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K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 1 , P A G E S 2 6 – 5 8

INSTRUMENTAL WEIGHTED VARIABLES
UNDER HETEROSCEDASTICITY
PART II – NUMERICAL STUDY

Jan Ámos V́ı̌sek

Results of a numerical study of the behavior of the instrumental weighted variables estimator
– in a competition with two other estimators – are presented. The study was performed under
various frameworks (homoscedsticity/heteroscedasticity, several level and types of contamina-
tion of data, fulfilled/broken orthogonality condition). At the beginning the optimal values of
eligible parameters of estimatros in question were empirically established. It was done under
the various sizes of data sets and various levels of the contamination of data. These values were
then utilized in the numerical study. Its results indicate that instrumental weighted variables
are as good as S- and W -estimators and under heteroscedasticity even better. The weight
function of Tukey’s type was used.

Keywords: heteroscedasticity of disturbances, numerical study of instrumental weighted
variables.

Classification: 62J02, 62F35

1. DISCUSSING THE FRAMEWORK OF SIMULATIONS

The weak consistency and
√
n-consistency of the instrumental weighted variables (IWV )

estimator, proved in Part I of this paper, are from the theoretical point of view presum-
ably the property which is to be proved prior to any further research on any newly
proposed estimator1. The further step is usually to establish the asymptotic representa-
tion, yielding typically asymptotic normality, see e. g. [18, 28] or [31]. Knowing the rate
of convergence – typical

√
n-consistency, we need for a comparison of efficiency of the

DOI: 10.14736/kyb-2017-1-0026
1Although sometimes it is difficult. The history of point estimation recorded an illustrative example

that waited for the proof of consistency of newly proposed estimator for rather long time. It was due to
the fact that we looked as long as nearly 10 years for a solution of the problem of high breakdown point
estimation of regression model. The problem was explicitly formulated in [6] and implicitly even earlier
in Princeton study [1]. When the first feasible couple of proposals appeared (see [24, 25, 26, 29, 36]),
people focused on checking that the required level of the breakdown point was reached and how the
desired tools can be employed especially as diagnostic means. It caused that the proof of consistency
under a general framework was delivered nearly 20 years later, see [38]. On the other hand, already at
that time it was felt that one of important piece of information about any new estimator is information
saying how it behaves for some small data sets and/or some data which became benchmarks, [26] and
also [8].

http://doi.org/10.14736/kyb-2017-1-0026
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estimators the results of the second order as in [16, 17, 19] or [32]. All these steps fulfill
the requirements which became traditional in the classical statistics and when we try
to keep them in the robust statistics we pay a sacrifice to tradition, the sacrifice which
was nicely described in famous paper by Paul Halmos [15]. Nevertheless, it appeared
that the knowledge of asymptotic normality is not sufficient and it inspired research on
expansion (of a bit modified Edgeworth type, see [12] or [4]) on distribution function
leading to results in the small sample asymptotics, see e. g. [13] or [23]. Although these
results demonstrated that the asymptotics may start to work nicely from very small
sample sizes (surprisingly from 3 or 4), the validity of approximation had to be checked
by simulation studies anyway. So it seems that for any accountable application of an
estimator we need some idea about the behaviour of the estimator for the finite samples
of data under various circumstances delivered by well designed numerical study. How-
ever, even nowadays when computational means offer very fast computation it can be
a bit problem. The structures of data and/or of their contamination can be so man-
ifold that an “exhaustive” simulations would be endless (and consequently, the extent
of resulting papers huge). Nevertheless, we hope that we offer results which demon-
strate that simulation study can “discover” that our traditional ideas (making-up the
statistical/econometric folklore) may be wrong.

What can be also fruitful is a comparison of new estimator with some alternative
estimator(s) – all after it was also the recommendation of reviewer and we thank for it.
The recommendation appeared more useful than it could be guessed at the first glance.
The comparison with other estimators (representing high quality of estimators) revealed
which kind of data and of contamination can cause really serious complications to the
estimators of regression model. Our numerical study in the first draft of paper (which
did not contain any comparison with other estimators) confirmed a good behaviour of
IWV in the situation when the orthogonality condition is broken and a contamination
is present. However, the framework was proposed in a way which seemed to be the most
terrible for the estimator according to the traditional ideas, we can meet in the papers
on robust estimation of regression model – see discussion below. May be that without
comparing IWV with some other estimators we would never “discover” some gimmicks
of estimating the underlying regression model. Thanks for it once again.

So, we looked for competitors for the instrumental weighted variables. The very first
idea may be to employ M -instrumental variables as they were studied in [34]. Pros for
the M -estimators is a quick algorithm by which we can compute (most of) them, see [2].
However on the other hand, they have only limited maximal breakdown point, see [21].

Recently many people started to employ not only OLS but also the regression quan-
tiles (RQ), see [20]. It has probably various reasons. Firstly, the problems caused by
contamination became more significant because of type and amount of data. Secondly,
the RQ became available subroutine in STATA already a couple years ago, earlier than
other possibilities, see below. Finally, RQ are easy to understand and to accept the
underlying idea. However, the RQ are also M -estimators and the reasons given above
hint that it would be useless.

Recently appeared several proposals, see e. g. [9] or [10], see also [14]. As the estimator
proposed in [10] (which is based on S-estimator) was implemented and included into
STATA too, see [11], it became more or less widely used and that is why we have
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selected them2. Of course, we should demonstrate that LWS and S-estimator are based
on different ideas, i. e. that LWS is not a special case of S-estimator and vice versa –
to have authentic competitors. We shall do it after recalling their definitions below.

In [11] the authors advocated to use also a robustification of the instrumental variables
based on W -estimators (they will be recalled later on) which employ as an external rule
for assigning the weights to residuals the Mahalanobis distance. As they claimed that
this estimator exhibits a significant gain in efficiency with respect to the estimator
proposed by Cohen Freue, Ortiz–Molina and Zamar [10], we have included also this
estimator into our study3.

1.1. Recalling the estimators used in numerical study

To facilitate understanding the results (collected in the tables below), we recall the basic
notions. The estimators which are considered in the study from the region of the classical
statistics and econometrics are:

The ordinary least squares (OLS)

β̂(OLS,n) = β̂(OLS,n) (Y,X) = arg min
β∈Rp

n∑
i=1

(Yi −X ′iβ)2

where for i = 1, 2, . . . , n Yi, Xi denotes response and explanatory variables, respec-
tively.
Selecting the instrumental variables Zi’s the estimator by means of the method of in-
strumental variables (IV ) β̂(IV,n) = β̂(IV,n) (Y,X) is given as solution of the equations

n∑
i=1

Zi (Yi −X ′iβ) = 0.

Denoting for any β ∈ Rp the residual ri(β) = Yi − X ′iβ and by r2(i)(β) the ith order
statistics among the squared residuals, the least weighted squares (LWS) are given by

β̂(LWS,n,w) = β̂(LWS,n,w) (Y,X) = arg min
β∈Rp

n∑
i=1

wir
2
(i)(β) (1)

where i = 1, 2, . . . , n and wi ∈ [0, 1] are non-increasing weights. It is only a technicality
to show that, when denoting (for any β ∈ Rp) the empirical distribution function of the
residuals by F (n)

β (r), β̂(LWS,n,w) is one of the solutions of the normal equations
n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
Xi

(
Yi −X

′

iβ
)

= 0.

The instrumental weighted variables (IWV ) β̂(IWV,n) = β̂(IWV,n) (Y,X) are given as
(any) solution of the equations

2All after, it was also the recommendation of the reviewer. On the other hand, for our study it
was rather complicated to combine our procedures written in MATLAB – for LWS and IWV – which
moreover include the results directly into TEX tables, with STATA and then to transfer the results into
TEX tables. Therefore we followed [11] with their recommendation to consult [30] together with [7] and
we wrote MATLAB code for the S-, W -, SIV - and WIV -estimators (the definitons are recalled below)
– the code is available on the request.

