Jan Ámos Víšek
Instrumental weighted variables under heteroscedasticity. Part I – Consistency

Kybernetika, Vol. 53 (2017), No. 1, 1–25

Persistent URL: http://dml.cz/dmlcz/146704

Terms of use:
© Institute of Information Theory and Automation AS CR, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
INSTRUMENTAL WEIGHTED VARIABLES
UNDER HETEROSCEDASTICITY
PART I – CONSISTENCY

JAN ÁMOS VÍŠEK

The proof of consistency instrumental weighted variables, the robust version of the classical instrumental variables is given. It is proved that all solutions of the corresponding normal equations are contained, with high probability, in a ball, the radius of which can be selected – asymptotically – arbitrarily small. Then also \sqrt{n}-consistency is proved. An extended numerical study (the Part II of the paper) offers a picture of behavior of the estimator for finite samples under various types and levels of contamination as well as various extent of heteroscedasticity. The estimator in question is compared with two other estimators of the type of “robust instrumental variables” and the results indicate that our estimator gives comparatively good results and for some situations it is better.

The discussion on a way of selecting the weights is also offered. The conclusions show the resemblance of our estimator with the M-estimator with Hampel’s ψ-function. The difference is that our estimator does not need the studentization of residuals (which is not a simple task) to be scale- and regression-equivariant while the M-estimator does. So the paper demonstrates that we can directly compute – moreover by a quick algorithm (reliable and reasonably quick even for tens of thousands of observations) - the scale- and the regression-equivariant estimate of regression coefficients.

Keywords: weighting order statistics of the squared residuals, consistency of the instrumental weighted variables, heteroscedasticity of disturbances, numerical study

Classification: 62J02, 62F35

1. INTRODUCTION OF BASIC FRAMEWORK

We are going to start with usual framework. Let \mathcal{N} denote the set of all positive integers, R the real line and R^p the p-dimensional Euclidean space. We assume that all random variables (r.v.’s) are defined on a basic probability space (Ω, \mathcal{A}, P). The linear regression model

$$Y_i = X_i^0 \beta^0 + e_i = \sum_{j=1}^{p} X_{ij} \beta_j^0 + e_i, \quad i = 1, 2, \ldots, n$$

DOI: 10.14736/kyb-2017-1-0001
will be considered (all vectors throughout the paper will be assumed to be the column ones)\footnote{When we assume the regression model with intercept, we have $X_{i1} = 1$ for all i. In some papers the intercept is given in the notation explicitly, to stress that it plays – mostly from the application point of view but sometimes also from the theoretical one – a special role. We will not need to stress it except in one discussion on assumptions given below.}

We will need also the matrix form of the model

\[Y = X\beta^0 + e \tag{2} \]

where $Y = (Y_1, Y_2, \ldots, Y_n)'$, $X = (X_1, X_2, \ldots, X_n)'$ and $e = (e_1, e_2, \ldots, e_n)'$. We shall further assume that:

Conditions C1. The sequence \(\{(X_i', e_i)\}_{i=1}^{\infty} \) is sequence of independent \((p + 1)\)-dimensional random variables (r.v.’s) distributed according to distribution functions (d.f.) \(F_{X,e}(x,r) = F_X(x,r\sigma_i^{-1}) \) where \(F_{X,e}(x,r) \) is a parent d.f. and \(\sigma_i^2 = \text{var}(e_i) \). Further, \(\mathbb{E}e_i = 0 \) and

\[0 < \liminf_{i \to \infty} \sigma_i \leq \limsup_{i \to \infty} \sigma_i < \infty. \]

Denote \(F_{e|X}(r|X_1 = x) \) the conditional d.f. corresponding to the parent d.f. \(F_{X,e}(x,r) \). Then, for all \(x \in \mathbb{R}^p \) \(F_{e|X}(r|X_1 = x) \) is absolutely continuous with density \(f_{e|X}(r|X_1 = x) \) bounded by \(U_e \) (which does not depend on \(x \)).

Remark 1.1. The assumption that the d.f. \(F_{e|X}(r|X_1 = x) \) is continuous is not only technical assumption. Without the (bounded) density, we should assume that \(F_{e|X}(r|X_1 = x) \) is Lipschitz and it would bring a more complicated form of all what follows. The absolute continuity is then a technical assumption.

In what follows \(F_X(x) \) and \(F_e(r) \) will denote the corresponding marginal d.f.’s of the parent d.f. \(F_{X,e}(x,r) \). Then, assuming that \(e \) is a “parent” r. v. distributed according to parent d.f. \(F_e(r) \), we have, e.g., \(F_e(r) = P(e_i < r) = P(\sigma_i \cdot e_i < r) = P(e < \sigma_i^{-1} \cdot r) = F_e(\sigma_i^{-1} \cdot r) \), etc. Conditions C1 imply that the marginal d.f. \(F_X(x) \) does not depend on \(i \), the sequence \(\{X_i\}_{i=1}^{\infty} \) is sequence of independent and identically distributed (i.i.d.) r.v.’s. Finally, let us recall that the ordinary least squares (OLS) are – when processing economic (and other social sciences) data – more and more substituted by instrumental variables just due to the fact that we meet more and more situations when disturbances are correlated with explanatory variables. Then, however, it is nearly straightforward to assume that (at least) the variances of the individual disturbances depend on explanatory variables, i.e. we can expect the heteroscedasticity\footnote{The last sentence is not to be understood as a “justification” for studying the behavior of robustified versions of instrumental variables under heteroscedasticity because the results of such a study have only a limited direct importance for practical applications (as already Fisher’s results \cite{19} indicated and Mizon’s example \cite{12} recalled and stressed with even higher power) but it does be a justification from the point of view of famous Halmos’ paper \cite{24}, i.e. it has an indirect consequence for applications, see also a discussion below.}.
Remark 1.3. The problems, resulting from ignoring the heteroscedasticity, were recognized very early, see e.g. [14], [15] or [27]. It is known that the efficient estimator (under the normality of disturbances) is \(\hat{\beta}(\text{GLS},n) = \left(\sum_{i=1}^{n} \sigma_i^{-2} X_i X_i' \right)^{-1} \sum_{i=1}^{n} \sigma_i^{-2} X_i Y_i \) but the unknown \(\sigma_i \)'s do not allow to employ it. The asymptotic efficiency can be reached utilizing estimators of individual variances (see e.g. [47], [49] or [75]). An estimator of covariance matrix resistant to heteroscedasticity was established in [74]. It opens way for proper studentization of the coordinates of \(\hat{\beta}(\text{OLS},n) \) but we can compute the corresponding \(p \)-values only approximately because the studentized estimators have only approximately \(t \)-distribution, see e.g. [20] pp. 96–97 or [48].

2. INSTRUMENTAL VARIABLES AS ALTERNATIVE TO THE ORDINARY LEAST SQUARES

When the orthogonality condition \(\mathbb{E} \{ e_i | X_i = x \} = 0 \) is broken, the ordinary least squares are not consistent (see (10) below where substitute \(X \) instead of \(Z \)). The best known example of such a situation is the model assuming that the explanatory variables are measured with random error (sometimes the model is called error-in-variables model – compare [31] and [55]) – for further discussion see [66]. A possibility how to solve the problem is to employ the orthogonal regression (sometimes also called the total least squares), see e.g. [43] or [55]. This approach is usually considered in natural sciences. The econometricians offer another remedy in the form of the method of instrumental variables. We can meet with various definitions. The first one, probably the most frequently given, copes with the situation by modifying the orthogonality condition.

Definition 2.1. For any sequence of \(p \)-dimensional random vectors \(\{ Z_i \}_{i=1}^{\infty} \) the solution(s) of the equation

\[
\sum_{i=1}^{n} Z_i \left(Y_i - X_i' \beta \right) = Z' (Y - X \beta) = 0 \tag{3}
\]

will be called the estimator obtained by means of the method of instrumental variables (or instrumental variables, for short) and denoted by \(\hat{\beta}(\text{IV},n) \).

Notice that (3) is an analogy of the classical normal equations

\[
\sum_{i=1}^{n} X_i \left(Y_i - X_i' \beta \right) = X' (Y - X \beta) = 0. \tag{4}
\]

Generally the dimensionality of \(Z_i \)'s can be \(q \neq p \). If \(q < p \), (3) implies immediately the underidentification of model, see [22] or [76] (for the case \(q > p \) see discussion below).

The classical regression adopts the assumption (more or less technical one) that the

\[\text{Of course, the previous remark has to be again understood in the sense of already mentioned papers [19], [42] and [24]. In other words, the theoretical results have for the applications mostly a "vicarious" importance of keeping sound mathematical traditions in proposing a new method (and there is no substitute for it) but really reliable information about its behavior can be found (only) by well designed numerical study.}\]
matrix $Z'X$ is regular (for discussion see e.g. [22], [33], 75, and also Remark 2.6 below). Then it follows from (3) that
\begin{equation}
\hat{\beta}^{(IV,n)} = (Z'X)^{-1} Z'Y. \tag{5}
\end{equation}
The instrumental variable can be introduced also in an alternative way – over an extremal problem, see e.g. [10], 31, or 33.

