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Abstract

This paper is devoted to geometric formulation of the regular (resp.
strongly regular) Hamiltonian system. The notion of the regularization of
the second order Lagrangians is presented. The regularization procedure
is applied to concrete example.
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1 Introduction

In general, a second order Lagrangian gives rise to an Euler–Lagrange form
on 4th order jet prolongation, i.e. the Euler–Lagrange equations are of the 4th
order. In this paper we are interested in second order Lagrangians which give
rise to Euler–Lagrange equations of the 3rd order.
We consider 3rd order Hamiltonian systems for a given second order La-

grangian. The Lagrangian is quadratic or affine in second derivatives. All these
Lagrangians are singular in the standard Hamilton–De Donder theory [2]. How-
ever, in the generalized setting, the question on existence of regular Hamilton
equations has sense. We apply to this case regularity conditions found in and
find their explicit expression for the above mentioned type of Lagrangians.
The results (the regularity resp. strong regularity) can be directly applied to

concrete Lagrangian. A regularization procedure is illustrated on concrete ex-
ample of Lagrangian which is quadratic in second derivatives. The Lagrangian
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does not satisfy the regularity condition in the classical De Donder–Hamilton
sence but the Hamiltonian system is strongly regular in sense [6]. This geomet-
rical meaning of regular Lagrangians is possible to apply to physical theories.
A regularization procedure of first order Lagrangians has been studied in

[1, 7, 9] and some second order Lagrangians have been studied in [10, 11].
Throughout the paper all manifolds and mappings are smooth and sum-

mation convention is used. We consider a fibered manifold (i.e., surjective
submersion) π : Y → X, dimX = n, dimY = n + m, its r-jet prolonga-
tion πr : JrY → X, r ≥ 1 and canonical jet projections πr,k : JrY → JkY ,
0 ≤ k < r (with an obvious notations J0Y = Y ). A fibered char on Y (resp. as-
sociated fibered chart on JrY ) is denoted by (V, ψ), ψ = (xi, yσ) (resp. (Vr, ψr),
ψr = (xi, yσ, yσi , . . . , y

σ
i1...ir

)).
A vector field ξ on JrY is called πr-vertical (resp. πr,k-vertical) if it projects

onto the zero vector field on X (resp. on JkY ).
Recall that every q-form η on JrY admits a unique (canonical) decomposi-

tion into a sum of q-forms on Jr+1Y as follows:

π∗
r+1,rη = hη +

q∑
k=1

pkη,

where hη is a horizontal form, called the horizontal part of η, and pkη, 1 ≤ k ≤ q,
is a k-contact part of η (see [3]).
We use the following notations:

ω0 = dx1 ∧ dx2 ∧ · · · ∧ dxn, ωi = i ∂

∂xi
ω0, ωij = i ∂

∂xj
ωi,

and
ωσ = dyσ − yσj dx

j , . . . , ωσ
i1i2...ik

= dyσi1i2...ik − yσi1i2...ikjdx
j

For more details on fibered manifolds and the corresponding geometric struc-
tures we refer e.g. to [8].

2 Hamiltonian systems and regularity

In this section we briefly recall basic concepts on Lepagean equivalents of La-
grangians, due to Krupka [3], [4], and on Lepagean equivalents of Euler–Lagrange
forms and generalized Hamiltonian field theory, due to Krupková [5, 6].
By an r-th order Lagrangian we shal mean a horizontal n-form λ on JrY .
A n-form ρ is called a Lepagean equivalent of a Lagrangian λ if (up to a

projection) hρ = λ, and p1dρ is a πr+1,0-horizontal form.
For an r-th order Lagrangian we have all its Lepagean equivalents of order

(2r − 1) characterized by the following formula

ρ = Θ+ μ, (2.1)

where Θ is a (global) Poincaré–Cartan form associated to λ and μ is an arbitrary
n-form of order of contactness ≥ 2, i.e., such that hμ = p1μ = 0. Recall that
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for a Lagrangian of order 1, Θ = θλ where θλ is the classical Poincaré–Cartan
form of λ. If r ≥ 2, Θ is no more unique, however, there is an non-invariant
decomposition

Θ = θλ + p1dν, (2.2)

where

θλ = Lω0 +

r−1∑
k=0

(
r−k−1∑
l=0

(−1)ldp1
dp2

. . . dpl

∂L

∂yσj1...jkp1...pli

)
ωσ
j1...jk

∧ ωi, (2.3)

and ν is an arbitrary at least 1-contact (n− 1)-form.
A closed (n+1)-form α is called a Lepagean equivalent of an Euler–Lagrange

form E = Eσω
σ ∧ ω0 if p1α = E.