3The MATLAB code is also available on the request.
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n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
Zi

(
Yi −X

′

iβ
)

= 0. (2)

As we have already mentioned above, we selected two competitors to the instrumental
weighted variables. They are modifications of S- and of W -estimators for the situation
when the orthogonality condition is broken. Firstly, let us recall S- and W -estimators.
Let ρ : (−∞,∞) → (0,∞), ρ(x) = ρ(−x), nondecreasing on (0,∞). Then

β̂(S,ρ,n) = arg min
β∈Rp

{
σ ∈ R+ :

n∑
i=1

ρ

(
ri(β)
σ

)
= b

}
(3)

where b = IEρ( ε1σ0
), is called the S-estimator (S), see [27]. We have used Tukey’s ρ

function – please, see details below in the paragraph on the optimality of all parameters
of estimators included into simulation study.
S-estimator can be simply computed as

β̂(S,ρ,n) =
[
Σ̂SXX

]−1

· Σ̂SXY

where Σ̂SXX and Σ̂SXY is S-estimator of scatter matrix of explanatory variables and S-
estimator of covariance between explanatory variables X and the response Y , for details
see [11] (see also [30] for technicalities about estimating the covariance matrix and [7]
for algorithm of estimating scatter and location by S-estimator).
Let us compute the Mahalanobis distances for individual observations

d̂i =

√
(Mi − µ̂M )′

[
Σ̂SM

]−1

(Mi − µ̂M )

where Mi is the ith row of the matrix M = (X,Y ) (Mi are assumed to be column
vector) and Σ̂SM and µ̂SM are the S-estimators of scatter matrix and location of data M ,
respectively. Further, delete those observations that are associated with d̂i’s larger than√
χ2
p+1,q where q is a confidence level, e. g. 99 %, and denote the reduced data as X̃ and

Ỹ . Then the W -estimator (W ) is given as

β̂(W,ρ,qW ,n) =
(
X̃ ′X̃

)−1

X̃Ỹ , (4)

see again [11].

1.2. Mutual relation of estimators
We have promised to show that LWS are not special case of S-estimators and vice versa.
Showing that we indicate that the competitors are based on an alternative idea(s) than
IWV and hence they can be used as serious competitors. The S-estimators were defined
by the extremal problem (3). Putting ρ̃ = ρ(

√
x) we can write

β̂(S,ρ̃,n) = arg min
β∈Rp

{
σ ∈ R+ :

n∑
i=1

ρ̃

(
r2i (β)
σ2

)
= b

}
. (5)
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On the other hand, denoting for any β ∈ Rp

σ = σ(β) =

√√√√ n∑
i=1

w

(
i− 1
n

)
r2i (β),

we obtain from (1)

β̂(LWS,n,w) = arg min
β∈Rp

{
σ ∈ R+ :

n∑
i=1

w

(
i− 1
n

)
r2i (β)
σ2

= 1

}
. (6)

The comparison of (5) and (6) implies that if we have to prove that LWS can be rep-
resented as S-estimator, we have to show that for any weight function w there is a
nondecreasing function ρ∗ such that

1
b
ρ∗
(
r2i (β)
σ2

)
= w

(
i− 1
n

)
r2i (β)
σ2

. (7)

Now, let us realize that r2(i)(β) ≤ r2(i+1)(β) implies – due to the assumption that ρ∗ is
nondecrasing on (0,∞)

ρ∗

(
r2(i)(β)

σ2

)
≤ ρ∗

(
r2(i+1)(β)

σ2

)

while we can have

w

(
i− 1
n

)
r2(i)(β)

σ2
≤ w

(
i

n

)
r2(i+1)(β)

σ2

as well as

w

(
i− 1
n

)
r2(i)(β)

σ2
≥ w

(
i

n

)
r2(i+1)(β)

σ2
.

It indicates that we cannot find a nondecreasing function ρ∗ fulfilling (7). So the con-
clusion is: The LWS is not a special case of S-estimator but – taking into account once
again just performed considerations – we can also conclude that S-estimators cannot be
represented as LWS by a special adjustment of the weights wi’s. Finally, turn to the
modifications of β̂(LWS,n,w), β̂(S,ρ,n) and β̂(W,n) for the situation when the orthogonality
condition is broken. The IWV were already racalled in (2).
The S-instrumental variables (SIV ) estimator, a modification of S-estimator is given as

β̂(SIV,ρ,n) =
{

Σ̂SXZ
[
Σ̂SZZ

]−1

Σ̂SXZ

}−1

· Σ̂SXZ
[
Σ̂SZZ

]−1

Σ̂SZY

where again Σ̂SA is the S-estimator of the matrix A. Similarly, the W -instrumental vari-
ables (WIV ) estimator is given as

β̂(WIV,ρ,qW ,n) =
{

Σ̂WXZ
[
Σ̂WZZ

]−1

Σ̂WXZ

}−1

· Σ̂WXZ
[
Σ̂WZZ

]−1

Σ̂WZY ,

i. e. β̂(WIV,n) is computed along the same lines as β̂(SIV,ρ,n) but all S-estimates are
substituted by W -estimates, see again [11].
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2. DESCRIPTION OF THE FRAMEWORK OF NUMERICAL STUDIES

Data generating model was employed as follows

Yit = β0
1 ·Xit1+β0

2 ·Xit2+· · ·+β0
5 ·Xit5+εit = X ′itβ

0+εit, i = 1, 2, . . . , n, t = 1, 2, . . . , T

where we denoted by Xit = (Xit1, Xit2, . . . , Xit5)′ and by β0 = (β0
0 , β

0
1 , . . . , β

0
4)′. In other

words, we generated panel data containing n blocks, each block created by T observations.
Throughout the whole numerical study we kept Xit1 = 1 for all i = 1, 2, . . . , n and
t = 1, 2, . . . , T and the values of coordinates of β0 were

β0 5.000 −4.000 3.000 −2.000 1.000

Since all the estimators (we have included into this numerical study) are regression
equivariant, the values of coordinates of β0 can be selected arbitrarily4. To make easier
reading this paper we have selected such which is easy to remember and for the sake of
space we will not repeat them. Explanatory variables were generated as follows.

2.1. Generating explanatory variables

. For each i (i = 1, 2, . . . , n) we generated 4-dimensional random vector Ui with mu-
tually independent coordinates, each of them distributed according to standard normal
distribution. Moreover we generated an innovation sequence of independent identically
distributed 4-dimensional vectors, {vi,t}n,T+1

i=1,t=1 (say), again with mutually independent
coordinates, each of them distributed according to standard normal distribution. Then
we put Vi,t,1 = 1 for all i = 1, 2, . . . , n and t = 0, 1, 2, . . . T + 1 and Vi,0,j = Ui,j−1 for all
i = 1, 2, . . . , n and j = 2, 3, 4 and 5. We continue for θ ∈ [0, 1] with

Vi,t,j = (1− θ) · Vi,t−1,j + θ · vi,t,j−1, i = 1, 2, . . . , n, t = 1, 2, . . . , T + 1, j = 2, 3, 4, 5.

Finally, we put Xi,t = Vi,t+1 and Zi,t = Vi,t for i = 1, 2, . . . , n and t = 1, 2, . . . , T and
from some data we made good leverage points – see a discussion below..

2.2. Generating the disturbances

. Disturbances εi’s were distributed as follows: We generated i. i. d. sequence

{εi,t}n,T+1
i=1,t=1

each element of sequence being distributed according to the standard normal distribu-
tion. When the orthogonality condition was assumed to be broken5 but the disturbances
are still homoscedastic (of course, it is a case which is not very frequent that the dis-
turbances are correlated with explanatory variables and they are still homoscedastic –
however we should address all possibilities), we changed the explanatory variables on

Xi,t = Vi,t+1 + γ · εi,t, i = 1, 2, . . . , n and t = 1, 2, . . . , T (8)
4We make couple of experiments whether the estimators which are theoretically regression-

equivariant, are really also empirically regression-equivariant. It appeared that they are.
5One can learn that the most of results reported below in tables were found for the broken orthogo-

nality condition.
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If moreover the disturbances were assumed to be heteroscedastic, we put

ε̃i,t = τi,t · εi,t, i = 1, 2, . . . , n and t = 1, 2, . . . , T (9)

where τi,t’s were generated as a sequence of i. i. d. r. v.’s distributed according to the
uniform distribution on the interval (0.5, a) where a is specified below6.