Definition 2.2. Let D be a positive definite, symmetric matrix and put
\begin{equation}
\hat{\beta}^{(IV,n)} = \arg\min_{\beta \in \mathbb{R}^p} (Y - X\beta)' ZDZ(Y - X\beta). \tag{6}
\end{equation}

Remark 2.3. Definition 2.2 allows for $q > p$. Moreover, assuming that Z has full rank and considering instead of Z the matrix $\tilde{Z} = Z(Z'Z)^{-1} Z'X$, we can show that solution of (6) coincides formally with (5), see [31]. Recently the situation when we have a large number of instruments was considered and a plausible solution can be established by borrowing an idea from the partial least squares, see e.g. [28] and [29].

We can meet also with definition utilizing (in fact) two stage least squares, see again [10] or 31.

Definition 2.4. Let $q \geq p$ and Z be of full rank and put $P_Z = Z(Z'Z)^{-1} Z'$. Then define
\begin{equation}
\hat{\beta}^{(IV,n)} = \arg\min_{\beta \in \mathbb{R}^p} (X'P_Z X)^{-1} X'P_Z Y. \tag{7}
\end{equation}

Remark 2.5. Plugging $Z(Z'Z)^{-1} Z'$ instead of P_Z in (7), we again easy demonstrate that the solution of (7) formally coincides with (5). Definition 2.4 says that $\hat{\beta}^{(IV,n)}$ uses the endogenous part of X. Finally, we can consider the transformed data $\tilde{Y} = P_Z \cdot Y$ and $\tilde{X} = P_Z \cdot X$ and employ the fact that P_Z is idempotent. Then (7) reads
\begin{equation}
\hat{\beta}^{(IV,n)} = \arg\min_{\beta \in \mathbb{R}^p} (\tilde{X}'\tilde{X})^{-1} \tilde{X}'\tilde{Y}. \tag{8}
\end{equation}

It says that $\hat{\beta}^{(IV,n)}$ can be considered to be the *Ordinary Least Squares* estimator for appropriately transformed data.\footnote{This explain why this approach is called – *two stage least squares*.} By the way, it also says that Z can be selected so that $Z'X$ is positive definite with preserving the values of $\hat{\beta}^{(IV,n)}$. In other words, it shows that without a loss of generality we can assume that (see also (12) in [10])
\begin{equation}
X_i = \Pi \cdot Z_i + \eta \cdot e_i + \xi_i \tag{9}
\end{equation}
where Π (matrix of type $(p \times q)$) has full rank, $\eta \in \mathbb{R}^p$, Z_i, e_i and ξ_i are mutually independent. In the ideal case we would be able to find such an instrument Z_i that it represents the whole exogenous information in X_i, i.e. we decompose X_i so that $\xi_i \equiv 0$. In fact, it hints how the various ways of defining the *instrumental variables* have the same roots (for details see [10] and references given there). Finally, it shows that without a significant restriction of generality we can assume that $q = p$.\footnote{This explain why this approach is called – *two stage least squares*.}
Remark 2.6. The classical theory (for simplicity) assumes that $\{Z_i\}_{i=1}^{\infty}$ is a sequence of independent and identically distributed random variables, which are not correlated with the sequence of disturbances $\{e_i\}_{i=1}^{\infty}$ (to simplify the notation in the next discussion, let us assume for a while the homoscedasticity of disturbances). Substituting (2) into (5), we obtain

$$\hat{\beta}^{(IV,n)} = \left(\frac{1}{n} Z' X \right)^{-1} \frac{1}{n} Z' (X \beta^0 + e) = \beta^0 + \left(\frac{1}{n} Z' X \right)^{-1} \frac{1}{n} Z' e. \quad (10)$$

It implies that if the orthogonality condition $\mathbb{E} (Z_1 e_1) = 0$ holds, $\hat{\beta}^{(IV,n)}$ is unbiased and consistent, provided the matrix $\mathbb{E} (Z_1 X'_1)$ is regular.

Remark 2.7. Having assumed again the homoscedasticity and $\mathbb{E} (Z_1 e_1) = 0$, then substituting (2) into (3) and finally computing the mean value of respective expression (remember that the sequences $\{Z_i\}_{i=1}^{\infty}$ and $\{X_i\}_{i=1}^{\infty}$ are sequences of identically distributed r. v.’s), we obtain

$$\mathbb{E} \left\{ Z_1 \left[e_1 - X'_1 (\beta - \beta^0) \right] \right\} = 0 \quad (11)$$

which implies that

$$\mathbb{E} \{ Z_1 X'_1 \} (\beta - \beta^0) = 0. \quad (12)$$

If $\mathbb{E} Z_1 X'_1$ is positive definite (see (8)), (12) holds iff

$$(\beta - \beta^0)' \mathbb{E} \{ Z_1 X'_1 \} (\beta - \beta^0) = 0 \quad (13)$$

and it is equivalent to

$$(\beta - \beta^0)' \mathbb{E} \left\{ Z_1 \left[e_1 - X'_1 (\beta - \beta^0) \right] \right\} = 0 \quad (14)$$

(remeber that we assume that the orthogonality condition $\mathbb{E} (Z_1 e_1) = 0$ holds). Notice that – due to the fact that the orthogonality condition does not contain β, it holds uniformly with respect to $\beta \in \mathbb{R}^p$. When we robustify the classical methods we need some uniformity in this conditions, see e. g. [9, 10, 39] or (32) below.

There is a lot of papers discussing the heuristic reasons for defining the instrumental variables, the possibilities how to select the instruments and the problem of the implementation – for many references see [66]. But there was only a limited number of papers trying to robustify the method, see e. g. [1, 9, 10, 11, 34, 35, 36, 38, 39, 40, 50, 73] or [57] (and the references given there). Moreover, even these papers, including [66], consider the situation when the disturbances are homoscedastic, except of [7] where the idea of the generalized method of moments (GMM) is employed, see [26]. Due to the fact that GMM does not need to specify the underlying d. f., the method covers also the heteroscedasticity – in a latent way because GMM is in fact studied in the i. i. d. framework. So, although [7] does not address directly (in formalism) the heteroscedasticity, it is a way how to cope with it. On the other hand, as the heteroscedasticity is not implemented in the model, it is not explicitly treated which could (and in fact

\footnote{By the way, in [10] one can find a brief list of the previous attempts of robustification of the instrumental variables. The spirit of paper then says why the authors gave preference to the robustification based on S-estimator, i.e. the reason why the smooth depression of the influence of suspicious points seems to be preferable way.}
does) result in a bad efficiency of GMM, see e. g. Table 2 in [7]. Let’s recall that the heteroscedasticity does not prevent the unbiasedness and the consistency of $\hat{\beta}^{(OLS,n)}$. However it is problem for its efficiency – for a discussion how to treat the problem – e. g. by estimating a model for heteroscedasticity – see [76].

The problem may be also with the zero-one objective function (employed in [7]), i. e. with trimming the observations. It implies (nearly) inevitably an instability of estimator with respect to inliers, even for estimators with moderate level of robustness, see [30] and also [56]. The problem of (possible) implausible effect of trimming away some points has its roots in the fact that it classifies – a bit omnipotently – the observations either as “clean” or as “contaminated” and then a small shift of an “inlier” can change its classification from “clean” to “contaminated” (or vice versa). Finally, it implies a switch of the estimate of model, see again [30] and [56]. So, it seems that the smooth depression of the influential observations may be preferable. We will return to the problem below.

The (technical) problems which the allowance of heteroscedasticity implies, one can learn by comparing the papers [61] and [69]. Nevertheless, much better insight into the problem we obtain when we compare the papers [65] and [71]. Both papers generalize the Kolmogorov–Smirnov result for the regression scheme. The former under homoscedasticity of disturbances, the latter under the heteroscedasticity, see Lemma 6.7 of this paper. The proof of former result mimics the steps of Kolmogorov’s proof, see [48] or [13], verifying that they can be done in the regression framework. The proof of the latter result however requires the application of the Skorohod embedding into the Wiener process, see [46] or [32]. That is why it is long and technically complicated. The same unfortunately holds for some proofs from the present paper and [60].

The shape of the normal equations (3) defining $\hat{\beta}^{(IV,n)}$ (as being of the same shape as the shape of normal equations for $\hat{\beta}^{(OLS,n)}$) indicates that $\hat{\beta}^{(IV,n)}$ is not robust with respect to the outliers and/or leverage points. So a robustified version of $\hat{\beta}^{(IV,n)}$ is to be employed when the orthogonality condition is broken and simultaneously there is a suspicion of a contamination of data. An inspiration for one possible way how to do it may be taken from the normal equations for the least weighted squares $\hat{\beta}^{(LWS,n,w)}$ (see [59]) which are robustified version of the $\hat{\beta}^{(OLS,n)}$. So, let us briefly recall it.

