fundamental concepts, terminologies and

notational conventions. In the present paper, we shall adopt notational conventions

similar to those used in [13]. We denote by Im,n the space of scalar invariant local

formulas and by I2
m,n the space of symmetric 2-tensor valued invariant local formulas,

defined in the category of all Riemannian manifolds of dimension m and of degree n.

We note that Im,n = {0} and I2
m,n = {0} if n is odd. We denote by r the restriction

map r : Im,n → Im−1,n (or r : I2
m,n → I2

m−1,n) given by restricting the summation

to range from 1 to m− 1.

Now, let M = (M, g) be an m-dimensional Riemannian manifold and ∇ the Levi-
Civita connection of g. We assume that the curvature tensor R is defined by

(2.1) R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z
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for X,Y ∈ X(M), where X(M) denotes the Lie algebra of all smooth vector fields

on M . We also denote the Ricci tensor and the scalar curvature of M by ̺ and τ ,

respectively. Let {ei} = {e1, e2, . . . , em} be a local orthonormal frame and {ei}
a dual frame field. Throughout the present paper, we assume that the components

of the tensor fields are relative to a local orthonormal frame {ei} and also adopt the
Einstein convention on sum over repeated indices unless otherwise specified. Further,

we denote by Rabcd;i, Rabcd;ij, . . . the components of the covariant derivatives of the

curvature tensor R = (Rabcd) with respect to the Levi-Civita connection ∇. The
following theorems play fundamental roles in our forthcoming discussion.

Theorem 2.1 ([13]).

(1) r : Im,n → Im−1,n is surjective.

(2) If n is even and if m > n, then r : Im,n → Im−1,n is bijective.

(3) Let m be even. Then ker{r : Im,m → Im−1,m} = Em,m ·R, where Em,n ∈ Im,n

is the Pfaffian form defined by

Em,n :=

m
∑

i1,...,in,j1,...,jn=1

Ri1i2j2j1 . . . Rin−1injnjn−1
(2.2)

× g(ei1 ∧ . . . ∧ ein , ej1 ∧ . . . ∧ ejn).

Theorem 2.2 ([13]).

(1) r : I2
m,n → I2

m−1,n is surjective.

(2) If n is even and if m > n+ 1, then r : I2
m,n → I2

m−1,n is bijective.

(3) If m is even, then ker{r : I2
m+1,m → I2

m,m} = T 2
m,m · R, where T 2

m,n ∈ I2
m,n is

the Pfaffian defined by

T 2
m,n :=

m
∑

i1,...,in+1,j1,...,jn+1=1

Ri1i2j2j1 . . . Rin−1injnjn−1
ein+1 ◦ ejn+1(2.3)

× g(ei1 ∧ . . . ∧ ein+1 , ej1 ∧ . . . ∧ ejn+1).

3. The universal curvature identity

LetM = (M, g) be a 6-dimensional compact oriented Riemannian manifold. Then

it is well-known that the Euler number ofM is given by the following integral formula,

namely, the Chern-Gauss-Bonnet theorem.
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Theorem 3.1 ([25]).

χ(M) =
1

29π
33!

∫

M

E6,6 dvg(3.1)

=
1

384π
3

∫

M

{τ3 − 12τ |̺|2 + 3τ |R|2 + 16̺ab̺ac̺bc − 24̺ab̺cdRacbd

− 24̺uvRuabcRvabc + 8RabcdRaucvRbvdu − 2RabcdRabuvRcduv} dvg.

We here set

R̂ ≡ RabcdRabuvRcduv

and

R̊ ≡ RabcdRaucvRbudv.

We note that identity (3.1) is rearranged by our setting: the curvature of [25] has

a negative sign difference to ours and the term 8RabcdRaucvRbvdu has been changed

by using the first Bianchi identity to 8R̊− 2R̂.

Now, we regard the right hand side of (3.1) as a functional F on the spaceM(M)

of all Riemannian metrics on M . Let h be any symmetric (0, 2)-tensor field in M

and consider a one-parameter deformation of g by g(t) = g + th for any g ∈ M(M).