2.3. How were the data contaminated?

Finally, we should describe how the data were contaminated. Naturally, when proposing
a new estimator (with a hope that it will be good) we should try to examine it on data
which can cause the estimators of given type (in our case, the estimator of regression
coefficients) the most serious problems. There is an idea (we suppose well spread and
which we shared too) that the most serious problem are caused for any estimator of
regression coefficients by bad leverage points. On the over hand, usually the leverage
points are easier detectable than outliers. Nevertheless even if we recognize leverage
points, e. g. by hat matrix corresponding to the matrix (Y,X), see [8], it need not
be easy to decide whether they are good or bad leverage points. Of course, at the
first glance it may seem that when there is only several leverage points, we can try to
compute the estimates with and without them and everything will be clear. However,
let us realize that in fact some of these detected leverage points can be good and some
may be bad. Hence we have to take into account data sets created from our original data
by deleting all possible subgroups of the group of k leverage points we have detected.
It means that the extent of computation will increase with k!. That is why we usually
prefer estimators which are able to distinguish between good and bad leverage points
themselves. All robust estimators included into our numerical study are able to do it.
Nevertheless, the above discussion implies that the presence of good leverage points in
data set can cause some problems to the estimators in question.

2.3.1. Generating leverage points

Therefore we selected always one block of data and multiplied the values of all X’s and
Z’s in this block by 20 (of course without the first coordinate – please see the construction
of X’s and Z’s). The corresponding values of response variable were computed correctly.
In other words, the data contained a group of good leverage points.

2.3.2. Generating outliers

We also selected one block and contaminated all data in this block, creating from them
either the outliers or the bad leverage points (it is specified below). It also implies
that the extent of contamination was the same as the extent of group of good leverage
points. As the recommendation of reviewer of the first version of paper was to make the

6It means that the disturbances depend on explanatory variables as they are in fact a part of
explanatory variables, see (8). On the other hand, variances of disturbances were generated separately
because otherwise they would not be (generally) bounded (9). Moreover, it is necessary to realize that
if the variance of a disturbance is rather large, such observation would be assumed as contamination
and the influence would be depressed anyway. That is why we have used rather limited values of a,
namely, 1.5, 3.5 and 5.5.
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study for various sizes of data sets, the simulations were performed for total numbers of
observation in data sets from 100 to 500 with step 100 (it is given at the head of tables).

2.4. Reporting the results

We have generated 500 sets, each containing n · T observations. The values of n and
T are specified at the head of tables. Let us recall that n is the number of blocks
while T is number of observations in each block. As in each dataset one block was
contaminated, i. e. T observation among n · T observations, the level of contamination
was n−1 · 100 %. That is why – when we want to find the results for different sample
sizes n · T = 100, 200, . . . , 500 with the same level of contamination we changed T =
100
n , 200

n , . . . , 500
n . Then the estimates of regression coefficients were computed, say{

β̂(index,k) = (β̂(index,k)
0 , β̂

(index,k)
1 , β̂

(index,k)
2 , β̂

(index,k)
3 , β̂

(index,k)
4 )′

}500

k=1
(10)

where the abbreviations OLS, IV, LWS, S,W, IWV, SIV and WIV at the position of
“index” indicate the method employed for the computation, namely OLS for the Ordi-
nary Least Squares, IV – for the Instrumental Variables, LWS – for the Least Weighted
Squares, S – for S-estimator, W – for W-estimator, IWV for the Instrumental Weighted
Variables, SIV – for S-instrumental variables estimator and finally WIV – for W-
instrumental variables estimator.
Further, the empirical means and empirical mean square error of estimates of coefficients
(over these 500 repetitions) were computed, i. e. we report values (for j = 1, 2, 3, 4 and 5)

β̂
(index)
j =

1
500

500∑
k=1

β̂
(index,k)
j and M̂SE

(
β̂

(index)
j

)
=

1
500

500∑
k=1

[
β̂

(index,k)
j − β0

j

]2
(11)

where (let’s recall it once again) the abbreviations OLS, IV, LWS, S, W, IWV, SIV and
WIV at the position of “index” indicate the method employed for the computation. The
results are given in tables (starting with Table 8) in the form: The first cell of each row in-
dicates the method, e. g. β(OLS), the next 5 cells contain then just β̂(OLS)“

M̂SE(β̂(OLS))
” for

the first, the second up to the fifth coordinate. The respective framework (homoscedas-
tic/heteroscedastic disturbances, contaminated/noncontaminated data, broken/fulfilled
orthogonal condition) is further specified above each table and in its head.

Although the study was performed on very fast computer (with the frequency of pro-
cessor 3.8 GHz and 16 MB of working memory), the simulations when we looked for
the optimal values of free parameters and when 500 sets containing 500 observations
were considered, were rather time-consuming. That is why for estimators having two
assignable parameters (LWS and W -estimator) we had to select some reasonable pat-
tern of possibilities. A special attention was devoted to the weights for LWS because
the very first results indicated that the conclusions can be different from those made in
the first version of paper, see discussion below. Prior to answering a question how to
select the free parameters of estimators (or constants, if you want) let us repeat: The
data were generated as the panel data – n blocks, each containing T observations, the
contamination affects just all observations of one block.
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3. HOW TO ASSIGN THE FREE PARAMETERS OF ESTIMATORS?

All robust estimators, we have decided to include into the simulation study, have some
assignable parameters and objective functions. We have performed some preliminary
simulations to establish empirically approximately optimal values of these parameters.
We made these simulation individually for “parent” estimators (i. e. for LWS, S- and
W -estimators) and assumed that the same values hold approximately also for IWV ,
SIV and WIV . Let us recall that all simulations were 500 times repeated. The number
of observations are given in tables. As the criterion of quality was used the aggregated
mean square error, i. e.

ÂMSE
(index)

=
p∑
j=1

M̂SE
(
β̂

(index)
j

)
. (12)

Because in the most cases the values of ÂMSE are very low, the values given in tables
below are in fact 10 · ÂMSE.

The weight function w(r) : [0, 1]→ [0, 1] for LWS is equal to 1 for 0 ≤ r ≤ h, it is equal
to 0 for g ≤ r ≤ 1 and it decreases from 1 to 0 for h ≤ r ≤ g, i. e. putting c = g− h and
y = g − r we compute

w(r) = 3
y2

c2
− 3

y4

c4
+
y6

c6
, (13)

i. e. between h and g the weight function borrowed the shape from Tukey’s ρ which is
recalled below.

0 1

0

1

h g

0 1

0

1

gh

Fig. 1. The examples of possible shapes of weight function.

Then the weights wi are given by wi = w( i−1
n ). The same weights were used for the

Least Weighted Squares and for the Instrumental Weighted Variables. The values of h
and g were selected according to numerical results presented below, for different sample
sizes and various levels of contamination. For AMSE please see (12), for how the data
were contaminated see subsection 2.3. Notice that AMSE is large for OLS even for low
level of contamination.
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T = 1, n · T = 100, AMSE(OLS) = 78.45

g − h = 0.06
h 0.840 0.860 0.880 0.900 0.920 0.930 0.940 0.950 0.960

g 0.900 0.920 0.940 0.960 0.980 0.990 1.000 1.000 1.000

AMSE 1.014 0.881 0.884 0.738 0.650 0.548 2.892 4.750 8.831

g − h = 0.04
h 0.860 0.880 0.900 0.920 0.940 0.950 0.960 0.970 0.980

g 0.900 0.920 0.940 0.960 0.980 0.990 1.000 1.000 1.000

AMSE 0.942 0.896 0.798 0.721 0.624 0.539 9.528 20.577 38.529

g − h = 0.02
h 0.880 0.900 0.920 0.940 0.960 0.970 0.980 0.990 0.999

g 0.900 0.920 0.940 0.960 0.980 0.990 1.000 1.000 1.000

AMSE 0.942 0.845 0.755 0.677 0.603 0.584 40.163 74.265 71.638

g − h = 0.01
h 0.870 0.890 0.910 0.930 0.950 0.970 0.980 0.990 0.999

g 0.880 0.900 0.920 0.940 0.960 0.980 0.990 1.000 1.000

AMSE 0.967 0.981 0.842 0.762 0.670 0.585 0.595 73.181 69.653

T = 2, n · T = 200, AMSE(OLS) = 65.29

g − h = 0.06
h 0.840 0.860 0.880 0.900 0.920 0.930 0.940 0.950 0.960

g 0.900 0.920 0.940 0.960 0.980 0.990 1.000 1.000 1.000

AMSE 0.535 0.475 0.460 0.384 0.340 0.318 1.148 2.807 4.434

g − h = 0.04
h 0.860 0.880 0.900 0.920 0.940 0.950 0.960 0.970 0.980

g 0.900 0.920 0.940 0.960 0.980 0.990 1.000 1.000 1.000

AMSE 0.534 0.481 0.420 0.361 0.326 0.303 3.726 9.495 24.030

g − h = 0.02
h 0.880 0.900 0.920 0.940 0.960 0.970 0.980 0.990 0.999

g 0.900 0.920 0.940 0.960 0.980 0.990 1.000 1.000 1.000

AMSE 0.482 0.445 0.395 0.375 0.299 0.295 22.890 54.299 68.076
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g − h = 0.01
h 0.890 0.910 0.930 0.950 0.970 0.980 0.990 0.999 0.999