3. ROBUSTIFYING THE INSTRUMENTAL VARIABLES

In what follows, for any $\beta \in \mathbb{R}^p$ define the ith residual as $r_i(\beta) = Y_i - X_i^t \beta$ and by $r^2_{(h)}(\beta)$ denote the hth order statistic among the squared residuals, i. e. we have

$r^2_{(1)}(\beta) \leq r^2_{(2)}(\beta) \leq \cdots \leq r^2_{(n)}(\beta)$. \hspace{1cm} (15)

Rather general way how to robustify the ordinary least squares is to weight down the residuals of observations which seem to be suspicious. Nevertheless, it is known that when the weighting is done according to an external rule (typically based on some diagnostics of data), it need not be (and usually it doesn’t be) optimal. Hence it is better to let the method itself to assign the weights “implicitly”, in other words, to assign the weights to the order statistics of the squared residuals rather than directly to the squared residuals.
Definition 3.1. Let \(w : [0, 1] \rightarrow [0, 1] \) be a weight function. Then the solution of the extremal problem
\[
\hat{\beta}^{(LWS,n,w)} = \arg \min_{\beta \in \mathbb{R}^p} \sum_{j=1}^{n} w \left(\frac{j-1}{n} \right) r^2_{(j)}(\beta)
\] (16)
will be called the least weighted squares, (59), see also (60) and (61).

Notice please that the least median of squares \(\hat{\beta}^{(LMS,n,h)} \) (see (51)), the least trimmed squares \(\hat{\beta}^{(LTS,n,h)} \) (see (25)) and the ordinary least squares \(\hat{\beta}^{(OLS,n)} \) are special cases of the least weighted squares. Moreover, the possibility to accommodate the shape of the weight function \(w \) to the level and to the character of contamination guarantee that \(\hat{\beta}^{(LWS,n,w)} \) can adapt to various situations, i.e. to various level and/or characters of contamination. The trimming of observations can (more or less) cope with the level of contamination employing the forward search, see [2]. But it cannot accommodate to the character of contamination. The problem was in details discussed on the Workshop on algorithm for outliers/regressors selection, see [72]. After all, we shall demonstrate it in Part II of paper in the promised numerical study. Moreover, \(\hat{\beta}^{(LWS,n,w)} \) can be easier used for panel data processing, easier than \(\hat{\beta}^{(LMS,n,h)} \) and \(\hat{\beta}^{(LTS,n,h)} \), see [5]. Last but not least, \(\hat{\beta}^{(LWS,n,w)} \) is, similarly as \(\hat{\beta}^{(OLS,n)} \), \(\hat{\beta}^{(LMS,n,h)} \) and \(\hat{\beta}^{(LTS,n,h)} \), scale- and regression-equivariant.

Conditions C2. Weight function \(w : [0, 1] \rightarrow [0, 1] \) is absolutely continuous and nonincreasing, with the derivative \(w'(\alpha) \) bounded from below by \(-L\) (\(L > 0 \)), \(w(0) = 1 \).

Remark 3.2. In the simulations, results of which are presented in Part II, the weight function, borrowing the shape from the famous Tukey \(\rho \)-function, was used – see Figure 1 in Part II.

We will study scale- and regression-equivariant estimators and hence without loss of generality, we may assume in what follows in theoretical considerations that \(\beta^0 = 0 \). Then \(r_i(\beta) = e_i - X_i'\beta \).

Due to presence of order statistics in Definition 3.1, (16) is not convenient for proving consistency. That is why, following [23] for any \(i \in \{1, 2, \ldots, n\} \) and any \(\beta \in \mathbb{R}^p \) let us define the rank of the \(i \)th residual as
\[
\pi(\beta, i) = j \in \{1, 2, \ldots, n\} \quad \Leftrightarrow \quad r^2_i(\beta) = r^2_{(j)}(\beta).
\] (17)

Then we have
\[
\hat{\beta}^{(LWS,n,w)} = \arg \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^{n} w \left(\frac{\pi(\beta, i) - 1}{n} \right) r^2_{i}(\beta).
\] (18)

6Although it became common to give this reference on \(\hat{\beta}^{(LTS,n,h)} \), \(\hat{\beta}^{(LMS,n,h)} \) was proposed in fact nearly simultaneously with \(\hat{\beta}^{(LMS,n,h)} \), prior to the S-estimator \(\hat{\beta}^{(S,n,\rho)} \), see [53].

7Of course, not to all characters, otherwise it would not be a scientific method, see [45].
Now, denoting the indicator of a set A by $I \{A\}$, for any $\beta \in \mathbb{R}^p$ the empirical distribution function (e. d. f.) of the absolute value of residual will be considered in the form

$$F^{(n)}_{\beta}(r) = \frac{1}{n} \sum_{j=1}^{n} I \{|r_j(\beta)| < r\} = \frac{1}{n} \sum_{j=1}^{n} I \{|e_j - X_j'\beta| < r\}.$$ \hspace{1cm} (19)

Then, it is only a technicality to show that

$$\pi(\beta, i) = \frac{1}{n} \sum_{i=1}^{n} F^{(n)}_{\beta}(|r_i(\beta)|)$$ \hspace{1cm} (20)

(the fact that $\pi(\beta, i) - 1$ stays in the numerator of fraction in (20) – not $\pi(\beta, i)$ – is due to the sharp inequality in (19)) and hence $\hat{\beta}^{(\text{LWS, n, h})}$ can be finally given as

$$\hat{\beta}^{(\text{LWS, n, w})} = \text{arg min}_{\beta \in \mathbb{R}^p} \sum_{i=1}^{n} w \left(F^{(n)}_{\beta}(|r_i(\beta)|) \right) r_i^2(\beta).$$ \hspace{1cm} (21)

It may seem, at the first glance, strange to consider e. d. f. when the observations are not identically distributed. However, as Lemma 6.7 shows the e. d. f. $F^{(n)}_{\beta}(r)$ can be uniformly in $r \in \mathbb{R}$, uniformly in $\beta \in \mathbb{R}^p$ and even uniformly in $\sigma^2 \in \mathbb{R}^+$ approximated by the “mean” d. f.

$$\bar{F}_{n, \beta}(v) = \frac{1}{n} \sum_{i=1}^{n} F_{i, \beta}(v)$$ \hspace{1cm} (22)

where (remember that e_i’s have different variances σ_i^2)

$$F_{i, \beta}(r) = P(|Y_i - X_i'\beta| < r) = P(|e_i - X_i'\beta| < r).$$ \hspace{1cm} (23)

It is nearly straightforward that the solution of the extremal problem (21) is one of solutions of the normal equations

$$\mathcal{N} E_{Y, X, n}^{(\text{LWS})}(\beta) = \sum_{i=1}^{n} w \left(F^{(n)}_{\beta}(|r_i(\beta)|) \right) X_i \left(Y_i - X_i'\beta \right) = 0.$$ \hspace{1cm} (24)

Remark 3.3. Notice that the robustification of $\hat{\beta}^{(\text{OLS, n})}$ was achieved by including $w \left(F^{(n)}_{\beta}(|r_i(\beta)|) \right)$ into the normal equations (4), see (24). It gives immediately an inspiration how to robustify the classical instrumental variables (3). It simultaneously explains why we needed the similar modifications of the orthogonality condition and of the assumption that $\mathbb{E}[X_1 \cdot X_1']$ is positive definite, e. g. including into the corresponding condition also $w \left(F^{(n)}_{\beta}(|r_i(\beta)|) \right)$.

Definition 3.4. For any sequence of p-dimensional random vectors $\{Z_i\}_{i=1}^{\infty}$ the solution(s) of the equation

$$\mathcal{N} E_{Y, X, Z, n}^{(\text{IWV})}(\beta) = \sum_{i=1}^{n} w \left(F^{(n)}_{\beta}(|r_i(\beta)|) \right) Z_i \left(Y_i - X_i'\beta \right) = 0$$ \hspace{1cm} (25)

will be called the estimator obtained by means of the method of instrumental weighted variables (or instrumental weighted variables, for short) and denoted by $\hat{\beta}^{(\text{IWV, n, w})}$, see [63, 64].
4. CONSISTENCY OF THE INSTRUMENTAL WEIGHTED VARIABLES

In what follows we shall denote the joint d. f. of explanatory variables and of instrumental variables by $F_{X,Z}(x,z)$ and of course the marginal d. f.'s by $F_X(x)$ and $F_Z(z)$. We will need also the following notation. For any $\beta \in \mathbb{R}^p$ the distribution of the product $\beta' Z X'$ will be denoted $F_{\beta' Z X'}(u)$, i.e.

$$F_{\beta' Z X'}(u) = P(\beta' Z X' < u)$$

and similarly as in [19], the corresponding empirical d. f. will be denoted $F^{(n)}_{\beta' Z X'}(u)$, so that

$$F^{(n)}_{\beta' Z X'}(u) = \frac{1}{n} \sum_{j=1}^n I \{ \beta' Z_j X_j' < u \}.$$