Recall that the Euler–Lagrange form corresponding to an r-th order λ = Lω0

is the following (n+ 1)-form of order ≤ 2r

E =

(
∂L

∂yσ
−

r∑
l=1

(−1)ldp1
dp2

. . . dpl

∂L

∂yσp1...pl

)
ωσ ∧ ω0.

By definition of a Lepagean equivalent of E, one can find using Poincaré
lemma local forms ρ, such that α = dρ, and ρ is an Lepagean equivalent of
a Lagrangian for E. The family of Lepagean equivalents of E is also called
a Lagrangian system, and denoted by [α]. The corresponding Euler–Lagrange
equations now take the form

Jsγ∗iJsξα = 0 for every π-vertical vector field ξ on Y , (2.4)

where α is any representative of order s of the class [α]. A (single) Lepagean
equivalent α of E on JsY is also called a Hamiltonian system of order s and
the equations

δ∗iξα = 0 for every πs-vertical vector field ξ on J
sY (2.5)

are called Hamilton equations. They represent equations for integral sections δ
(called Hamilton extremals) of the Hamiltonian ideal, generated by the system
Ds

α of n-forms iξα, where ξ runs over πs-vertical vector fields on J
sY . Also,

considering πs+1-vertical vector fields on Js+1Y , one has the ideal Ds+1
α̂ of n-

forms iξα̂ on Js+1Y , where α̂ (called principal part of α) denotes the at most
2-contact part of α. Its integral sections which moreover annihilate all at least
2-contact forms, are called Dedecker–Hamilton extremals. It holds that if γ is an
extremal then its s-prolongation (resp. (s+1)-prolongation) is a Hamilton (resp.
Dedecker–Hamilton) extremal, and (up to projection) every Dedecker–Hamilton
extremal is a Hamilton extremal.
Denote by r0 the minimal order of Lagrangians corresponding to E. A

Hamiltonian system α on JsY, s ≥ 1, associated with E is called regular if the
system of local generators of Ds+1

α̂ contains all the n-forms

ωσ ∧ ωi, ω
σ
(j1

∧ ωi), . . . , ω
σ
(j1...jr0−1

∧ ωi), (2.6)
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where (. . . ) denotes symmetrization in the indicated indices. If α is regular
then every Dedecker–Hamilton extremal is holonomic up to the order r0, and
its projection is an extremal. (In case of first order Hamiltonian systems there is
an bijection between extremals and Dedecker–Hamilton extremals). α is called
strongly regular if the above correspondence holds between extremals and Hamil-
ton extremals. It can be proved that every strongly regular Hamiltonian system
is regular, and it is clear that if α is regular and such that α = α̂ then it is
strongly regular. A Lagrangian system is called regular (resp. strongly regular)
if it has a regular (resp. strongly regular) associated Hamiltonian system.

3 Hamiltonian systems for second order Lagrangians

In general, a second order Lagrangian gives rise to an Euler–Lagrange form on
J4Y . We shall consider second order Lagrangians λ which satisfy one of the
following conditions
1) The corresponding Euler–Lagrange form is of order 3, i.e. the Lagrangians

satisfy the conditions (
∂2L

∂yσij∂y
ν
kl

)
Sym(ijkl)

= 0, (3.1)

where Sym(ijkl) means symmetrization in the indicated indices,
2) The Euler–Lagrange expressions λ of are of the second order, “non-affine”

in the second derivatives
∂2Eσ

∂yνkl∂y
κ
ij

�= 0. (3.2)

An interesting case of condition 1) is the Lagrangian affine in second deriva-
tives, i.e. its Lagrangial function takes the form L = L0 + Lij

σνy
σν
ij , where the

functions L0, Lij
σν do not depepend on y

αβ
kl .