g 0.900 0.920 0.940 0.960 0.980 0.990 1.000 1.000 1.000

AMSE 0.462 0.448 0.397 0.346 0.291 0.271 51.941 82.688 67.959

T = 3, n · T = 300, AMSE(OLS) = 72.35

g − h = 0.06
h 0.840 0.860 0.880 0.900 0.920 0.930 0.940 0.950 0.960

g 0.900 0.920 0.940 0.960 0.980 0.990 1.000 1.000 1.000

AMSE 0.371 0.326 0.298 0.265 0.242 0.229 0.851 1.332 2.563

g − h = 0.04
h 0.860 0.880 0.900 0.920 0.940 0.950 0.960 0.970 0.980

g 0.900 0.920 0.940 0.960 0.980 0.990 1.000 1.000 1.000

AMSE 0.361 0.323 0.293 0.263 0.241 0.206 2.893 6.194 15.508

g − h = 0.02
h 0.880 0.900 0.920 0.940 0.960 0.970 0.980 0.990 0.999

g 0.900 0.920 0.940 0.960 0.980 0.990 1.000 1.000 1.000

AMSE 0.360 0.331 0.273 0.261 0.200 0.208 15.502 47.702 75.658

g − h = 0.01
h 0.890 0.910 0.930 0.950 0.970 0.980 0.990 0.999 0.999

g 0.900 0.920 0.940 0.960 0.980 0.990 1.000 1.000 1.000

AMSE 0.341 0.317 0.290 0.245 0.218 0.216 41.953 74.692 70.938

Tab. 1. The contamination by bad leverage pointson the level of 1 %,

n = 100.

Similarly as the simulations were performed for T = 1, 2 and 3, we prolong these
study for T = 4 and T = 5 and the results were used in the simulations (however for
the sake of space we do not present them here – they can be obtained on a request).
It follows from previous table that the optimal selection is = 0.98 and g = 0.99 for
n · T = 200, 400 and 500. For n · T = 100 the optimal values are h = 0.97 and g = 0.98
and for n · T = 300, the values h = 0.95 and g = 0.99 seem to be the best. On the other
hand the differences between values from left to the point of minima are of order of 10 %.
It means that probably (and we have the same experience from similar other study) very
important requirement is that g is selected so that all leverage points have chance to
obtain zero weight. The results of such a study significantly depend on the topology
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of data and of contamination. As we already mentioned it in the previous text, we try
to prepare the framework of simulation in such a way to scrutinize the estimator by
data which can cause the most terrible problems. However our idea about the “Achilles
heel” of the estimator can be nastily influenced by the ideas which are handed down
by “statistical folklore”. To make more complex idea about the optimal selection of
the weight function for various variants of (more or less “sneak”) contamination would
require tens or hundreds of hours of simulations.
A relatively stable results (for different sample sizes and different values of g − h) was
taken as the reason why we simulated for the 5 % contamination only following table:

T = 5, n · T = 100, AMSE(OLS) = 244.65, g − h = 0.01
h 0.890 0.900 0.910 0.920 0.930 0.940 0.950 0.960 0.970

g 0.900 0.910 0.920 0.930 0.940 0.950 0.960 0.970 0.980

AMSE 1.037 1.118 2.210 0.942 1.009 0.771 80.323 154.661 235.378

T = 10, n · T = 200, AMSE(OLS) = 222.48, g − h = 0.01
h 0.890 0.900 0.910 0.920 0.930 0.940 0.950 0.960 0.970

g 0.900 0.910 0.920 0.930 0.940 0.950 0.960 0.970 0.980

AMSE 0.585 0.530 0.503 0.774 0.470 0.850 29.118 94.434 154.646

T = 15, n · T = 300, AMSE(OLS) = 192.81, g − h = 0.01
h 0.890 0.900 0.910 0.920 0.930 0.940 0.950 0.960 0.970

g 0.900 0.910 0.920 0.930 0.940 0.950 0.960 0.970 0.980

AMSE 0.374 0.365 0.352 0.301 0.320 0.287 9.372 47.487 111.402

T = 20, n · T = 400, AMSE(OLS) = 199.40, g − h = 0.01
h 0.890 0.900 0.910 0.920 0.930 0.940 0.950 0.960 0.970

g 0.900 0.910 0.920 0.930 0.940 0.950 0.960 0.970 0.980

AMSE 0.277 0.266 0.254 0.242 0.217 0.203 2.954 27.287 75.459

T = 25, n · T = 500, AMSE(OLS) = 136.35, g − h = 0.01
h 0.890 0.900 0.910 0.920 0.930 0.940 0.950 0.960 0.970

g 0.900 0.910 0.920 0.930 0.940 0.950 0.960 0.970 0.980

AMSE 0.216 0.206 0.195 0.178 0.177 0.165 1.191 11.966 46.933

Tab. 2. The contamination by bad leverage points on the level of 5 %

(please see again subsection 2.3), n = 20.

The optimal selection of h and g is 0.94 and 0.95, respectively, except of n · T = 200 for
which we obtained as optimal the values h = 0.93 and g = 0.94. Again the situation is
rather flexible what concerns value of h especially for larger values of n.
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The situation for a bit higher contamination – 20 % – is a somewhat different from the
situation for small and modest contamination (as given in Table 1 and 2). Let us give
firstly the table:

T = 20, n · T = 100, AMSE(OLS) = 306.86, g − h = 0.01
h 0.510 0.520 0.530 0.540 0.550 0.560 0.570 0.580

g 0.520 0.530 0.540 0.550 0.560 0.570 0.580 0.590

AMSE 20.429 19.197 12.602 16.535 20.375 8.268 10.373 7.946

h 0.590 0.600 0.610 0.620 0.630 0.640 0.650 0.660

g 0.600 0.610 0.620 0.630 0.640 0.650 0.660 0.670

AMSE 8.435 12.572 8.867 10.234 19.079 21.086 15.732 16.590

T = 40, n · T = 200, AMSE(OLS) = 191.80, g − h = 0.01
h 0.600 0.610 0.620 0.630 0.640 0.650 0.660 0.670 0.680

g 0.610 0.620 0.630 0.640 0.650 0.660 0.670 0.680 0.690

AMSE 4.450 1.018 0.622 2.342 4.528 0.473 0.579 1.678 7.405

h 0.690 0.700 0.710 0.720 0.730 0.740 0.750 0.760 0.770

g 0.700 0.710 0.720 0.730 0.740 0.750 0.760 0.770 0.780

AMSE 0.397 1.026 1.078 2.911 7.317 6.472 8.529 8.236 7.960

T = 60, n · T = 300, AMSE(OLS) = 142.41, g − h = 0.01
h 0.660 0.670 0.680 0.690 0.700 0.710 0.720 0.730 0.740

g 0.670 0.680 0.690 0.700 0.710 0.720 0.730 0.740 0.750

AMSE 0.261 0.478 0.241 0.468 0.211 0.199 4.530 0.181 1.532

h 0.750 0.760 0.770 0.775 0.780 0.785 0.790 0.800 0.810

g 0.760 0.770 0.780 0.785 0.790 0.795 0.800 0.810 0.820

AMSE 0.155 0.156 1.508 1.265 0.145 2.651 2.358 0.130 5.963

T = 80, n · T = 400, AMSE(OLS) = 117.75, g − h = 0.01
h 0.680 0.690 0.700 0.710 0.720 0.730 0.740 0.750 0.760

g 0.690 0.700 0.710 0.720 0.730 0.740 0.750 0.760 0.770

AMSE 0.158 0.146 4.845 0.137 0.132 0.119 0.115 0.099 0.177

h 0.770 0.780 0.790 0.795 0.800 0.805 0.810 0.820 0.830

g 0.780 0.790 0.800 0.805 0.810 0.815 0.820 0.830 0.840

AMSE 0.105 0.095 4.681 6.151 0.089 0.194 0.155 0.152 0.259
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T = 100, n · T = 500, AMSE(OLS) = 94.87, g − h = 0.01
h 0.740 0.750 0.760 0.770 0.780 0.785 0.790 0.795 0.800

g 0.750 0.760 0.770 0.780 0.790 0.795 0.800 0.805 0.810

AMSE 0.085 0.087 0.080 0.079 0.066 0.070 0.071 0.065 0.061

h 0.810 0.815 0.820 0.825 0.830 0.835 0.845 0.855 0.865

g 0.820 0.825 0.830 0.835 0.840 0.845 0.855 0.865 0.875

AMSE 0.068 0.085 0.117 0.153 0.174 0.224 0.433 0.868 1.364

Tab. 3. The contamination by bad leverage points on the level of

20 % (please see again subsection 2.3), n = 5.