For any $\lambda \in \mathbb{R}^+$ and any $a \in \mathbb{R}$ put

$$\gamma_{\lambda,a} = \sup_{\|\beta\| = \lambda} F_{\beta' Z X'}(a).$$

Notice please that due to the fact that the surface of ball $\{ \beta \in \mathbb{R}^p, \|\beta\| = \lambda \}$ is compact and taking into account Conditions C_3 (below), there is $\beta_{\lambda} \in \{ \beta \in \mathbb{R}^p, \|\beta\| = \lambda \}$ so that

$$\gamma_{\lambda,a} = F_{\beta_{\lambda}' Z X'_{\beta_{\lambda}}}(a).$$

For any $\lambda \in \mathbb{R}^+$ let us denote

$$\tau_{\lambda} = -\inf_{\|\beta\| \leq \lambda} \beta' \mathbb{E} \left[Z_1 X_1' \cdot I\{ \beta' Z_1 X_1' < 0 \} \right] \beta.$$

Notice also that due to the indicator $I\{ \beta' Z_1 X_1' < 0 \}$ in (30) we have $\tau_{\lambda} \geq 0$ and that again due to the fact that the ball $\{ \beta \in \mathbb{R}^p, \|\beta\| \leq \lambda \}$ is compact, the infimum is finite, since there is a $\tilde{\beta} \in \{ \beta \in \mathbb{R}^p, \|\beta\| \leq \lambda \}$ so that

$$\tau_{\lambda} = -\tilde{\beta}' \mathbb{E} \left[Z_1 X_1' \cdot I\{ \tilde{\beta}' Z_1 X_1' < 0 \} \right] \tilde{\beta}.$$

Conditions C_3. The instrumental variables $\{Z_i\}_{i=1}^\infty$ are independent and identically distributed with distribution function $F_Z(z)$. Further, the joint distribution function $F_{X,Z}(x,z)$ is absolutely continuous with a density $f_{X,Z}(x,z)$ bounded by $U_{ZX} < \infty$. Further for any $n \in \mathbb{N}$ we have $\mathbb{E} \sum_{i=1}^n \{w(F_{\gamma_i}(|e_i|)) \cdot e_i \cdot Z_i\} = 0$ and the matrices $\mathbb{E}Z_i Z_i'$ as well as $\mathbb{E} \sum_{i=1}^n \{w(F_{\gamma_i}(|e_i|)) Z_i X_i'\}$ are positive definite. Moreover, there is $q > 1$ so that $\mathbb{E} \{\|Z_1\| \cdot \|X_1\|\}^q < \infty$. Finally, there is $a > 0$, $b \in (0,1)$ and $\lambda > 0$ so that

$$a \cdot (b - \gamma_{\lambda,a}) \cdot w(b) > \tau_{\lambda}$$

for $\gamma_{\lambda,a}$ and τ_{λ} given by (28) and (30).

Remark 4.1. As $\mathbb{E} \sum_{i=1}^n \{w(F_{\gamma_i}(|e_i|)) \cdot e_i \cdot Z_i\} = \sum_{i=1}^n \mathbb{E} \{w(F_{\gamma_i}(|e_i|)) \cdot e_i\} \cdot \mathbb{E} Z_i$, we have $\mathbb{E} \sum_{i=1}^n \{w(F_{\gamma_i}(|e_i|)) \cdot e_i \cdot Z_i\} = 0$ if e (the “parent” r. v., see text below Remark 1.1) is symmetrically distributed and its mean value exists – just due to symmetry.
of \(w(F_{\beta_0}(|v|)) \) in \(v \). The condition (32) “regulates” the mutual relations between \(X_i \)'s and \(Z_i \)'s. We have discussed it in Remark 2.6. The condition seems to be easier directly verifiable from data than (11) or (12). But it contains \(\gamma_{\lambda,a} \) and \(\tau_{\lambda} \) so that we have to rely also on some empirically obtained estimates of them. It may be also of interest to compare Conditions \(C_3 \) with the conditions in [57] where we considered instrumental \(M \)-estimators and the discussion of assumptions for \(M \)-instrumental variables was given.

Lemma 4.2. Let Conditions \(C_1 \), \(C_2 \) and \(C_3 \) be fulfilled. Then for any \(\varepsilon > 0 \) there is \(\zeta > 0 \) and \(\delta > 0 \) such that

\[
P (\left\{ \omega \in \Omega : \inf_{\|\beta\| \geq \zeta} -1 n \beta' \sum_{i=1}^{n} w \left(F_{\beta}(|r_i(\beta)|) \right) \beta' Z_i \left(e_i - X_i \beta \right) \right\} > 1 - \varepsilon)
\]

(for \(\sum_{i=1}^{n} w \left(F_{\beta}(|r_i(\beta)|) \right) \beta' Z_i \left(e_i - X_i \beta \right) \) see (25)). In other words, any sequence \(\left\{ \hat{\beta}(IWV,n,w) \right\}_{n=1}^{\infty} \) of the solutions of the sequence of normal equations \(\sum_{i=1}^{n} w \left(F_{\beta}(|r_i(\beta)|) \right) \beta' Z_i \left(e_i - X_i \beta \right) = 0 \) is bounded in probability.

The proof is formally nearly the same as the proof of Lemma 1 in [66]. The allowance for the heteroscedasticity of disturbances requires some formally straightforward modifications. □

Lemma 4.3. Let Conditions \(C_1 \), \(C_2 \) and \(C_3 \) be fulfilled. Then for any \(\varepsilon > 0 \), \(\delta \in (0, 1) \) and \(\zeta > 0 \) there is \(n_{\varepsilon, \delta, \zeta} \in \mathbb{N} \) so that for any \(n > n_{\varepsilon, \delta, \zeta} \) we have

\[
P (\left\{ \omega \in \Omega : \sup_{\|\beta\| \leq \zeta} \frac{1}{n} \sum_{i=1}^{n} \left\{ w \left(F_{\beta}(|r_i(\beta)|) \right) \beta' Z_i \left(e_i - X_i \beta \right) - \beta' \mathbb{E} \left[w \left(F_{\beta}(|r_i(\beta)|) \right) Z_i \left(e_i - X_i \beta \right) \right] \right\} < \delta \right\} > 1 - \varepsilon
\]

(for \(\sum_{i=1}^{n} w \left(F_{\beta}(|r_i(\beta)|) \right) \beta' Z_i \left(e_i - X_i \beta \right) \) see (22)).

The proof has formally similar structure as the proof of Lemma 2 in [66]. It is a bit more complicated because again instead of employing a limiting distribution we need to estimate differences of empirical d.f. from a sequence of the arithmetic means of underlying d.f.’s \(\left\{ F_{\beta}(v) \right\}_{n=1}^{\infty} \), see (22).

As we already recalled, see the end of Remark 2.6, the classical regression analysis accepted (under the framework of homoscedasticity of disturbances – hence the assumption is sufficient to make about one observation) the orthogonality condition \(\mathbb{E} \left\{ e_1 Z_1 \right\} = 0 \)

8The fact that the modifications are relatively simple and straightforward is due to the fact that the complicated steps were made in [71] but the background of proof is different from the proof in [66]. The approximation of empirical d.f. is not by the underlying d.f. as the limit of the empirical d.f.’s but we employ the knowledge about convergence of the difference of the empirical d.f.’s and the arithmetic mean of the d.f. of individual disturbances.
and the assumption that \(\mathbb{E}\left\{ Z_1 X_1^\prime \right\} \) is a regular matrix\(^9\) (see e. g. [4], [31, 76] or [75]) to be able to prove consistency of \(\hat{\beta}^{(IV,n)} \). We have discussed it in Remark 2.6. So one way can be to modify (11) and/or (12) as follows:

Conditions C4. For any \(n \in \mathbb{N} \) the equation

\[
\beta' \sum_{i=1}^{n} \mathbb{E} \left[w \left(F_{n,\beta}(|r_i(\beta)|) \right) Z_i \left(e_i - X_i^\prime \beta \right) \right] = 0 \tag{33}
\]
in the variable \(\beta \in \mathbb{R}^p \) has unique solution at \(\beta = 0 \), i.e. at \(\beta = \beta^0 \).

An alternative way would be to give conditions on the weight function and on the distributions of disturbances, of explanatory variables and of instruments which would imply uniqueness of solution of (33). We could take an inspiration from [10, 37] and mainly from [39] (because the roots of both [10] and [37] go back to [39]). We can learn that the conditions are assumed to be valid uniformly in (or independently of) \(\beta \) and then Remarks 2.6 and 3.3 indicate that they can read

\[
\mathbb{E}\left[w \left(F_{n,\beta}(|r_i(\beta)|) \right) \cdot Z_i \cdot e_i \right] = 0
\]

together with the assumption that \(\mathbb{E}[w(F_{n,\beta}(|r_i(\beta)|)) \cdot Z_i \cdot X_i^\prime] \) is positive definite for all \(\beta \) from some compact subset of \(\mathbb{R}^p \) containing \(\beta^0 \).

It is clear that the last two conditions implies (33). We can however give less intuitive (and less “straightforward”) conditions which leads to (33), see [9].

Conditions C4' The distributions \(F_Z, F_e \) and \(F_\xi \) are elliptically symmetric around the zero and the corresponding mean values and the covariance matrices \(\mathbb{E}Z_1Z_1^\prime \) and \(\mathbb{E}\xi_1\xi_1^\prime \) exist. Further, \(\mathbb{E}Z_1Z_1^\prime \) is regular. Finally, (9) holds with \(\Pi \) of the full rank (for simplicity assume that \(q = p \)).