Since the Euler number χ(M) is a topological invariant of M , F does not depend on
the choice of Riemannian metrics on M , so we have

(3.2) 0 =
d

dt

∣

∣

∣

t=0
F(g(t)) = 0.

This holds for any symmetric (0, 2)-tensor field h onM . Applying arguments similar

to in [11], taking account of (3.1) and (3.2), we have the following equality as the

corresponding Euler-Lagrange equation for the functional F :
1
2 (τ

3 + 3τ |R|2 − 12τ |̺|2 + 16̺ab̺bc̺ca − 24̺ab̺cdRacbd(3.3)

− 24̺uvRabcuRabcv + 8R̊− 4R̂)gij − 3τ2̺ij − 3|R|2̺ij
+ 12|̺|2̺ij + 12τ̺ia̺ja + 12τ̺abRiabj − 6τRiabcRjabc

− 24̺ia̺jb̺ab − 24̺ac̺bcRiabj + 24̺aj̺cdRacid

+ 24̺ai̺cdRacjd + 24̺abRicdjRacbd + 48̺cdRiabcRjabd

+ 6̺jdRabciRabcd + 6̺idRabcjRabcd + 12Řij + 12R̂ij − 24R̊ij = 0,

where Řij = RiuvjRabcuRabcv, R̂ij = RibacRjbuvRacuv and R̊ij = RiabcRjubvRaucv.

We here omit the detailed calculation. From (3.3) and Theorem 3.1, taking account

of the results of ([10], Theorem 1.2) and ([11], Main theorem), we have

Theorem 3.2. The curvature identity (3.3) holds on any 6-dimensional Rieman-

nian manifold M = (M, g) which is not necessarily compact and, further, it is uni-

versal in I2
6,6.
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Especially, we have

Corollary 3.3. Let M = (M, g) be a 6-dimensional Einstein manifold. Then the

following identity holds on M :

(3.4) (−τ |R|2 + 4R̊−2R̂)gij + 12Řij + 12R̂ij − 24R̊ij + 4τRiabcRjabc = 0.

We note that the curvature identity (3.3) can also be obtained by making use of the

equality T 2
6,6 = 0 from Theorem 2.2 (3). However, we derived the same identity (3.3)

without adopting this method in this paper. Further, we note that the curvature

identity is universal in the same form for any 6-dimensional pseudo-Riemannian

manifold, see [14].

4. Derived curvature identities on 4- and 5-dimensional

Riemannian manifolds

In this section, we shall provide further curvature identities on 4- and 5-

dimensional Riemannian manifolds derived from the curvature identity (3.3) on

6-dimensional Riemannian manifolds.

Now, let M = (M, g) be a 5-dimensional Riemannian manifold and M = (M ×R,

g ⊕ 1) the Riemannian product of M = (M, g) and a real line R. Then, applying

Theorem 3.1 to the Riemannian manifold M = (M × R, g ⊕ 1), we see that the

curvature identity

τ3 − 12τ |̺|2 + 3τ |R|2 + 16̺ab̺bc̺ca(4.1)

− 24̺ab̺cdRacbd − 24̺uvRabcuRabcv + 8R̊− 4R̂ = 0

holds on M and further, it is universal in I5,6 ([13], Lemma 1.2 (3)).
Now, taking account of Theorem 2.2 (1), we see that (3.3) holds on M in the

same form by restricting the range of the indices from 1 to 5. Therefore, from (3.3)

and (4.1), we have

Theorem 4.1. Let M = (M, g) be a 5-dimensional Riemannian manifold. Then,

in addition to (4.1), the identity

τ2̺ij + |R|2̺ij − 4|̺|2̺ij − 4τ̺ia̺ja − 4τ̺abRiabj + 2τRiabcRjabc(4.2)

+ 8̺ia̺jb̺ab + 8̺ac̺bcRiabj − 8̺aj̺cdRacid − 8̺ai̺cdRacjd

− 8̺abRicdjRacbd − 16̺cdRiabcRjabd − 2̺jdRabciRabcd

− 2̺idRabcjRabcd − 4Řij − 4R̂ij + 8R̊ij = 0

holds on M .
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Remark 1. Transvecting (4.2) with gij , we may also obtain (4.1).