For the S-, W -, SIV - and WIV -estimators we have employed Tukey’s ρ because it
became to be one of the most popular one, see again [10] or [14]. It is given for some
c > 0 as

ρc(x) = x2

2 −
x4

2·c2 + x6

6·c4 for|x| ≤ c,

= c2

6 otherwise.

Let us recall that the value of b = IEρ
(
ε1
σ0

)
given as

b = p
χ2
p+2(c2)

2
− p · (p+ 2)

χ2
p+4(c2)
2 · c2

+ p · (p+ 2) · (p+ 4)
χ2
p+6(c2)
6 · c4

+
c2

6
(1− χ2

p(c
2)),

(χ2
k(x) denotes the value of χ2 distribution function with k degrees of freedom at the

point x and let us recall that p is the dimension of regression model in question, including
the intercept), see [7]. The approximately optimal values of cS – the constants for
Tukey’s ρ for the S-estimator, again for different sample sizes and different levels of
contamination were assigned respecting the results of preliminary numerical study result
of which is collected in the next table.

cS 6 7 8 9 10 11 12 13 14

b(c, p) 2.054 2.165 2.239 2.292 2.330 2.359 2.381 2.398 2.412

T = 1, n · T = 100
AMSE 0.671 0.660 0.629 0.643 0.641 0.649 0.648 0.686 0.679

T = 2, n · T = 200
AMSE 0.365 0.358 0.366 0.340 0.348 0.355 0.367 0.380 0.409
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T = 3, n · T = 300
AMSE 0.264 0.259 0.237 0.259 0.249 0.238 0.271 0.269 0.301

T = 4, n · T = 400
AMSE 0.213 0.207 0.201 0.207 0.207 0.212 0.213 0.222 0.243

T = 5, n · T = 500
AMSE 0.186 0.179 0.177 0.168 0.173 0.169 0.174 0.184 0.208

Tab. 4. The contamination by bad leverage points on the level of 1 %

(please see again subsection 2.3), n = 100.

cS 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

b(c, p) 1.764 1.884 1.979 2.054 2.115 2.165 2.205 2.239 2.268

T = 5, n · T = 100
AMSE 1.592 1.351 1.317 1.250 1.344 1.328 1.535 34.410 93.376

T = 10, n · T = 200
AMSE 1.034 0.916 0.907 0.895 0.894 0.807 0.910 1.746 10.923

T = 15, n · T = 300
AMSE 0.949 0.882 0.773 0.808 0.766 0.763 0.844 1.274 6.399

T = 20, n · T = 400
AMSE 0.948 0.782 0.775 0.713 0.666 0.724 0.807 0.922 2.843

T = 25, n · T = 500
AMSE 0.955 0.788 0.706 0.658 0.656 0.661 0.771 1.012 2.652

Tab. 5. The contamination by bad leverage points on the level of

5 %, n = 20.

Similarly as the simulations were performed for the contamination level of 1 % and 5 %
in Tables 4 and 5, we prolong these study for further the contamination levels up to
20 % and the results were used in the simulations (however for the sake of space we do
not present them here). Finally, approximately optimal values of cW – the constants for
Tukey’s ρ and the confidence levels qW for W -estimator were selected according to the
results which are presented in the tables which follow. Notice that the approximately
optimal values cS and cW are different. (In this case we present results for the contam-
ination level 1 % and 20 % but the results for the other levels were simulated, too, and
used in the simulations below, for qW see (4).)
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cW 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000

qW 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000

T = 1, n · T = 100
AMSE 0.764 0.717 0.705 0.717 0.671 0.745 0.752 0.735 0.786

T = 2, n · T = 200
AMSE 0.423 0.383 0.385 0.381 0.373 0.394 0.414 0.418 0.432

T = 3, n · T = 300
AMSE 0.297 0.288 0.274 0.264 0.272 0.300 0.295 0.301 0.301

T = 4, n · T = 400
AMSE 0.236 0.223 0.224 0.208 0.226 0.238 0.250 0.245 0.247

T = 5, n · T = 500
AMSE 0.211 0.204 0.191 0.189 0.185 0.200 0.197 0.214 0.209

Tab. 6. The contamination by bad leverage points on the level of

1 %, n = 100.

c 3.500 4.000 4.500 5.000 5.500 6.000 6.500

qW 0.995 0.996 0.997 0.998 0.999 0.999 1.000

T = 20, n · T = 100
AMSE 1302.371 1031.556 295.990 472.084 524.253 649.898 936.679

T = 40, n · T = 200
AMSE 200.431 158.875 105.816 147.129 206.742 323.318 854.863

T = 60, n · T = 300
AMSE 136.927 68.122 40.891 69.065 113.084 185.740 930.297

T = 80, n · T = 400
AMSE 55.491 59.487 27.614 46.116 85.877 136.653 890.311

T = 100, n · T = 500
AMSE 49.50 36.091 16.640 31.927 57.246 105.820 898.305

Tab. 7. The contamination by bad leverage points on the level of

20 %, n = 5.
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3.1. Assigning the free parametres in the case of real data ?

The above presented results of simulations will be used in what follows. Naturally,
one can ask however how to select appropriately “free” parameters of estimators when
processing real data. One possibility can be to use some estimator of contamination level,
see e. g. [33]. It however assumes that we decide for some model of contamination and it
need not be very reliable. Much better is probably to use forward search, see [3, 5, 35, 37],
i. e. to start with with a rather conservative values of parameters (assuming high level
of contamination) and in each step to decrease the level of robustness of the estimator
in question up to the moment when a break of a “smooth” series of the estimates of
models appears. It is true that to adjust in such a way carefully the weight functions
takes some time. If we would be really careful, we start with conservative values of h
and g (see FIGURE 2.) and then we increase (by small steps) g leaving h unchanged.
When a break appears, we return g a bit back and start with the increase of h, again up
to moment when either a break appears or we reach (nearly) the value of g. Then we can
hope that we have adjusted the weight function so that the estimation will be efficient as
much as possible under given (unknown) level of contamination and given (topology of)
data. If we select the step rather large, our effort can be useless, if too small the process
can be tiresome. Nevertheless, a potential way how to adjust a maximal efficiency of
estimation exists and with the (fascinating) increase of speed of IT, we can hope that
in (close) future it will be a routine step. The number inside tables have structure
β̂

(method)“
M̂SE(β̂(method))

”, for more details see (11) and text below it.