In what follows, we shall study Hamiltonian systems corresponding to a
special choice of a Lepagean equivalent of such Lagrangians, namely, α of order
3, α = dρ, where

ρ = Lω0 +

(
∂L

∂yσj
− dk

∂L

∂yσjk

)
ωσ ∧ ωj +

∂L

∂yσij
ωσ
i ∧ ωj + μ̄

+ aijσνω
σ ∧ ων ∧ ωij + bkijσν ω

σ ∧ ων
k ∧ ωij + cklijσν ωσ ∧ ων

kl ∧ ωij , (3.3)

with an arbitrary at least 3-contact n-form μ̄ and functions aijσν , b
kij
σν , c

klij
σν

dependent on variables xk, yκ, yκk , y
κ
kl and satisfying the conditions

aijσν = −ajiσν , aijσν = −aijνσ; bkijσν = −bkjiσν ; c
klij
σν = clkijσν , cklijσν = −ckljiσν . (3.4)

Theorem. [11] Let dimX ≥ 2. Let λ = Lω0 be a second order Lagrangian with
the Euler–Lagrange form (3.1) or (3.2), and α = dρ with ρ of the form (3.3),
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(3.4), be its Lepagean equivalent. Assume that the matrix

P ijkl
σν =

(
∂2L

∂yνij∂y
σ
kl

+ 2 cklijνσ

)
Sym(jkl)

, (3.5)

with mn3 rows (resp. mn columns) labelled by σjkl (resp. νi) has maximal rank
equal to mn and matrix

Qijkl
σν =

(
∂2L

∂yσij∂y
ν
kl

− 2cklijσν

)
, (3.6)

with mn2 rows (resp. mn2 columns) labelled by σij (resp. νkl) has maximal
rank equal to mn (n+ 1) /2. Then the Hamiltonian system α = dρ is regular
(i.e. every Dedecker–Hamilton extremal is of the form π3,2 ◦ δD = J2γ, where γ
is an extremal of λ).

If moreover μ̄ is closed then the Hamiltonian system α = dρ is strongly
regular (i.e. every Hamilton extremal is of the form π3,2 ◦ δ = J2γ, where γ is
an extremal of λ).

Proof of the above theorem follows from explicit computation. The following
proposition is straightforward application of the theorem to the special case of
the second order Lagrangians affine in second derivatives.

Proposition. Let dimX ≥ 2. Let λ = Lω0 be a second order Lagrangian of
the form L = L0+L

ij
σνy

σν
ij , where the functions L0, Lij

σν do not depepend on y
αβ
kl

and α = dρ with ρ of the form (3.3), (3.4), be its Lepagean equivalent. Assume
that the matrix (

cklijνσ

)
Sym(jkl)

, (3.7)

with mn3 rows (resp. mn columns) labelled by σjkl (resp. νi) has maximal
rank equal to mn and matrix (

cklijσν

)
, (3.8)

with mn2 rows (resp. mn2 columns) labelled by σij (resp. νkl) has maximal
rank equal to mn(n+ 1)/2. Then the Hamiltonian system α = dρ is regular
(i.e. every Dedecker–Hamilton extremal is of the form π3,2 ◦ δD = J2γ, where γ
is an extremal of λ).

If moreover μ̄ is closed then the Hamiltonian system α = dρ is strongly
regular (i.e. every Hamilton extremal is of the form π3,2 ◦ δ = J2γ, where γ is
an extremal of λ).
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Proof. Explicit computation α = dρ gives:

π∗
4,3α = Eσω

σ ∧ ω0 +

(
∂2L

∂yσj ∂y
ν
− ∂

∂yν
dj

∂L

∂yσij
− 2dka

ij
σν

)
ων ∧ ωσ ∧ ωi

+

(
∂2L

∂yσi ∂y
ν
k

− ∂2L

∂yσ∂yνik
− ∂

∂yνk
dj

∂L

∂yσij
+ 4aikνσ − 2djb

kij
σν

)
ων
k ∧ ωσ ∧ ωi

+

(
∂2L

∂yσi ∂y
ν
kl

− ∂

∂yνkl
dj

∂L

∂yσij
− 2(bkilσν )Sym(kl) − 2djc

klij
σν

)
ων
kl ∧ ωσ ∧ ωi

− (
2cklijσν

)
Sym(jkl)

ων
jkl ∧ ωσ ∧ ωi

+

(
∂2L

∂yσij∂y
ν
k

− 4(bkijσν )Alt((σj)(νk))

)
ων
k ∧ ωσ

j ∧ ωi

+
(
2cklijσν

)
ων
kl ∧ ωσ

j ∧ ωi +

(
∂aijσν
∂yκ

)
Alt(κσν)

ωκ ∧ ωσ ∧ ων ∧ ωij

+

(
∂aijσν
∂yκp

+
∂bpijνκ

∂yσ

)
Alt(σν)