From Theorem 4.1, we have

Corollary 4.2. Let M = (M, g) be a 5-dimensional Einstein manifold. Then we

have

(4.3)
(τ3

25
+

τ

5
|R|2

)

gij − 2τRiabcRjabc − 4Řij − 4R̂ij + 8R̊ij = 0.

From (4.2), taking account of Theorem 2.2 (1) and Equation (1.2) in [12], we have

Corollary 4.3. Let M = (M, g) be a 4-dimensional Riemannian manifold. Then

the identity (4.2) holds in the same form by restricting the range of the indices

from 1 to 4 and further, it is universal in I2
4,6. Especially, if M is Einstein, the

identity reduces to the identity

(τ3

8
− 3

4
τ |R|2

)

gij − 4R̂ij + 8R̊ij = 0.

Here, a 6-dimensional, 5-dimensional and 4-dimensional Riemannian manifold sat-

isfying the curvature identities in Corollaries 3.3, 4.2 and 4.3 will be called a 6-

dimensional, 5-dimensional and 4-dimensional weakly Einstein manifold of degree 6,

respectively. Based on our current work, the definition of a 4-dimensional weakly

Einstein manifold introduced in our papers [11], [12] may be made more precise and

the definition becomes that of a 4-dimensional weakly Einstein manifold of degree 4.

We note that Arias-Marco and Kowalski recently obtained a classification theorem

for 4-dimensional homogeneous weakly Einstein manifolds, see [1].

5. A generalization of harmonic manifolds

An m-dimensional Riemannian manifold M = (M, g) is called a locally harmonic

manifold (briefly, harmonic manifold) if for every point p ∈ M , the volume density

function θp(q) =
√

det(gij)(q) is a radial function in a normal neighborhood Up =

Up(x
1, . . . , xm) centered at p, where gij = g(∂/∂xi, ∂/∂xj), namely, there exists

a positive real number ε(p) and a smooth function Θp : [0, ε(p)) → M such that

θp(q) = Θp(d(p, q)) for q ∈ Up where d(p, q) is the distance from p to q. We note that

there are several equivalent definitions for harmonic manifolds, see [4]. A locally

Euclidean space and a locally rank one symmetric space are harmonic manifolds.

Concerning the converse, there is a well-known conjecture known as the Lichnerowicz

conjecture that every harmonic manifold is locally isometric to a Euclidean space or
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a rank one symmetric space. Copson and Ruse in [8], Lichnerowicz in [21] and Ledger

in [19] have shown that each harmonic manifold must satisfy an infinite sequence

{Hn}n=1,2,... of conditions on the curvature tensor and its covariant derivatives.

The first three of these conditions are given as follows, see [4], [33]:

H1 : Raija = Λ1gij ,

H2 : S(RaijbRbkla) = Λ2S(gijgkl),

H3 : S(32RaijbRbklcRcuva − 9Raijb;kRbuva;l) = Λ3S(gijgklguv),

where each Λn, n = 1, 2, 3, is a constant and S denotes the summation taken over

all permutations of the free indices appearing inside the parentheses. From the

condition H1, it follows immediately that a harmonic manifold is Einstein and hence

real analytic as a Riemannian manifold. We may note that the conditionsH1, H2, H3

are equivalent to the following conditions H ′

1, H
′

2, H
′

3, respectively, see [6]:

H ′

1 : Raxxa = Λ1|x|2,
H ′

2 : RaxxbRbxxa = Λ2|x|4,
H ′

3 : 32RaxxbRbxxcRcxxa − 9Raxxb;xRbxxa;x = Λ3|x|6,

for any x = ξiei ∈ TpM at p ∈ M , where Raxxb = Raijbξ
iξj and Raxxb;c =

Raijb;kξ
iξjξk.

Remark 1. The condition H3 in [6] is incorrect ([4], page 162) and should be

changed to the above H ′

3.

In [6], Carpenter, Gray and Willmore raised the following question:

Question A. Does there exist a Riemannian manifoldM = (M, g) which satisfies

some but not all of the conditions {Hn}n=1,2,...?