3.2. Can we achieve efficiency by robust estimators?

In Table 8 we have collected results of study showing that in the case when there is
no contamination the robust methods – if they employ forward search (see [3]) – can
achieve the efficiency well comparable with the optimal method, i. e. the efficiency of
OLS.

h = 0.45, g = 0.55, cS = 3, cW = 5, qW = 0.90

β̂(OLS) 5.002(0.204) −4.001(0.163) 3.002(0.139) −2.002(0.118) 0.999(0.143)

β̂(LWS) 5.012(1.721) −3.984(5.276) 3.023(5.809) −2.025(5.741) 0.999(6.079)

β̂(S) 5.005(0.443) −3.999(5.071) 3.008(4.599) −2.006(4.629) 1.014(5.544)

β̂(W ) 5.006(0.702) −3.951(32.898) 3.026(29.582) −2.014(31.191) 1.013(31.668)

h = 0.70, g = 0.85, cS = 7, cW = 10, qW = 0.95

β̂(OLS) 5.001(0.190) −4.001(0.135) 2.999(0.130) −2.000(0.141) 0.999(0.139)

β̂(LWS) 4.997(0.539) −4.003(0.354) 2.999(0.431) −2.008(0.477) 0.998(0.464)

β̂(S) 5.001(0.213) −4.012(1.374) 2.995(1.450) −2.009(1.494) 1.002(1.546)

β̂(W ) 5.000(0.217) −4.020(2.310) 2.996(2.230) −2.009(2.197) 1.009(2.375)
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h = 0.98, g = 0.995, cS = 12, cW = 16, qW = 0.999

β̂(OLS) 5.000(0.205) −4.000(0.135) 3.000(0.129) −2.002(0.118) 1.003(0.133)

β̂(LWS) 5.000(0.219) −4.000(0.150) 3.000(0.147) −2.002(0.137) 1.002(0.149)

β̂(S) 5.001(0.218) −4.003(1.319) 2.997(1.282) −2.011(1.330) 1.002(1.314)

β̂(W ) 5.000(0.225) −4.003(1.701) 3.000(1.768) −2.010(1.808) 0.998(1.728)

h = 0.995, g = 1, cS = 24, cW = 35, qW = 1

β̂(OLS) 5.000(0.202) −3.996(0.119) 3.001(0.169) −1.998(0.127) 1.001(0.130)

β̂(LWS) 5.000(0.201) −3.996(0.120) 3.001(0.169) −1.998(0.129) 1.001(0.130)

β̂(S) 5.000(0.202) −3.997(0.134) 3.002(0.179) −1.998(0.148) 1.000(0.158)

β̂(W ) 5.000(0.201) −3.997(0.300) 3.000(0.333) −1.998(0.292) 1.001(0.348)

Tab. 8. Each data set contained 500 observations, 500 repetitions

were performed. The data were not contaminated, disturbances were

homoscedastic and the orthogonality condition held.

4. SIMULATIONS

After making the above presented preliminary simulations, we are prepared to carry
out the simulations for all estimators simultaneously, keeping the approximately op-
timal values of parameters of estimators. The study should reveal the behavior of
estimators which were proposed for the situations when the orthogonality is broken.
All below given (patterns of) results of simulation study were obtained under this as-
sumption – the orthogonality condition was broken. From the very merit of study it
is clear that there are nearly endless number of combinations of “features” of situa-
tions (homo/heteroscedasticity with various level of heteroscedasticity, contamination
by outliers and/or leverage points with various levels of contamination, etc.). We have
selected some of them with the hope that they allow to create some idea about our pos-
sibilities to estimate (at least approximately) correctly the underlying model. We shall
start with the simplest situation: the contamination by outliers and the disturbances
are homoscedastic.

Prior to giving the tables of results of simulations, let us recall that numbers in the
individual cells of tables reports values specified in (11), i. e.

β̂
(method)“

M̂SE(β̂(method))
”

for the first, the second up to the fifth regression coefficient.

In the first part of Table 9 the results for LWS, S- and W -estimator were included to
give an idea how much the break of orthogonality condition influenced these estimators.
In the rest of Table 9 we shall omit the results for LWS, S- and W -estimator (partially
for the sake of space, partially because these results are not in the first interest of our
simulations).
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T = 1, n · T = 100, h = 0.98, g = 0.99, cS = 8, cW = 11, qW = 0.996

β̂(OLS) 4.698(0.188) −3.590(0.395) 3.116(0.177) −1.675(0.282) 1.182(0.202)

β̂(IV ) 4.688(0.209) −3.818(0.288) 2.892(0.189) −1.917(0.236) 0.957(0.205)

β̂(LWS) 5.002(0.006) −3.733(0.079) 3.275(0.083) −1.729(0.081) 1.270(0.080)

β̂(S) 5.002(0.005) −3.731(0.077) 3.275(0.081) −1.727(0.080) 1.271(0.079)

β̂(W ) 5.002(0.005) −3.731(0.079) 3.275(0.082) −1.729(0.080) 1.272(0.080)

β̂(IWV ) 4.994(0.014) −3.996(0.015) 3.025(0.015) −1.996(0.017) 1.010(0.014)

β̂(SIV ) 4.993(0.012) −4.011(0.015) 3.008(0.014) −2.008(0.015) 0.996(0.014)

β̂(WIV ) 4.994(0.012) −4.012(0.015) 3.011(0.015) −2.010(0.015) 0.997(0.015)

T = 2, n · T = 200, h = 0.98, g = 0.99, cS = 9, cW = 11, qW = 0.996
β̂(IV ) 4.704(0.184) −3.818(0.286) 2.855(0.226) −1.902(0.221) 0.939(0.236)

β̂(IWV ) 5.004(0.006) −3.988(0.008) 3.007(0.008) −1.997(0.008) 1.008(0.008)

β̂(SIV ) 5.003(0.005) −3.999(0.008) 2.992(0.008) −2.009(0.008) 0.998(0.008)

β̂(WIV ) 5.003(0.005) −3.999(0.009) 2.991(0.008) −2.009(0.008) 0.998(0.008)

T = 3, n · T = 300, h = 0.98, g = 0.99, cS = 8, cW = 10, qW = 0.995
β̂(IV ) 4.705(0.170) −3.845(0.222) 2.853(0.277) −1.877(0.217) 0.951(0.176)

β̂(IWV ) 5.003(0.004) −3.992(0.005) 3.006(0.006) −1.984(0.006) 1.004(0.006)

β̂(SIV ) 5.005(0.004) −4.001(0.005) 2.998(0.005) −1.993(0.005) 0.999(0.006)

β̂(WIV ) 5.005(0.004) −4.001(0.006) 2.998(0.006) −1.993(0.006) 0.998(0.006)

T = 4, n · T = 400, h = 0.98, g = 0.99, cS = 8, cW = 10, qW = 0.995
β̂(IV ) 4.686(0.178) −3.802(0.340) 2.852(0.242) −1.882(0.247) 0.967(0.223)

β̂(IWV ) 5.002(0.003) −3.996(0.004) 3.003(0.005) −1.996(0.005) 1.009(0.005)

β̂(SIV ) 5.003(0.003) −4.003(0.004) 2.994(0.005) −2.002(0.005) 1.004(0.005)

β̂(WIV ) 5.003(0.003) −4.003(0.005) 2.993(0.005) −2.002(0.005) 1.004(0.005)

T = 5, n · T = 500, h = 0.98, g = 0.99, cS = 9, cW = 11, qW = 0.996
β̂(IV ) 4.693(0.160) −3.821(0.262) 2.848(0.254) −1.932(0.235) 0.964(0.264)

β̂(IWV ) 5.002(0.003) −4.003(0.004) 3.001(0.004) −1.996(0.004) 1.000(0.004)

β̂(SIV ) 5.002(0.002) −4.004(0.004) 2.995(0.004) −2.000(0.004) 0.995(0.004)

β̂(WIV ) 5.002(0.002) −4.004(0.004) 2.995(0.004) −1.999(0.005) 0.996(0.004)

Tab. 9. The contamination by outliers on the level of 1 %, n = 100.

Please see section 2.1 up to 2.4. The disturbances were homoscedastic

and the orthogonality condition was broken.
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T = 5, n · T = 100, h = 0.94, g = 0.95, cS = 6, cW = 7, qW = 0.996
β̂(IV ) 3.363(5.230) −2.961(10.393) 2.329(7.036) −1.541(9.936) 0.672(6.559)

β̂(IWV ) 4.999(0.014) −4.006(0.033) 3.000(0.025) −2.012(0.035) 1.006(0.029)

β̂(SIV ) 4.441(1.480) −3.498(3.917) 2.707(2.474) −1.747(4.473) 0.730(3.128)

β̂(WIV ) 4.155(1.687) −4.011(0.052) 2.976(0.055) −2.029(0.069) 0.976(0.053)

T = 10, n · T = 200, h = 0.94, g = 0.95, cS = 7, cW = 7, qW = 0.996
β̂(IV ) 3.449(3.795) −3.219(6.909) 2.500(4.831) −1.640(5.246) 0.911(5.894)

β̂(IWV ) 4.995(0.006) −3.999(0.011) 2.994(0.014) −2.001(0.012) 0.996(0.014)

β̂(SIV ) 4.647(0.767) −3.603(3.057) 2.709(2.116) −1.775(2.637) 0.942(2.309)