Remark 4.4. It is clear that in the framework, we have used throughout the paper, the Conditions C4' cannot be fulfilled if the intercept is present. In such a case the Conditions C1 have to be given in a bit modified way:

The sequence \(\{(V_i^\prime, e_i)^\prime\}_{i=1}^{\infty} \) is sequence of independent \(p \)-dimensional random variables distributed according to the distribution functions (d. f.) \(F_{V,e,i}(v, r) = F_{V,e}(v, \sigma_i \cdot r), \ i \in \mathbb{N} \) where \(F_{V,e}(v, r) \) is a parent d. f., \(\mathbb{E}V_1 = 0 \), the covariance matrix \(\mathbb{E}\{V_1 V_1^\prime\} \) is regular and \(\sigma^2_i = \text{var}(e_i|V_i) \) with \(0 < \sigma^2_i < K < \infty \). Finally, consider the sequence \(\{(X_i^\prime, e_i)^\prime\}_{i=1}^{\infty} \) where \(X_i = 1 \) and \(X_{ij} = V_{i,j-1}, j = 2, 3, \ldots, p \) for all \(i \in \mathbb{N} \). This sequence will be considered as the sequence of explanatory variables and of disturbances, see e. g. [68]. It is nearly straightforward that the proofs in the previous text can be carry out in this framework but they would be formally a bit more complicated, see again [68].

\(^9\)It means that \(Z \) is of full rank and then \(\mathbb{E}\left\{ Z_1 X_1^\prime \right\} = \mathbb{E}\tilde{X}_1^\prime \tilde{X}_1 \), i.e. \(\mathbb{E}\left\{ Z_1 X_1^\prime \right\} \) is positive definite, see Remark 2.5.
Remark 4.5. The assumption that F_e is symmetric is widely used, especially in the regression framework10. The assumption on symmetry of explanatory variables and of the instruments is not so frequent but in fact from the theoretical point of view it is not substantially limiting the generality. When we are going to study the behavior of an estimator we can assume that prior to performing the considerations we can transform the data. Moreover, there are even studies hinting that the “spirit of statistics” implicitly assumes symmetry (while it is hidden by some latent transformation of “underlying raw data”), see e.g. [16] or [17]. For some further discussion on the assumption of elliptical symmetry see [11, 12, 39] and others, in fact it goes back (at least) to [3]. Already [25] or [52] hinted that the assumption can be relax at the cost of an increase intricacy of proofs.

Assertion 4.6. Let Conditions C_1 and C_4' hold. Then for any $\beta \in \mathbb{R}^p$ we have for all $i \in \mathcal{N}$

$$\mathbb{E} \left[w \left(F_{n,\beta}(|r_i(\beta)|) \right) \cdot Z_i \cdot e_i \right] = 0 \quad (34)$$

and

$$\mathbb{E} \left[w \left(F_{n,\beta}(|r_i(\beta)|) \right) \cdot Z_i \cdot X_i \right] \quad (35)$$

is positive definite. Consequently, (33) holds.

Proof. Writing

$$r_i(\beta) = e_i - X_i \beta = e_i - (\Pi \cdot Z_i + \eta \cdot e_i + \xi_i) \beta$$

(see 9) and recalling that the joint distribution $F_{Z,e,\xi}$ is the product of the marginals, we can calculate the corresponding integrals. We have

$$\mathbb{E} \left[w \left(F_{n,\beta}(|r_i(\beta)|) \right) \cdot Z_i \cdot e_i \right]$$

$$= \int \left\{ \int \left[w \left(F_{n,\beta}(|v - (\Pi \cdot z + \eta \cdot v + t)'/\beta|) \right) \right] dF_{\xi}(t) \right\} z \cdot v \cdot dF_{Z}(z) \cdot dF_{e}(v).$$

Then due to the fact that the argument of $F_{n,\beta}$ is an absolute value of the expression $v - (\Pi \cdot z + \eta \cdot v + t)'/\beta$ and due to the symmetry of F_{ξ},

$$H_{\beta}(z,v) = \int \left[w \left(F_{n,\beta}(|v - (\Pi \cdot z + \eta \cdot v + t)'/\beta|) \right) \right] dF_{\xi}(t)$$

is symmetric in z and v and moreover $H_{\beta}(z,v) \in [0,1]$. From Conditions C_4' we have $\mathbb{E}Z_1 = 0$ and $\mathbb{E}e_i = 0$ and since the function $H_{\beta}(z,v)$ weights down z and v symmetrically, we conclude the proof of (34). Nearly the same arguments can be used to verify (35). \hfill \square

10One of very first employment was probably in [21] but see also [3, 31] or [33], and all after also [10].
\textbf{Theorem 4.7.} Let Conditions C_1, C_2, C_3 and C_4 or C_4' be fulfilled. Then any sequence $\{\hat{\beta}(\text{IWV},n,w)\}_{n=1}^{\infty}$ of the solutions of normal equations (25) $\text{INE}^{(\text{IWV})}_{Y,X,Z,n}(\beta) = 0$ is weakly consistent.

\textbf{Proof.} To prove the consistency of $\{\hat{\beta}(\text{IWV},n,w)\}_{n=1}^{\infty}$, we have to show that for any $\varepsilon > 0$ and $\delta > 0$ there is $n_{\varepsilon,\delta} \in \mathcal{N}$ such that for all $n > n_{\varepsilon,\delta}$

$$P \left(\omega \in \Omega : \left\| \hat{\beta}(\text{IWV},n,w) - \beta^0 \right\| < \delta \right) > 1 - \varepsilon. \quad (36)$$

So fix $\varepsilon_1 > 0$ and $\delta_1 > 0$. According to Lemma 4.2 there are $\delta_1 > 0$ and $\theta_1 > 0$ so that for ε_1 there is $n_{\delta_1,\varepsilon_1} \in \mathcal{N}$ so that for any $n > n_{\delta_1,\varepsilon_1}$

$$P \left(\omega \in \Omega : \inf_{\|\beta\| \geq \theta_1} - \frac{1}{n} \beta' \text{INE}_{Y,X,Z,n}(\beta) > \delta_1 \right) > 1 - \frac{\varepsilon_1}{2}$$

(denote the corresponding set by B_n). It means that for all $n > n_{\delta_1,\varepsilon_1}$ all solutions of the normal equations $\text{INE}_{Y,X,Z,n}(\beta) = 0$ are inside the ball $B(0,\theta_1)$ with probability at least $1 - \frac{\varepsilon_1}{2}$. If $\theta_1 \leq \delta$, we have finished the proof. Generally of course we can have $\theta_1 > \delta$.

Then, utilizing Lemma 4.3 we may find for ε_1, $\delta = \min\{\delta_1, \delta_1\}$ and θ_1 such $n_{\varepsilon_1,\delta,\theta_1} \in \mathcal{N}, n_{\varepsilon_1,\delta,\theta_1} \geq n_{\delta_1,\varepsilon_1}$ so that for any $n > n_{\varepsilon_1,\delta,\theta_1}$ there is a set C_n (with $P(C_n) > 1 - \frac{\varepsilon_1}{2}$) such that for any $\omega \in C_n$

$$\sup_{\|\beta\| \leq \theta_1} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left\{ w \left(F^{(n)}_\beta(|r_i(\beta)|) \right) \beta' Z_i \left(e_i - X_i' \beta \right) \right. \\
- \beta' \mathbb{E} \left[w \left(F_\beta(|r_i(\beta)|) \right) Z_i \left(e_i - X_i' \beta \right) \right] \left\} \right| < \delta. \quad (37)$$

But it means that

$$\inf_{\|\beta\| = \theta_1} \left\{ -\beta' \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[w \left(F_\beta(|r_i(\beta)|) \right) Z_i \left(e_i - X_i' \beta \right) \right] \right\} > \frac{\delta_1}{2} > 0. \quad (37)$$

Further consider the compact set $C = \{\beta \in \mathbb{R}^p : \delta_1 \leq \|\beta\| \leq \theta_1\}$ and find

$$\tau_C = \inf_{\beta \in C} \left\{ -\beta' \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[w \left(F_\beta(|r_i(\beta)|) \right) Z_i \left(e_i - X_i' \beta \right) \right] \right\}. \quad (38)$$

Then there is a $\{\beta_k\}_{k=1}^{\infty}$ such that

$$\lim_{k \to \infty} \beta_k' \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[w \left(F_{\beta_k}|r_i(\beta_k)| \right) Z_i \left(e_i - X_i' \beta_k \right) \right] = -\tau_C.$$

On the other hand, due to compactness of C there is a β^* and a subsequence $\{\beta_{k_j}\}_{j=1}^{\infty}$ such that

$$\lim_{j \to \infty} \beta_{k_j} = \beta^*.$$
and due to the uniform continuity (uniform in $i \in \mathcal{N}$ and $\beta \in C$) of $\beta' \mathbb{E} \left[w \left(F_\beta(|r_i(\beta)|) \right) \right] \times Z_i \left(e_i - X_i' \beta \right)$ (see Lemma 6.16) we have

$$- [\beta^*] \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[w \left(F_{\beta^*}(|r_i(\beta^*)|) \right) Z_i \left(e_i - X_i' \beta^* \right) \right] = \tau_C. \quad (39)$$

Employing once again the uniform continuity (uniform in $i \in \mathcal{N}$ and $\beta \in C$) of $\beta' \mathbb{E} \left[w \left(F_\beta(|r_i(\beta)|) \right) Z_i \left(e_i - X_i' \beta \right) \right]$ together with Condition $C4$ and (37) we find that $\tau_C > 0$, otherwise there has to be a solution of (33) inside the compact C which does not contain $\beta = 0$.