ωκ
p ∧ ωσ ∧ ων ∧ ωij

+

((
∂aijσν
∂yκpq

)
Sym(pq)

+

(
∂cpqijνκ

∂yσpq

)
Alt(σν)

)
ωκ
pq ∧ ωσ ∧ ων ∧ ωij

+

(
∂bqijσν

∂yκp

)
Alt((κp)(νq))

ωσ ∧ ων
q ∧ ωκ

p ∧ ωij +

(
∂bkijσν

∂yκpq
− ∂cpqijσκ

∂yνk

)
Sym(pq)

ωσ ∧ ων
k ∧ ωκ

pq ∧ ωij −
(
∂cklijσν

∂yκpq

)
Alt((κpq)(νkl))

ωσ ∧ ωκ
pq ∧ ων

kl ∧ ωij + dμ̄, (3.9)

where Alt((. . . ) . . . (. . . )) means alternation in the indicated multiindices and
Sym(. . . ) means symmetrization in the indicated indices.
In the notation (3.7), (3.8) the principal part of α (3.9) takes form

α̂ = Eσω
σ ∧ ω0 +

(
∂2L

∂yσj ∂y
ν
− ∂

∂yν
dj

∂L

∂yσij
− 2dka

ij
σν

)
ων ∧ ωσ ∧ ωi

+

(
∂2L

∂yσi ∂y
ν
k

− ∂2L

∂yσ∂yνik
− ∂

∂yνk
dj

∂L

∂yσij
+ 4aikνσ − 2djb

kij
σν

)
ων
k ∧ ωσ ∧ ωi

+

(
∂2L

∂yσi ∂y
ν
kl

− ∂

∂yνkl
dj

∂L

∂yσij
− 2(bkilσν )Sym(kl) − 2djc

klij
σν

)
ων
kl ∧ ωσ ∧ ωi

+

(
∂2L

∂yσij∂y
ν
k

− 4(bkijσν )Alt((σj)(νk))

)
ων
k ∧ ωσ

j ∧ ωi

− (
2cklijσν

)
Sym(jkl)

ων
jkl ∧ ωσ ∧ ωi − 2cklijσν ων

kl ∧ ωσ
j ∧ ωi, (3.10)
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Expressing the generators of the ideal D4
α̂ we get

i ∂
∂yν

α̂ = Eνω0 + 2

(
∂2L

∂yσj ∂y
ν
− ∂

∂yν
dj

∂L

∂yσij
− 2dka

ij
σν

)
ωσ ∧ ωi

−
(

∂2L

∂yνi ∂y
σ
k

− ∂2L

∂yν∂yσik
− ∂

∂yσk
dj

∂L

∂yνij
+ 4aikσν − 2djb

kij
νσ

)
ωσ
k ∧ ωi

−
(

∂2L

∂yνi ∂y
σ
kl

− ∂

∂yσkl
dj

∂L

∂yνij
− 2(bkilνσ)Sym(kl) − 2djc

klij
νσ

)
ωσ
kl ∧ ωi

+
(
2cklijσν

)
Sym(jkl)

ωσ
jkl ∧ ωi,

i ∂
∂yν

k

α̂ =

(
∂2L

∂yσi ∂y
ν
k

− ∂2L

∂yσ∂yνik
− ∂

∂yνk
dj

∂L

∂yσij
+ 4aikνσ − 2djb

kij
σν

)
ωσ ∧ ωi

+ 2

(
∂2L

∂yσij∂y
ν
k

− 4(bkijσν )Alt((σj)(νk))

)
ωσ
j ∧ ωi − 2cklijσν ωσ

jl ∧ ωi,

i ∂
∂yν

kl

α̂ =

(
∂2L

∂yσi ∂y
ν
kl

− ∂

∂yνkl
dj

∂L

∂yσij
− 2(bkilσν )Sym(kl) − 2djc

klij
σν

)
ωσ ∧ ωi

− 2cklijσν ωσ
j ∧ ωi,

i ∂
∂yν

jkl

α̂ = − (
2cklijσν

)
Sym(jkl)

ων ∧ ωi (3.11)

Since the ranks of the matrices
(
cklijνσ

)
Sym(jkl)

,
(
cklijνσ

)
are maximal then the

ωσ ∧ ωi and ωσ
(j ∧ ωi) are generators of ideal D4

α̂. We obtain for Dedecker–

Hamilton extremals δD π3,2 ◦ δD = J2γ, where γ is a section of π. Substituting
this into (2.5) we get