β̂(WIV ) 4.496(0.852) −4.001(0.026) 2.984(0.029) −2.007(0.026) 0.985(0.026)

T = 15, n · T = 300, h = 0.94, g = 0.95, cS = 7, cW = 7, qW = 0.996
β̂(IV ) 3.412(3.342) −3.445(4.282) 2.605(3.866) −1.629(4.034) 0.747(3.620)

β̂(IWV ) 5.003(0.005) −4.002(0.009) 2.999(0.010) −1.998(0.010) 0.995(0.010)

β̂(SIV ) 4.831(0.309) −3.785(1.794) 2.899(0.801) −1.889(1.488) 0.895(1.513)

β̂(WIV ) 4.695(0.431) −4.016(0.025) 2.985(0.023) −2.008(0.025) 0.997(0.022)

T = 20, n · T = 400, h = 0.94, g = 0.95, cS = 6.5, cW = 6, qW = 0.995

β̂(IV ) 3.347(3.372) −3.448(3.900) 2.541(3.960) −1.651(3.352) 0.807(2.882)

β̂(IWV ) 4.997(0.003) −3.997(0.007) 3.000(0.008) −2.001(0.006) 1.003(0.008)

β̂(SIV ) 4.851(0.227) −3.833(1.168) 2.794(1.697) −1.843(1.393) 0.854(1.625)

β̂(WIV ) 4.774(0.303) −3.997(0.028) 2.969(0.029) −2.009(0.025) 0.982(0.030)

T = 25, n · T = 500, h = 0.94, g = 0.95, cS = 6.5, cW = 5, qW = 0.994
β̂(IV ) 3.464(2.761) −3.705(1.991) 2.721(2.352) −1.734(2.864) 0.870(2.297)

β̂(IWV ) 5.003(0.003) −4.002(0.006) 3.003(0.006) −2.003(0.005) 0.997(0.005)

β̂(SIV ) 4.914(0.113) −3.901(0.754) 2.928(0.747) −1.995(0.625) 1.000(0.620)

β̂(WIV ) 4.827(0.223) −4.006(0.023) 3.000(0.024) −2.016(0.025) 0.997(0.031)

Tab. 10. The contamination by outliers on the level of 5 %, n = 20.

Please see section 2.1 up to 2.4. The disturbances were homoscedastic

and the orthogonality condition was broken.

We can conclude from previous tables that the all estimators are able to cope with the
contamination on level 1 % but already the contamination on level of 5 % causes some
problems – see MSE of SIV estimator in Table 10. The results forWIV estimator is a bit
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T = 20, n · T = 100, h = 0.58, g = 0.59, cS = 3, cW = 4.5, qW = 0.997

β̂(IV ) 2.389(9.330) −3.346(8.974) 2.881(10.165) −1.646(15.230) 0.893(7.263)

β̂(IWV ) 4.956(0.089) −3.929(0.252) 3.072(0.277) −1.950(0.366) 1.005(0.593)

β̂(SIV ) 0.941(1429.524) −1.061(9096.120) 3.474(3076.015) −2.894(3306.974) 0.733(746.432)

β̂(WIV ) 1.127(1029.077) 1.710(11087.383) −6.695(23453.720) −6.185(8304.501) −2.301(5891.612)

T = 40, n · T = 200, h = 0.69, g = 0.70, cS = 3, cW = 4.5, qW = 0.997

β̂(IV ) 2.614(6.156) −3.856(0.346) 2.929(0.363) −1.912(0.330) 0.950(0.370)

β̂(IWV ) 4.986(0.011) −3.999(0.009) 3.014(0.010) −1.992(0.012) 1.009(0.013)

β̂(SIV ) 3.364(32.797) −1.444(1014.471) 3.032(666.919) −1.679(179.352) 0.096(695.465)

β̂(WIV ) 2.438(27.455) −3.611(365.097) 0.710(539.432) −1.720(181.528) 0.255(133.987)

T = 60, n · T = 300, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997

β̂(IV ) 2.646(5.790) −3.929(0.125) 2.922(0.151) −1.983(0.137) 0.993(0.135)

β̂(IWV ) 4.991(0.006) −4.004(0.003) 3.004(0.003) −2.000(0.003) 1.004(0.003)

β̂(SIV ) 3.178(9.167) −0.698(1085.072) 4.801(3996.203) −1.105(223.362) 1.442(252.287)

β̂(WIV ) 2.555(7.974) −2.507(83.470) 0.933(81.321) −1.523(52.334) −0.011(100.188)

T = 80, n · T = 400, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997

β̂(IV ) 2.736(5.298) −3.959(0.077) 2.944(0.061) −1.985(0.068) 0.995(0.059)

β̂(IWV ) 4.992(0.005) −3.999(0.002) 3.005(0.002) −1.999(0.002) 1.004(0.002)

β̂(SIV ) 3.392(24.990) −3.256(153.722) −2.900(12166.945) −1.772(122.549) −1.832(3078.206)

β̂(WIV ) 2.089(100.889) −0.970(1198.133) 8.832(27261.453) −1.977(354.271) 3.185(4121.882)

T = 100, n · T = 500, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997

β̂(IV ) 2.756(5.158) −3.950(0.053) 2.956(0.049) −1.980(0.042) 1.001(0.041)

β̂(IWV ) 4.998(0.003) −4.001(0.001) 2.997(0.001) −2.002(0.001) 1.002(0.001)

β̂(SIV ) 3.303(3.767) −3.103(22.649) 2.433(16.521) −1.414(19.176) 1.188(16.369)

β̂(WIV ) 2.824(42.293) −0.517(1697.478) 5.029(4815.141) −0.953(69.444) 0.644(72.691)

Tab. 11. The contamination by outliers on the level of 20 %, n = 5.

Please see section 2.1 up to 2.4. The disturbances were homoscedastic

and the orthogonality condition was broken.

better, nevertheless MSE of WIV is also larger than of IWV . The 20 % contamination
then destroys both SIV as well as WIV . In this situation even the empirical mean
values of the estimates of regression coefficients are rather biased.
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Let’s continue with the situation when data are contaminated still by outliers but the
disturbances are heteroscedastic. As it was already said above (see (9) ) we generated
uniformly distributed random variable τit for i = 1, 2, . . . , n and t = 1, 2, . . . , T on the
interval [0.5, a] and put ε̃i,t = τi,t ·εi,t with Y = Xβ0 + ε̃. In the next two tables a = 5.5.

T = 1, n · T = 100, h = 0.98, g = 0.99, cS = 8, cW = 11, qW = 0.996
β̂(OLS) 4.785(0.166) −2.923(1.624) 3.860(1.144) −0.962(1.506) 1.945(1.340)

β̂(IV ) 4.752(0.383) −3.923(0.420) 2.897(0.429) −1.980(0.458) 0.926(0.454)

β̂(LWS) 4.979(0.073) −3.012(1.202) 3.992(1.219) −0.990(1.275) 2.002(1.252)

β̂(S) 4.987(0.061) −2.984(1.100) 4.034(1.136) −0.973(1.123) 2.032(1.125)

β̂(W ) 4.966(0.065) −2.956(1.182) 4.060(1.208) −0.956(1.177) 2.058(1.198)

β̂(IWV ) 4.943(0.299) −4.008(0.333) 3.023(0.343) −1.988(0.367) 0.980(0.350)

β̂(SIV ) 4.965(0.301) −4.068(0.464) 2.964(0.463) −2.028(0.433) 0.955(0.456)

β̂(WIV ) 4.903(1.574) −4.183(4.325) 2.877(2.923) −2.093(1.337) 0.895(1.018)

T = 2, n · T = 200, h = 0.98, g = 0.99, cS = 9, cW = 11, qW = 0.996
β̂(IV ) 4.795(0.254) −3.914(0.316) 2.844(0.329) −1.973(0.266) 0.893(0.271)

β̂(IWV ) 4.982(0.153) −4.023(0.183) 2.946(0.175) −2.012(0.179) 0.961(0.159)

β̂(SIV ) 4.997(0.157) −4.050(0.231) 2.917(0.245) −2.043(0.237) 0.941(0.204)

β̂(WIV ) 4.988(0.178) −4.073(0.348) 2.906(0.392) −2.050(0.333) 0.932(0.301)