Now, utilizing Lemma 4.3 once again we may find for $\varepsilon_1, \delta_1, \theta_1$ and τ_C, $n_{\varepsilon_1, \delta_1, \theta_1, \tau_C} \in \mathcal{N}, n_{\varepsilon_1, \delta_1, \theta_1, \tau_C} \geq n_{\varepsilon_1, \delta_1, \theta_1}$ so that for any $n > n_{\varepsilon_1, \delta_1, \theta_1, \tau_C}$ there is a set D_n (with $P(D_n) > 1 - \frac{\varepsilon}{2}$) such that for any $\omega \in D_n$

$$\sup_{\|\beta\| \leq \delta_1} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(w \left(F_{\beta}^{(n)}(|r_i(\beta)|) \right) \beta' Z_i \left(e_i - X_i' \beta \right) \right) \right\} < \frac{\tau_C}{2}. \quad (40)$$

But (38) and (40) imply that for any $n > n_{\varepsilon_1, \delta_1, \theta_1, \tau_C}$ and any $\omega \in B_n \cap D_n$ we have

$$\inf_{\|\beta\| > \delta_1} \frac{1}{n} \beta' \mathbb{E} Y_{X,Z,n}(\beta) > \frac{\tau_C}{2}. \quad (41)$$

Of course, $P \left(B_n \cap D_n \right) > 1 - \varepsilon_1$. But it means that all solutions of normal equations (33) are inside the ball of radius δ_1 with probability at least $1 - \varepsilon_1$, i.e. in other words, $\beta'(\mathcal{J}_{V,n,w})$ is weakly consistent.

We will need to enlarge the previous conditions.

Conditions $NC1$. The derivative $f'_e(r)$ exists and is bounded in absolute value by B_e. The derivative $w'(\alpha)$ exists and is Lipschitz of the first order (with the corresponding constant J_w). Moreover, for any $i \in \mathcal{N}$, $\mathbb{E} \left[w'(\bar{F}_{n,\theta_0}(|e_i|)) (f_e(|e_i|) - f_e(-|e_i|)) \cdot e_i \right] = 0$. Finally, for any $\ell,k,j = 1,2,\ldots,p$ $\mathbb{E} \left| V_{1\ell} \cdot V_{ik} \cdot V_{1j} \right| < \infty$ where for V_{1s} can be substituted either X_{1s} or Z_{1s} and the mean value is bounded for any combination of X’s and Z’s.

Theorem 4.8. Let the conditions $C1$, $C2$, $C3$, $C4$ (or $C4'$) and $NC1$ hold. Then any sequence $\left\{ \hat{\beta}(\mathcal{J}_{V,n,w}) \right\}_{n=1}^{\infty}$ of solutions of normal equations (25) $\mathbb{E} \left(\mathcal{J}_{V,n}(\beta) \right) = 0$ is \sqrt{n}-consistent, i.e.

$$\forall(K > 0) \quad \exists(n_K \in \mathcal{N}) \quad \forall(n > n_K) \quad \sqrt{n} \left\| \hat{\beta}(\mathcal{J}_{V,n,w}) - \beta^0 \right\| < K.$$
Proof. Recalling that \(\hat{\beta}^{(IWV,n,w)} \) solves the normal equations (25), we obtain (we will write it in a “traditional” form with \(\beta_0 \) although we have assumed that \(\beta_0 = 0 \))

\[
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} w \left(F_{\beta}^{(n)}(|r_i(\beta)|) \right) Z_i e_i = \frac{1}{n} \sum_{i=1}^{n} w \left(F_{\beta}^{(n)}(|r_i(\beta)|) \right) Z_i X_i^t \cdot \sqrt{n} \left(\hat{\beta}^{(IWV,n,w)} - \beta_0 \right).
\]

(42)

Now, taking into account that the weight function \(w \) is Lipschitz and Lemma 6.7, we find that

\[
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} w \left(F_{\beta}^{(n)}(|r_i(\beta)|) \right) Z_i e_i = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} w \left(F_{\beta}^{(n)}(|r_i(\beta)|) \right) Z_i e_i + R_n^{(1)}(\beta, X, Z, e)
\]

and

\[
\frac{1}{n} \sum_{i=1}^{n} w \left(F_{\beta}^{(n)}(|r_i(\beta)|) \right) Z_i X_i^t = \frac{1}{n} \sum_{i=1}^{n} w \left(F_{\beta}^{(n)}(|r_i(\beta)|) \right) Z_i X_i^t + R_n^{(2)}(\beta, X, Z, e)
\]

where

\[
\sup_{\beta \in \mathbb{R}^p} \left\| R_n^{(1)}(\beta, X, Z, e) \right\| = \mathcal{O}_p(1) \quad \text{and} \quad \sup_{\beta \in \mathbb{R}^p} \left\| R_n^{(2)}(\beta, X, Z, e) \right\| = o_p(1).
\]

By a chain of similar approximations\[11\] we finally show that (42) can be written as

\[
L_n = Q_n \cdot (1 + q_n) \cdot \sqrt{n} \left(\hat{\beta}^{(IWV,n,w)} - \beta_0 \right)
\]

(43)

with \(L_n = \mathcal{O}_p(1), \) \(Q_n \rightarrow Q \) in probability, \(Q \) being a regular matrix, and \(q_n = o_p(\hat{\beta}^{(IWV,n,w)} - \beta_0) \). Then assuming that \((1 + q_n) \cdot \sqrt{n}(\hat{\beta}^{(IWV,n,w)} - \beta_0) \) is not \(\mathcal{O}_p(1) \) and employing the Lemma \[6,20\] we prove that also \(L_n \) cannot be \(\mathcal{O}_p(1) \), which is a contradiction. □

5. CONCLUSIONS

The paper proves the consistency and \(\sqrt{n} \)-consistency of the Instrumental Weighted Variables under heteroscedasticity employing the generalization of Kolmogorov–Smirnov’s result for the regression framework, see \[13\] and \[71\]. The present proofs, if given in the full length, would triple the length of paper but they are significantly simpler than proofs in \[60\] and \[61\]. The complexity of the proofs for robust estimators is the sacrifice we have to pay for possibility to employ them for data processing, see \[39\]. However the idea that the tax, we pay for the robustness of methods, is a loss of efficiency, is wrong. The speed of PCs and abilities of modern languages (the codes are written in) allow to tailor (the parameters of) the method (we have decided to utilize) just to the level and the character of contamination of the data (if any) – just by repeating the computations up to the moment of a break of stability of estimated models and so not to loose any information (see e. g. \[2\] or \[62\]).

Employing the results by Phillips and Solo \[44\] the results of the present paper can be

\[11\] It contains 19 steps, for details see \[70\].
generalized to the autoregressive framework which in turn would allow to utilize the
lagged values as instruments.

A decade or two ago people tried to make an idea about behaviour of estimators by
the small sample asymptotics (see e.g. [18]) however they had to check the results by
numerical studies anyway. Nowadays the IT tools allow to study behavior of estimators
for finite sample sizes directly. And we would be foolish not to employ this possibility.
Nevertheless, let us stress that numerical studies cannot substitute theoretical verifica-
tion of such basic properties as e.g. consistency – for a nice discussion we recall again
the famous Halmos’ paper [24].

An important question of course is how to select the weight function. Intuitively it seems
acceptable to use some function which is equal to one on an interval \([0, h]\), then it is
decreasing (smoothly) to zero and finally, it is equal to zero on \([g, 1]\). In the simulation
study (in the Part II of this paper) we have used in that decreasing part the function
of Tukey’s type. The optimality of function (i.e. the “free” parameters \(h, g\) and the
constant \(c\) of Tukey’s function) can be approximately established (even for real data) by
something which is usually called the forward search, for a theory see [2], for an example
with economic data, see e.g. [58]. The experiences (with simulated data) confirmed an
intuitive idea that the interval \((g, 1)\) has to cover the bad leverage points.

On the other hand, the simulations revealed the fact that the decreasing part of the
weight function \(w\) should be rather wide (i.e. \(h << g\)) in the case of high heteroscedas-
ticity. It says in other words, that when we assign the weights to the order statistics of
squared residuals, we simultaneously cope (partially) with heteroscedasticity, even in the
sense of decreasing MSE of the estimator. There is also a theoretical result answering
(at least partially) this problem, see [41].