δ ∗
D i ∂

∂yσ
α̂ = Eσ ◦ J3γ

for 3rd order Euler–Lagrange form (3.1) and

δ ∗
D i ∂

∂yσ
α̂ = Eσ ◦ J2γ

for 2nd order Euler–Lagrange form (3.2) and γ is an extremal of λ.
Let us prove strong regularity: We have to show that under our assumptions,

for every section δ satisfying Hamilton equations, one has π3,2 ◦ δ = J2γ, where
γ is a solution of the Euler–Lagrange equations of the Lagrangian λ. Assuming
dμ̄ = 0, we obtain: δ∗(i∂/∂yσ

jkl
α) = δ∗((2cklijνσ )Sym(jkl)ω

ν ∧ωi) = 0, i.e. δ∗ων = 0

by the rank condition on (
cklijνσ

)
Sym(jkl)

,

i.e. ∂yσ/∂xi = yσi . Hence,

δ∗(i∂/∂yν
kl
α) = δ∗(

(−2cklijνσ

)
ωσ
j ∧ ωi) = 0.
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Note that matrix (cklijνσ ) is symmetric in indices kl and its maximal rank is
mn(n+ 1)/2. Due to the rank condition on (cklijνσ ), δ∗ωσ

j = 0, i.e.

(
∂yσj /∂x

i
)
Sym(ij)

= yσij .

The above obtained conditions on δ mean that every solution of Hamilton equa-
tions is holonomic up to the second order, i.e., we can write π3,2◦δ = J2γ, where
γ is a section of π. Now, the equations J3(π3,0 ◦ δ)∗(i∂/∂yσ

k
α) = 0 are satisfied

identically, and the last set of Hamilton equations, i.e., J3(π3,0◦δ)∗(i∂/∂yσα) = 0
take the form Eσ ◦ J3γ = 0 (3.1), resp. Eσ ◦ J2γ = 0 (3.2) proving that γ is an
extremal of λ. This completes the proof.

4 Example

The above results (the regularity conditions) can be directly applied to concrete
Lagrangians. Let us consider the following example as an illustration. We find
to a given Lagrangian 3 different Hamiltonian systems satisfying:
Let X = R2, Y = R2 ×R2 (i.e., n = 2, m = 2). Denote (V, ψ), ψ = (xi, yσ)

a fibered chart on R2 ×R2. Let us consider the following Lagrangian

λ = Lω0, L = y111y
2
22 − y122y

2
11 (4.1)

which satisfies (3.1).
In view of the above considerations we take a Lepagean equivalent ρ (of the

Euler–Lagrange form E of Lagrangian (4.1)) in the form α = dρ, where ρ is
(3.3), (3.4).
We consider functions aijσν , b

kij
σν , c

ijkl
σν (3.4) on an open set U ⊂ J3R2 where

the conditions y11 �= 0, y12 �= 0, y112 �= 0 and y212 �= 0.
The functions aijσν and b

ijp
κσ are arbitrary. We assume that c

ijkl
σν are constant

functions. We have again only 8 non-zero constants, we choose c121211 = c211211 =
−c212111 = −c122111 = 1 and c121222 = c211222 = −c212122 = −c122122 = 1.
Then the Lepagean equivalent takes the form

ρ = θλ + aijσνω
σ ∧ ων ∧ ωij + bkijσν ω

σ ∧ ων
k ∧ ωij

+ 4 ω1 ∧ ω1
12 ∧ ω12 + 4 ω2 ∧ ω2

12 ∧ ω12 + μ̄,

where μ̄ is an arbitrary n-form.
The matrices (3.5) and (3.6) take the following form

(P ijkl
σν )T =

1

3

⎛
⎜⎜⎝

0 0 0 0 4 4 4 0 0 0 0 0 1 1 1 0
0 −4 −4 −4 0 0 0 0 0 −1 −1 −1 0 0 0 0
0 0 0 0 −1 −1 −1 0 0 0 0 0 4 4 4 0
0 1 1 1 0 0 0 0 0 −4 −4 −4 0 0 0 0

⎞
⎟⎟⎠ ,
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and

Qijkl
σν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 −2 −2 0 0 0 0 0
0 2 2 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 −2 −2 0
0 0 0 0 0 2 2 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We can easily see that rank(P ijkl
σν ) = 4 and rank(Qijkl

σν ) = 6. The form
α = dρ+ dμ̄ is regular.
If moreover μ̄ is closed then α = dρ is strongly regular.
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