Concerning Question A, they discussed the case where M = (M, g) is a non-flat

locally symmetric space satisfying the conditionH1 and some other conditionHk and

obtained some partial answers to the question ([6], Theorem 1.1). Taking account of

these observations, it seems worthwhile to consider Question A under a more general

setting.

Now, we shall define a generalization of harmonic manifolds.

Definition 5.1. A Riemannian manifold M = (M, g) satisfying the conditions

{Hn}n=1,...,k is called an asymptotic harmonic manifold up to order k.

By the above definition, it follows immediately that an asymptotic harmonic mani-

fold up to order k is an asymptotic harmonic manifold up to order for any l, 1 6 l < k.
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Further, we may check that a locally symmetric asymptotic harmonic manifold up

to order k is k-stein, see [6], [19], [20].

LetM = (M, g) be anm-dimensional asymptotic harmonic manifold up to order 2.

Then we have

(5.1) ̺ij = Λ1gij and hence, Λ1 =
τ

m
,

and

RaijbRaklb +RaijbRalkb +RaikbRajlb(5.2)

+RaikbRaljb +RailbRakjb +RailbRajkb = 2Λ2(gijgkl + gikgjl + gjkgil).

Transvecting (5.2) with gkl and taking account of (5.1), we have

(5.3) 2
( τ

m

)2

gij + 3RiabcRjabc = 2(m+ 2)Λ2gij .

From (5.3), we have

(5.4) Λ2 =
1

2m(m+ 2)

(2τ2

m
+ 3|R|2

)

.

Thus, from (5.4), it follows immediately that |R|2 is constant on M . Further, from

(5.3) and (5.4), we have

(5.5) RiabcRjabc =
1

3

{ 1

m

(2τ2

m
+ 3|R|2

)

− 2τ2

m2

}

gij =
1

m
|R|2gij ,

and hence, M is a super-Einstein manifold with constant |R|2 (see [5], [17]).

Remark 2. By definition, an m (> 3) -dimensional asymptotic harmonic mani-

fold up to order 2 is a 2-stein manifold with constant |R|2, see [6]. It is known that
for each 2-stein manifold of dimensionm (6= 4), |R|2 is constant. An explicit example
of a 4-dimensional 2-stein manifold with non-constant |R|2 has been provided in [7].
It is also known that every 2-stein manifold is super-Einstein. We may reconfirm

this fact by the above equality (5.5).

From (5.2), taking account of (5.4), we may show

Proposition 5.1. Let M = (M, g) be an m (> 3) -dimensional non-flat asymp-

totic harmonic manifold up to order 2. Then, M is irreducible.
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The following identity always holds. We shall use it to derive the Lichnerowicz

formula:

(RiabcRjabc);kk = 2Bij + 8R̊ij + 2R̂ij + 4̺cdRiabcRjabd + 2̺ic;abRjabc(5.6)

+ 2̺jc;abRiabc + 2̺ab;icRjabc + 2̺ab;jcRiabc.

Especially, if the Riemannian manifold M = (M, g) is Einstein with constant |R|2,
from (5.6), we have easily

(5.7) |∇R|2 = −4R̊− R̂− 2τ

m
|R|2.

In the sequel, we assume that every Riemannian manifold M = (M, g) is an

m (> 4) -dimensional asymptotic harmonic manifold up to order 3 unless otherwise

specified. Then, from the condition H3, taking account of (5.5), we have

gklguvS(Raijb;kRbuva;l) = 48(Aij + 2Bij),(5.8)

gklguvS(RaijbRbklcRcuva) = 48
( τ3

m3
gij +

3

2
Řij −

7

2
R̂+ R̊ij +

3

m
τRiabcRjabc

)

(5.9)

= 48
{

−7

2
R̂ij + R̊ij +

( τ3

m3
+

9τ

2m2
|R|2

)

gij

}

,

gklguvS(gijgklguv) = 48(m+ 2)(m+ 4)gij ,(5.10)

where Aij = Rabcd;iRabcd;j and Bij = Ribcd;aRjbcd;a. Thus, fromH3 and (5.8)–(5.10),

we have

32
{

−7

2
R̂ij + R̊ij +

( τ3

m3
+

9τ

2m2
|R|2

)

gij

}

− 9(Aij + 2Bij)(5.11)

= (m+ 2)(m+ 4)Λ3gij .