Last but not least, the preparation of a simulation study makes us to start really think
repeatedly about the framework of simulations. In the case of a new robust estimator
we try to invent such a framework which can cause to the estimator and its competitors
really considerable problems. Then it may happen that we realize that the cliché which
became a statistical/econometric folklore can be wrong, may be due to the fact that
we removed by the (up to now) proposed estimators the problem which the classical
estimators have with outliers and/or leverage points, but some other type of atypical
observations can appear to be dangerous. And they can cause problems to the estimators
in question. We will meet with something like this in the Part II of paper.

6. APPENDIX

An efficient tool for proving the key lemma allowing a uniform approximation of the
empirical distribution function is the Skorohod embedding (in the sense as it was used
in [32] or [46]) for which we will need the following three assertions.

Assertion 6.1. (Štěpán [54], page 420, VII.2.8) Let \(a\) and \(b\) be positive numbers. Fur-
ther let \(\xi\) be a random variable such that \(P(\xi = -a) = \pi\) and \(P(\xi = b) = 1 - \pi\) (for a
\(\pi \in (0, 1)\)) and \(E\xi = 0\). Moreover let \(\tau\) be the time for the Wiener process \(W(s)\) to exit
the interval \((-a, b)\). Then

\[\xi =_D W(\tau) \]
where “= _D” denotes the equality of distributions of the corresponding random variables. Moreover, \(\mathbb{E} \tau = a \cdot b = \text{var} \xi \).

Remark 6.2. Since the book by Štěpán [54] is in Czech language we refer also to [6] where however this assertion is not isolated. Nevertheless, the assertion can be found directly in the first lines of the proof of Proposition 13.7 (page 277) of Breiman’s book. (See also Theorem 13.6 on the page 276.) The next assertion can be found, in a bit modified form also in Breiman’s book, Proposition 12.20 (page 258).

Assertion 6.3. (Štěpán [54], page 409, VII.1.6) Let \(a \) and \(b \) be positive numbers. Then

\[
P \left(\max_{0 \leq t \leq b} |W(t)| > a \right) \leq 2 \cdot P \left(|W(b)| > a \right).
\]

Definition 6.4. Let \(S \) be a subset of a separable metric space. The stochastic process \(V = (V(s), s \in S) \) is called *separable* if there is a countable dense subset \(T \subset S \) (i.e. \(T \) is countable and dense in \(S \)) such that for any \((\omega, s) \in \Omega \times S \) there is a sequence such that

\[
s_n \in T, \quad \lim_{n \to \infty} s_n = s \quad \text{and} \quad \lim_{n \to \infty} V(\omega, s_n) = V(\omega, s).
\]

Assertion 6.5. (Štěpán [54], page 85, I.10.4) Let \(V = (V(s), s \in S) \) be a separable stochastic process defined on the probability space \((\Omega, A, P) \). Moreover, let \(G \subset S \) be open and denote by \(k(G) \) the set of all finite subsets of \(G \). Then for any closed set \(K \subset \mathbb{R}^p \) we have

\[
\{ \omega \in \Omega : V(s) \in K, s \in G \} \in A
\]

and

\[
P \left(\{ \omega \in \Omega : V(s) \in K, s \in G \} \right) = \inf_{J \in k(G)} P \left(\{ \omega \in \Omega : V(s) \in K, s \in J \} \right).
\]

Proof. Since the book by Štěpán [54] is in Czech language and the proof is short, we will give it. Let \(T \) be countable dense subset of \(S \). Then we have

\[
\{ \omega \in \Omega : V(s) \in K, s \in G \} = \{ \omega \in \Omega : V(s) \in K, s \in G \cap T \}
\]

and

\[
P \left(\{ \omega \in \Omega : V(s) \in K, s \in G \} \right) \leq \inf_{J \in k(G)} P \left(\{ \omega \in \Omega : V(s) \in K, s \in J \} \right)
\]

\[
\leq \inf_{J \in k(G \cap S)} P \left(\{ \omega \in \Omega : V(s) \in K, s \in J \} \right) = P \left(\{ \omega \in \Omega : V(s) \in K, s \in G \cap S \} \right)
\]

\[
= P \left(\{ \omega \in \Omega : V(s) \in K, s \in G \} \right). \quad \square
\]

Assertion 6.6. Kolmogorov law of large numbers (Breiman [6], Theorem 3.27). Let \(\{ V_i \}_{i=1}^\infty \) be a sequence of independent random variables, \(\mathbb{E} V_i = 0, \mathbb{E} V_i^2 < \infty \). Let \(b_n \) converge to +\(\infty \). If \(\sum_{i=1}^\infty \mathbb{E} V_i^2 \cdot b_i^{-2} < \infty \), then

\[
\frac{1}{b_n} \sum_{i=1}^n V_i \xrightarrow{n \to \infty} 0 \quad a. s.
\]
Now, we are going to give the key lemma for proving consistency of $\hat{\beta}(\text{IWV}, n, w)$.

Lemma 6.7. Let the Conditions C1 hold. For any $\varepsilon > 0$ there is a constant K_ε and $n_\varepsilon \in \mathbb{N}$ so that for all $n > n_\varepsilon$

$$\mathbb{P} \left(\left\{ \omega \in \Omega : \sup_{v \in \mathbb{R}^+} \sup_{\beta \in \mathbb{R}^p} \sqrt{n} \left| F^{(n)}_\beta(v) - \overline{F}_{n,\beta}(v) \right| < K_\varepsilon \right\} \right) > 1 - \varepsilon \quad (44)$$

(for $F^{(n)}_\beta(v)$ and $\overline{F}_{n,\beta}(v)$ see (19) and (22), respectively).

Proof. The proof can be found in [71].

Remark 6.8. It seems that the result of Lemma 6.7 can be generalized e.g. for the situation when the sequence $\{(X'_i, e_i)\}_{i=-\infty}^\infty$ is AR vector process. We just apply Cochrane–Orcutt transformation (see [8]) and we transform the problem into i.i.d. framework. Similarly for other structures of dependence of r.v.’s which allow a transformation “back” to independence we can achieve the same.

Lemma 6.9. Under Conditions C1 the distribution function $F_{i,\beta}(r)$ is, uniformly with respect to $r \in \mathbb{R}$ and $i \in \mathbb{N}$, uniformly continuous in $\beta \in \mathbb{R}^p$, i.e. for any $\varepsilon > 0$ there is $\delta \in (0, 1)$ so that for any pair $\beta^{(1)}$ and $\beta^{(2)}$ such that $\|\beta^{(1)} - \beta^{(2)}\| < \delta$ we have

$$\sup_{i \in \mathbb{N}} \sup_{r \in \mathbb{R}} \left| F_{i,\beta^{(1)}}(r) - F_{i,\beta^{(2)}}(r) \right| \leq \varepsilon$$

(for $F_{i,\beta}(r)$ see [23]).

Proof. Proof is a chain of finding some upper bounds of some integrals representing the empirical d.f.s.

Corollary 6.10. Under Conditions C1 the distribution function $\overline{F}_{n,\beta}(v)$ is, uniformly with respect to $v \in \mathbb{R}$ and $n \in \mathbb{N}$, uniformly continuous in $\beta \in \mathbb{R}^p$, i.e. for any $\varepsilon > 0$ there is $\delta \in (0, 1)$ so that for any pair $\beta^{(1)}$ and $\beta^{(2)}$ such that $\|\beta^{(1)} - \beta^{(2)}\| < \delta$ we have

$$\sup_{n \in \mathbb{N}} \sup_{v \in \mathbb{R}} \left| \overline{F}_{n,\beta^{(1)}}(v) - \overline{F}_{n,\beta^{(2)}}(v) \right| \leq \varepsilon.$$

Lemma 6.11. Under Conditions C3 the distribution function $F_{[\beta']^\top X'}(u)$ is, uniformly with respect to $u \in \mathbb{R}$, uniformly continuous in $\beta \in \mathbb{R}^p$, i.e. for any $\varepsilon > 0$ there is $\delta \in (0, 1)$ so that for any pair $\beta^{(1)}$ and $\beta^{(2)}$ such that $\|\beta^{(1)} - \beta^{(2)}\| < \delta$ we have

$$\sup_{u \in \mathbb{R}} \left| F_{[\beta^{(1)}']^\top X'\beta^{(1)}}(u) - F_{[\beta^{(2)}']^\top X'\beta^{(2)}}(u) \right| \leq \varepsilon.$$

Proof. Proof utilizes the Skorohod embedding into the Wiener process in a nearly the same way as Lemma 6.7. As the paper [71] is easily available we shall skip it.
Lemma 6.12. Under Conditions C_3 the distribution function $F_{\beta' ZX' \beta}(u)$ is, uniformly with respect to $\beta \in \mathbb{R}^p$, uniformly continuous in $u \in \mathbb{R}$, i.e. for any $\varepsilon > 0$ there is $\delta \in (0, 1)$ so that for any pair $u^{(1)}$ and $u^{(2)}$ such that $\|u^{(1)} - u^{(2)}\| < \delta$ we have

$$\sup_{\beta \in \mathbb{R}^p} \left| F_{\beta' ZX' \beta}(u^{(1)}) - F_{\beta' ZX' \beta}(u^{(2)}) \right| \leq \varepsilon.$$

Proof. Proof runs again along similar lines as the proof of Lemma 6.7 and taking account again that paper [71] is available we skip the proof. □

We will have in what follows several such situations – the proofs are really very similar and the employment of the Skorohod embedding into the Wiener process is straightforward.