Multiplying (5.11) by m, we have the equation

32
{

−7m

2
R̂ij +mR̊ij +

( τ3

m2
+

9τ

2m
|R|2

)

gij

}

− 9m(Aij + 2Bij)(5.12)

= m(m+ 2)(m+ 4)Λ3gij .

Transvecting (5.11) with gij , we further have

(5.13) 32
(

−7

2
R̂ + R̊+

τ3

m2
+

9τ

2m
|R|2

)

− 27|∇R|2 = m(m+ 2)(m+ 4)Λ3.

Thus, from (5.12) and (5.13), we have

9m(Aij + 2Bij)− 27|∇R|2gij = 32
{

−7m

2
R̂ij +mR̊ij +

( τ3

m2
+

9τ

2m
|R|2

)

gij

}

+ 27|∇R|2gij − 32
(

−7

2
R̂+ R̊+

τ3

m2
+

9τ

2m
|R|2

)

gij ,
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and hence,

(5.14) 9m(Aij + 2Bij)− 27|∇R|2gij = 32(mR̊ij − R̊gij)− 112(mR̂ij − R̂gij).

From (5.6), taking account of (5.5), we have

(5.15) Bij = −4R̊ij − R̂ij −
2τ

m2
|R|2gij .

Thus, from (5.1), (5.4), (5.7) and (5.13), we have

Proposition 5.2. Let M = (M, g) be an m-dimensional asymptotic harmonic

manifold up to order 3. Then M is a 2-stein manifold with constant |R|2, and
further, |∇R|2 + R̂+4R̊, 27|∇R|2+112R̂− 32R̊ are constant and hence, 17R̂− 28R̊

is constant on M .

Remark 3. Proposition 6.68 in [4] should be corrected as above.

Here, we set

αij = Aij −
1

m
|∇R|2gij ,(5.16)

βij = Bij −
1

m
|∇R|2gij ,

γ̂ij = R̂ij −
1

m
R̂gij ,

γ̊ij = R̊ij −
1

m
R̊gij .

Then, from (5.14) and (5.16), we have

(5.17) 9(αij + 2βij) = 32̊γij − 112γ̂ij,

and hence, from (5.15)–(5.16), we have

Bij = − 4R̊ij − R̂ij −
2τ

m2
|R|2gij

= − 4̊γij − γ̂ij −
1

m

(

4R̊+ R̂+
2τ

m
|R|2

)

gij

= − 4̊γij − γ̂ij +
1

m
|∇R|2gij .

Thus we obtain

(5.18) βij = −4̊γij − γ̂ij .
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Hence, we have

Proposition 5.3. Let M = (M, g) be an m-dimensional asymptotic harmonic

manifold up to order 3. Then the following equalities hold:

9αij = 104̊γij − 94γ̂ij, βij = −4̊γij − γ̂ij .

5.1. 4-dimensional asymptotic harmonic manifolds. LetM = (M, g) be a 4-

dimensional asymptotic harmonic manifold up to order 3. Then, sinceM is a 2-stein

manifold (with constant |R|2) for each point p ∈ M , we may choose a Singer-Thorpe

basis {ei} = {e1, e2, e3, e4} such that

R1212 = R3434 = a, R1313 = R2424 = b, R1414 = R2323 = c,(5.19)

R1234 = α, R1342 = β, R1423 = γ

satisfying α + β + γ = 0 and α = a + τ/12, β = b + τ/12, γ = c + τ/12 (or

−α = a+ τ/12, −β = b+ τ/12, −γ = c+ τ/12), see [27].

Without loss of generality, it suffices to consider the case,

(5.20) α = a+
τ

12
, β = b+

τ

12
, γ = c+

τ

12
.

Then, by straightforward calculation, we obtain

τ = −4(a+ b + c), |R|2 =
5

6
τ2 − 32(ab+ bc+ ca),(5.21)

R̂ij =
1

4
R̂gij (γ̂ij = 0), R̂ = 192abc+ 32τ(ab+ bc+ ca)− 7

12
τ3,

R̊ij =
1

4
R̊gij (̊γij = 0), R̊ = 96abc+ 4τ(ab+ bc+ ca)− τ3

24
.

Further, from (5.1), (5.4), (5.13), and (5.21), we have

Λ1 =
τ

4
,(5.22)

Λ2 =
1

48

(1

2
τ2 + 3|R|2

)

,(5.23)

192Λ3 = − 27|∇R|2 + 32
(

−7

2
R̂+ R̊+

τ3

16
+

9

8
τ |R|2

)

.(5.24)

From (5.22) and (5.23), taking account of Corollary 4.3, we see that R̂ − 2R̊ is

constant. Thus, from Proposition 5.2, it follows that both R̂ and R̊ are constant,

and hence |∇R|2 is also constant. Thus, a, b, and c are the real roots of the equation

(5.25) t3 +
τ

4
t2 +

1

32

(5

6
τ2 − |R|2

)

t− 192
(

R̂− τ |R|2 − 1

4
τ3
)

= 0
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at each point p ∈ M and hence, a, b and c can be expressed in terms of constant-

valued functions τ , |R|2, R̂ and R̊ at each point of M , respectively. Therefore, M

is a 4-dimensional 2-stein curvature harmonic manifold, and hence M is a locally

symmetric manifold by virtue of ([27], page 281). Further, taking account of the

result [26] and Proposition 5.1, we may show

Theorem 5.4. A 4-dimensional asymptotic harmonic manifold up to order 3 is

locally flat or locally isometric to a rank one symmetric space.

Thus, from Theorem 5.4, the refinement of Walker’s result follows immedi-

ately [30].

5.2. 5-dimensional asymptotic harmonic manifolds. First, let M = (M, g)

be a 5-dimensional asymptotic harmonic manifold up to order 2. ThenM is a 2-stein

manifold with constant |R|2. From Corollary 4.2 and from (5.5) with m = 5, we see

that M satisfies the equality

(5.26) 2R̊ij − R̂ij =
τ

100
(9|R|2 − τ2)gij .

Hence, transvecting (5.26) with gij , we have

(5.27) 2R̊− R̂ =
τ

20
(9|R|2 − τ2).

Next, let M = (M, g) be a 5-dimensional asymptotic harmonic manifold up to or-

der 3. Then, from Proposition 5.2 and (5.27), we see that R̂, R̊ and |∇R|2 are
constant on M ([30], Proposition 3.1). From (5.13) with m = 5, in addition to the

equalities (5.26) and (5.27), we have the equality

(5.28) 315Λ3 = −27|∇R|2 − 112R̂+ 32R̊+
32

25
τ3 +

144τ

5
|R|2.

Thus, from (5.27) and (5.28), we have

(5.29) 27|∇R|2 + 96R̂− 12

25
τ3 − 36τ |R|2 = −315Λ3.

Now, we recall the following result of Nikolayevsky ([23], Proposition 1).

Proposition 5.5. A 5-dimensional 2-stein manifold M = (M, g) is either of con-

stant sectional curvature or locally homothetic to the symmetric space SU(3)/SO(3)

or to its noncompact dual SL(3)/SO(3).
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In this section, we give a brief review on Proposition 5.5 under a slightly more

general setting from the view point of Question A. We note that the following result

([23], Proposition 4) plays an essential role in the proof of Proposition 5.5.

Proposition 5.6. LetM = (M, g) be a 5-dimensional 2-stein manifold. Then, at

each point p ∈ M , there exists an orthonormal basis {ei} such that

R1212 = R1313 = R2323 = R2424 = R3434 = µ− ν, R1414 = µ− 4ν,

R1515 = R4545 = µ, R2525 = R3535 = µ− 3ν,

R1234 = ν, R1235 =
√
3 ν, R1324 = −ν, R1325 =

√
3 ν,

R1423 = −2ν, R2425 =
√
3 ν, R3435 = −

√
3 ν

and all the other components of R vanish.