Let us recall that we have denoted for any $\beta \in \mathbb{R}^p$ by $F_{\beta' ZX' \beta}(u)$ the distribution of the product $\beta' ZX' \beta$ (see (26)), i.e.

$$F_{\beta' ZX' \beta}(u) = P(\beta' ZX' \beta < u)$$

and the corresponding empirical distribution by $F_{\beta' ZX' \beta}^{(n)}(u)$ (see (27)), i.e.

$$F_{\beta' ZX' \beta}^{(n)}(u) = \frac{1}{n} \sum_{j=1}^{n} I\{ \beta' Z_j X'_j \beta < u \}.$$

Lemma 6.13. Let Conditions C_3 hold and fix arbitrary $\varepsilon > 0$. Then there are $K < \infty$ and $n_\varepsilon \in \mathbb{N}$ so that for all $n > n_\varepsilon$

$$P\left(\left\{ \omega \in \Omega : \sup_{\beta \in \mathbb{R}^p} \sup_{u \in \mathbb{R}} \sqrt{n} \left| F_{\beta' ZX' \beta}^{(n)}(u) - F_{\beta' ZX' \beta}(u) \right| \leq K \right\} \right) > 1 - \varepsilon.$$

Proof. Proof runs along the similar (nearly the same) lines as the proof of Lemma 6.7. □

Lemma 6.14. Let Conditions C_3 hold and fix arbitrary $\varepsilon > 0$. Then there is $K_\varepsilon < \infty$ and $n_\varepsilon \in \mathbb{N}$ so that for all $n > n_\varepsilon$

$$P\left(\left\{ \omega \in \Omega : \sup_{\beta^{(1)}, \beta^{(2)} \in \mathbb{R}^p} \sqrt{n} \left| \frac{1}{n} \sum_{i=1}^{n} I\{ \beta^{(1)}' Z_i X'_i \beta^{(1)} < 0, [\beta^{(2)}]' Z_i X'_i \beta^{(2)} \geq 0 \} - P\left([\beta^{(1)}]' Z_1 X'_1 \beta^{(1)} < 0, [\beta^{(2)}]' Z_1 X'_1 \beta^{(2)} \geq 0 \right) > K_\varepsilon \right\} \right) > 1 - \varepsilon.$$

Proof. Proof runs again along the similar lines as the proof of Lemma 6.7 □

Let us put

$$T(\zeta, \Delta) = \left\{ \|\beta^{(1)}\| \leq \zeta, \|\beta^{(2)}\| \leq \zeta, \|\beta^{(1)} - \beta^{(2)}\| < \Delta \right\}. \quad (45)$$
Lemma 6.15. Let Conditions C_3 hold and fix arbitrary $\varepsilon > 0$ and $\zeta > 0$. Then there is $\Delta > 0$ so that

$$\sup_{(\beta^{(1)}, \beta^{(2)}) \in T(\zeta, \Delta)} P \left(\left[\beta^{(1)} \right]' Z X' \beta^{(1)} < 0, \left[\beta^{(2)} \right]' Z X' \beta^{(2)} \geq 0 \right) < \varepsilon.$$

Proof. Proof is again a chain of approximations of probabilities of some sets employing the continuity of probability. □

Lemma 6.16. Let Conditions C_1, C_2 and C_3 hold. Then for any positive ζ

$$\beta' \mathbb{E} \left[w \left(F_\beta (|r_i(\beta)|) \right) Z_i \left(e_i - X_i' \beta \right) \right] \quad (46)$$

is uniformly in $i \in N$, uniformly continuous in β on $B = \{ \beta \in R^p : \|\beta\| \leq \zeta \}$, i.e. for any $\varepsilon > 0$ there is $\delta > 0$ so that for any pair of vectors $\beta^{(1)}, \beta^{(2)} \in R^p, \|\beta^{(1)} - \beta^{(2)}\| < \delta$ we have

$$\sup_{i \in N} \left| \beta^{(1)} \right]' \mathbb{E} \left[w \left(F_\beta^{(1)} (|r_i(\beta^{(1)})|) \right) Z_i \left(e_i - X_i' \beta^{(1)} \right) \right]$$

$$- \left| \beta^{(2)} \right]' \mathbb{E} \left[w \left(F_\beta^{(2)} (|r_i(\beta^{(2)})|) \right) Z_i \left(e_i - X_i' \beta^{(2)} \right) \right] < \varepsilon.$$

Proof. Proof is full of technicalities utilizing a simple estimate of upper bounds of differences of the values of (46) for close pair of points in R^p. □

Lemma 6.17. Let Conditions C_3 hold. Then for any positive ζ

$$\beta' \mathbb{E} \left[Z_1 X_1' \cdot I \left\{ \beta' Z_1 X_1 \beta < 0 \right\} \right] \beta$$

is uniformly continuous in β on $B = \{ \beta \in R^p : \|\beta\| \leq \zeta \}$.

Proof. Proof is a rather long series of approximations of some differences of weight function employing mostly a basic differential calculus. □

Let us recall that for any $\zeta \in R^+$ we have denoted

$$\tau_\zeta = - \inf_{\|\beta\| \leq \zeta} \beta' \mathbb{E} \left[Z_1 X_1' \cdot I \left\{ \beta' Z_1 X_1 \beta < 0 \right\} \right] \beta.$$

Lemma 6.18. Let Conditions C_3 be fulfilled. Then for any $\varepsilon > 0$, $\delta \in (0,1)$ and $\zeta \geq 1$ there is $n_{\varepsilon, \delta, \zeta} \in N$ so that for any $n > n_{\varepsilon, \delta, \zeta}$ we have

$$P \left(\left\{ \omega \in \Omega : \inf_{\|\beta\| \leq \zeta} \frac{1}{n} \sum_{i=1}^{n} \beta' Z_i X_i \beta \cdot I \{ \beta' Z_i X_i \beta < 0 \} > -\tau_\zeta - \delta \right\} \right) > 1 - \varepsilon.$$
Proof. Proof is a similar chain of approximations and estimations of upper bounds as the proof of Lemma 6.16. □

Lemma 6.19. Let Conditions C1 hold. Then for any $\varepsilon > 0$ and $\delta \in (0, 1)$ there is $\zeta > 0$ and $n_{\varepsilon, \delta} \in \mathbb{N}$ so that for all $n > n_{\varepsilon, \delta}$

$$P\left(\left\{ \omega \in \Omega : \sup_{r \in \mathbb{R}} \left\| F_{\beta_1}^{(n)}(r) - F_{\beta_2}^{(n)}(r) \right\| < \zeta \right\} \right) > 1 - \varepsilon. \quad (47)$$

Proof. Proof follows nearly immediately from Corollary 6.10. □

Lemma 6.20. Let for some $p \in \mathbb{N}$, $\left\{ \mathcal{V}^{(n)} \right\}_{n=1}^{\infty}$, $\mathcal{V}^{(n)} = \left\{ v_{ij}^{(n)} \right\}_{i=1,2,\ldots,p}^{j=1,2,\ldots,p}$ be a sequence of $(p \times p)$ matrixes such that for $i = 1, 2, \ldots, p$ and $j = 1, 2, \ldots, p$

$$\lim_{n \to \infty} v_{ij}^{(n)} = q_{ij} \quad \text{in probability} \quad (48)$$

where $Q = \left\{ q_{ij} \right\}_{j=1,2,\ldots,p}^{i=1,2,\ldots,p}$ is a fixed nonrandom regular matrix. Moreover, let $\left\{ \theta^{(n)} \right\}_{n=1}^{\infty}$ be a sequence of p-dimensional random vectors such that

$$\exists \ (\varepsilon > 0) \ \forall \ (K > 0) \ \limsup_{n \to \infty} P\left(\left\| \theta^{(n)} \right\| > K \right) > \varepsilon.$$

Then

$$\exists \ (\delta > 0)$$

so that

$$\forall \ (H > 0) \ \limsup_{n \to \infty} P\left(\left\| \mathcal{V}^{(n)} \theta^{(n)} \right\| > H \right) > \delta.$$

ACKNOWLEDGEMENT

We would like to thank two anonymous referees for valuable comments and recommendations how to improve the quality of explanation of ideas from the previous version of paper and also how to cover much better various items connected with the instrumental variables. The paper was written with the support of the Czech Science Foundation projects 13-01930S Robust methods for nonstandard situations, their diagnostics and implementations.

(Received July 28, 2014)

REFERENCES

Jan Ámos Víšek, Department of Macroeconomics and Econometrics, Faculty of Social Sciences, Charles University, Opletalova 26, Praha 1, the Czech Republic. e-mail: visek@fsv.cuni.cz