From Proposition 5.6, by direct calculation, we have

τ = − 20µ+ 30ν,(5.30)

RiabcRjabc = (8µ2 − 24µν + 60ν2)δij ,(5.31)

and hence,

(5.32) |R|2 = 40µ2 − 120µν + 300ν2.

Further we obtain

Řij = (−32µ3 + 144µ2ν − 384µν2 + 360ν3)δij ,(5.33)

R̂ij = (16µ3 − 72µ2ν + 360µν2 − 600ν3)δij ,(5.34)

and hence, R̂ = 80µ3 − 360µ2ν + 1800µν2 − 3000ν3,

(5.35) R̊ij = (12µ3 − 54µ2ν + 18µν2 − 30ν3)δij

and hence, R̊ = 60µ3− 270µ2ν+90µν2− 150ν3. Thus, from (5.30) and (5.32) we see

that µ and ν are represented in terms of the constant valued functions τ and |R|2 at
each point p ∈ M , and hence, µ and ν are constant onM . Therefore,M is curvature

homogeneous. From (5.7) with m = 5, taking account of (5.30)–(5.35), we have

(5.36) |∇R|2 = 1680µν2.

Thus, from (5.36), it follows thatM is locally symmetric if and only if µ = 0 or ν = 0.

Here, if ν = 0, then, from Proposition 5.6, it follows that M is a space of constant
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sectional curvature −µ. Now, we assume that ν 6= 0. Then, by applying the second

Bianchi identity to the curvature form obtained by making use of Proposition 5.6,

we may check thatM is locally symmetric (and hence, µ = 0), and further thatM is

locally homothetic to the symmetric space SU(3)/SO(3) or to its noncompact dual

SL(3)/SO(3) ([23], pages 32–34). Thus, we have Proposition 5.5.

We now show that any 5-dimensional Riemannian manifold M = (M, g) which

is locally homothetic to the symmetric space SU(3)/SO(3) (or SL(3)/SO(3)) with

a fixed canonical Riemannian metric is never an asymptotic harmonic manifold up to

order 3. In order to do this, without loss of generality, it suffices to establish it in the

case where the Riemannian manifoldM is locally homothetic to the symmetric space

SL(3)/SO(3) equipped with the metric given by ([23], page 34). Now, we assume

that M is an asymptotic harmonic manifold up to order 3. Then, we may easily

check that ν < 0 for M . Since ∇R = 0 and µ = 0 hold on M , from (5.29), taking

account of (5.30)–(5.35), we have

(5.37) Λ3 = 1984ν3.

On the other hand, choosing an orthonormal basis {ei} = {e1 = x, e2, e3, e4, e5} of
the tangent space TpM at any point p ∈ M satisfying the condition in Proposition 5.6

and calculating the equality in the condition H ′

3 by making use of the orthonormal

basis {ei}, we have also

(5.38) Λ3 = 2012ν3.

Thus, from (5.37) and (5.38), it follows that ν = 0. But this is a contradiction.

Summing up the above arguments, we have finally

Theorem 5.7. LetM = (M, g) be a 5-dimensional asymptotic harmonic manifold

up to order 3. Then M is a space of constant sectional curvature.

From Theorem 5.7, we have immediately ([23], Theorem 1)

Corollary 5.8. A 5-dimensional harmonic manifold is a space of constant sec-

tional curvature.

Corollary 5.8 gives an affirmative answer to the Lichnerowicz conjecture (refined

version by Ledger) for the 5-dimensional case.

Remark 4. The result that the symmetric space SU(3)/SO(3) (or SL(3)/SO(3))

is not asymptotic harmonic manifold up to order 3 can be also obtained by taking

account of the fact that SU(3)/SO(3) (or SU(3)/SL(3)) is not 3-stein ([6], page 58).

We here give another explicit proof for the same result by making use of the cur-

vature identities on 5-dimensional Riemannian manifolds derived from the universal

curvature identity on 6-dimensional Riemannian manifolds.
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6. Concluding remarks

Based on the discussions in the previous sections, while grappling with the

Lichnerowicz conjecture for the 6-dimensional case, it seems effective to find an

orthonormal basis at each point of a 6-dimensional 2-stein manifold such as the

Singer-Thorpe basis for the 4-dimensional case and the Nikolayevsky basis for

the 5-dimensional case. As an approach to the Lichnerowicz conjecture for the 6-

dimensional case, it also seems worthwhile to provide the universal curvature identity

on the 8-dimensional Riemannian manifold through a method similar to the 4- and

5-dimensional cases and further the curvature identities on the 6- and 7-dimensional

Riemannian manifolds derived from the universal curvature identities obtained.

Lastly, we shall explain a reason why we introduced the notion of asymptotic

harmonic manifolds. As mentioned at the beginning of Section 5, there are several

equivalent definitions for harmonic manifolds. One of them is the one expressed in

terms of the characteristic function f = f(Ω), where Ω = 1/2s2, s = d(p, q) for q ∈ Up

(Up = Up(x
1, x2, . . . , xm) denoting a sufficiently small normal coordinate neighbor-

hood centered at each point p ∈ M). The characteristic function plays an important

role in the geometry of harmonic manifolds. We refer to [4], [21], [29] for more

details on the characteristic functions. Due to these observations concerning Ques-

tion A, it is natural to discuss the relationships between the constants {Hn}n=1,2,...

and {f (n)(0)}n=1,2,.... Here, we denote by “
′ ” the derivative with respect to the

variable Ω. Now, let M = (M, g) be an m-dimensional harmonic manifold with

the characteristic function f = f(Ω). Then it is known that between the constants

{Λ1,Λ2,Λ3} and {f ′(0), f ′′(0), f ′′′(0)}, the following relations hold [21], [29]:

(6.1) Λ1 = −3

2
f ′(0), Λ2 = −45

8
f ′′(0), Λ3 = −315f ′′′(0).

Lichnerowicz in [21] has proved the following.

Theorem 6.1. In any m-dimensional harmonic manifold M = (M, g), the char-

acteristic function f = f(Ω) satisfies the inequality

(6.2) f ′(0)2 +
5

2
(m− 1)f ′′(0) 6 0.

The equality sign is valid if and only if M is of constant sectional curvature.

From (5.1) and (5.4), taking account of (6.1) and (6.2), we can see that the above

Theorem 6.1 is generalized as follows:

Theorem 6.2. LetM = (M, g) be an m-dimensional asymptotic harmonic mani-

fold up to order 2. Then M satisfies the inequality

(6.3) Λ2
1 − (m− 1)Λ2 6 0.
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The equality sign is valid if and only if M is of constant sectional curvature

τ/(m(m− 1)).

Tachibana in [29] has proved the following.

Theorem 6.3. Any 2n-dimensional harmonic Kähler manifold M = (M,J, g)

satisfies the inequality

(6.4) f ′(0)2 +
5(n+ 1)2

n+ 7
f ′′(0) 6 0

and the equality sign is valid if and only if M is of constant holomorphic sectional

curvature.

From (5.1) and (5.4), taking account of (6.1) and (6.2), we can see that the above

Theorem 6.3 is generalized as follows:

Theorem 6.4. Let M = (M,J, g) be a 2n-dimensional asymptotic harmonic

Kähler manifold up to order 2. Then M satisfies the inequality

(6.5) Λ2
1 −

2(n+ 1)2

n+ 7
Λ2 6 0

and the equality sign is valid if and only if M is of constant holomorphic sectional

curvature τ/(n(n+ 1)).

Similarly, from (5.1), (5.4) and (5.13), taking account of (6.1), we can see that

the corresponding generalizations for the results ([31], Theorem 5.2, and [32], Theo-

rem 5.5) are obtained.

Taking account of the discussions in the present paper and in [6] concerning Ques-

tion A we obtain that if the dimension is 4 then the least integer of the series is

not greater than 3 and if the dimension is 5 then the least integer of the series is 3.

Based on the arguments developed the following question naturally arises:

Question B. For any integer m (m > 6), does there exist the least integer

K(m) such that any m-dimensional asymptotic harmonic manifold up to order

k (k > K(m)) is necessarily harmonic?
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