T = 3, n · T = 300, h = 0.98, g = 0.99, cS = 8, cW = 0, qW = 0.995
β̂(IV ) 4.695(0.289) −3.859(0.382) 2.872(0.344) −1.960(0.340) 0.916(0.296)

β̂(IWV ) 4.993(0.099) −4.020(0.143) 2.997(0.132) −2.034(0.129) 0.983(0.110)

β̂(SIV ) 5.007(0.093) −4.026(0.170) 2.970(0.172) −2.044(0.156) 0.973(0.143)

β̂(WIV ) 5.003(0.100) −4.035(0.225) 2.973(0.221) −2.059(0.227) 0.970(0.202)

T = 4, n · T = 400, h = 0.98, g = 0.99, cS = 8, cW = 10, qW = 0.995
β̂(IV ) 4.680(0.251) −3.826(0.344) 2.822(0.377) −1.918(0.304) 0.942(0.381)

β̂(IWV ) 4.988(0.078) −3.991(0.090) 2.970(0.083) −2.002(0.087) 0.991(0.092)

β̂(SIV ) 4.999(0.070) −4.004(0.117) 2.959(0.105) −1.999(0.114) 0.992(0.113)

β̂(WIV ) 4.992(0.077) −4.016(0.168) 2.946(0.149) −2.013(0.167) 0.980(0.158)

T = 5, n · T = 500, h = 0.98, g = 0.99, cS = 9, cW = 11, qW = 0.996
β̂(IV ) 4.709(0.218) −3.775(0.372) 2.839(0.349) −1.941(0.326) 0.939(0.374)

β̂(IWV ) 4.991(0.057) −3.998(0.082) 2.967(0.099) −2.004(0.083) 0.987(0.103)
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β̂(SIV ) 5.005(0.056) −4.008(0.098) 2.951(0.120) −2.017(0.100) 0.968(0.119)

β̂(WIV ) 4.999(0.060) −4.011(0.143) 2.938(0.172) −2.022(0.138) 0.958(0.161)

Tab. 12. The contamination by outliers on the level of 1 %, n = 100.

The values of variance of the disturbances randomly selected from the

interval [0.5, 5.5]. The orthogonality condition was broken (see again

section 2.1 up to 2.4.).

T = 5, n · T = 100, h = 0.94, g = 0.95, cS = 6, cW = 7, qW = 0.996
β̂(IV ) 3.511(5.808) −3.502(9.829) 2.116(7.547) −1.608(7.652) 0.558(8.999)

β̂(IWV ) 4.880(0.799) −4.050(1.375) 2.918(0.960) −2.006(1.153) 0.914(1.717)

β̂(SIV ) 4.709(4.102) −4.278(54.866) 2.522(21.485) −2.118(11.796) 0.325(47.474)

β̂(WIV ) 4.343(8.304) −4.248(7.215) 2.544(26.494) −2.304(7.009) 0.255(62.928)

T = 10, n · T = 200, h = 0.94, g = 0.95, cS = 7, cW = 7, qW = 0.996
β̂(IV ) 3.521(3.831) −3.338(6.166) 2.525(5.436) −1.525(5.860) 0.758(5.309)

β̂(IWV ) 4.950(0.233) −4.001(0.424) 2.936(0.549) −1.974(0.654) 0.961(0.386)

β̂(SIV ) 4.981(0.423) −4.024(5.608) 2.838(3.459) −1.939(16.416) 0.908(2.368)

β̂(WIV ) 4.622(0.778) −4.183(1.441) 2.818(1.371) −2.085(2.913) 0.857(1.134)

T = 15, n · T = 300, h = 0.94, g = 0.95, cS = 7, cW = 7, qW = 0.996
β̂(IV ) 3.449(3.673) −3.606(4.660) 2.550(5.346) −1.786(4.846) 0.985(3.901)

β̂(IWV ) 4.950(0.158) −4.099(0.179) 2.991(0.508) −2.068(0.467) 1.008(0.392)

β̂(SIV ) 4.999(0.197) −4.136(0.695) 2.897(0.833) −2.111(0.778) 0.909(0.810)

β̂(WIV ) 4.769(0.568) −4.152(1.087) 2.875(0.972) −2.133(1.340) 0.873(0.830)

T = 20, n · T = 400, h = 0.94, g = 0.95, cS = 6.5, cW = 6, qW = 0.995
β̂(IV ) 3.361(3.522) −3.472(4.207) 2.525(3.479) −1.904(3.935) 0.955(3.817)

β̂(IWV ) 4.924(0.101) −3.987(0.232) 3.000(0.230) −1.972(0.209) 0.988(0.214)

β̂(SIV ) 4.979(0.213) −4.086(1.085) 2.847(2.208) −2.095(0.872) 0.857(1.188)

β̂(WIV ) 4.773(0.400) −4.094(0.914) 2.814(1.534) −2.073(0.839) 0.826(1.003)

T = 25, n · T = 500, h = 0.94, g = 0.95, cS = 6.5, cW = 5, qW = 0.994
β̂(OLS) 3.455(2.813) −2.615(3.556) 3.884(2.462) −0.739(3.314) 2.025(2.714)

β̂(IV ) 3.441(2.904) −3.610(2.617) 2.726(2.358) −1.773(2.594) 0.844(2.508)

β̂(LWS) 4.978(0.069) −2.940(1.781) 4.120(2.015) −0.881(2.019) 2.095(1.931)
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β̂(S) 4.984(0.043) −2.840(1.557) 4.233(1.756) −0.839(1.563) 2.207(1.660)

β̂(W ) 4.976(0.046) −2.832(1.639) 4.224(1.794) −0.818(1.681) 2.215(1.745)

β̂(IWV ) 4.956(0.068) −4.011(0.174) 3.005(0.158) −2.020(0.183) 0.999(0.187)

β̂(SIV ) 5.017(0.080) −4.092(0.614) 2.913(0.621) −2.107(0.595) 0.938(0.708)

β̂(WIV ) 5.077(11.854) −4.655(135.010) 2.198(165.602) −2.034(15.789) −0.263(631.443)

Tab. 13. The contamination by outliers on the level of 5 %, n = 20.

The values of variance of the disturbances randomly selected from the

interval [0.5, 5.5]. The orthogonality condition was broken (see section

2.1 up to 2.4.).

The results collected in Tables 12 and 13 show that on contamination level 1 % and
5 % all estimators can give rather reliable information about the underlying model,
although SIV andWIV have a bit larger MSE than IWV . For higher contamination the
combination with heteroscedasticity can represent for SIV and WIV serious problem.
When we learnt it, we became curious which level of heteroscedasticity starts to be
“uncomfortable” for estimators in question. That is why we offer for this situation a bit
more results.

T = 20, n · T = 100, h = 0.58, g = 0.59, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.501(7.860) −3.492(4.292) 2.745(3.223) −1.770(3.881) 0.835(4.077)

β̂(IWV ) 4.957(0.171) −3.941(0.400) 3.023(0.106) −2.005(0.232) 1.041(0.187)

β̂(SIV ) 1.956(754.757) −3.507(992.983) 5.074(11118.891) 5.326(16017.535) −1.504(2784.881)

β̂(WIV ) 2.550(47.141) −1.920(307.195) 1.004(287.430) −1.728(321.087) 0.932(443.731)

T = 40, n · T = 200, h = 0.69, g = 0.70, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.560(6.416) −3.887(0.516) 2.851(0.545) −1.940(0.415) 0.921(0.434)

β̂(IWV ) 4.990(0.010) −4.005(0.012) 2.999(0.013) −1.994(0.007) 1.002(0.012)

β̂(SIV ) 2.652(26.988) −1.107(701.649) 1.391(113.934) −0.891(152.063) 1.099(236.764)

β̂(WIV ) 2.448(27.360) 0.048(893.196) 1.389(841.463) −4.996(8666.455) −2.090(3797.268)

T = 60, n · T = 300, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.693(5.581) −3.926(0.115) 2.911(0.144) −1.949(0.118) 0.976(0.110)

β̂(IWV ) 4.986(0.006) −4.000(0.003) 2.998(0.003) −2.001(0.003) 0.999(0.003)

β̂(SIV ) 3.318(7.147) −2.052(174.964) 2.134(81.094) −1.150(155.421) 0.860(147.354)

β̂(WIV ) 2.572(7.812) −2.182(55.034) 1.785(53.896) −1.076(119.606) 0.373(161.460)
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T = 80, n · T = 400, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.708(5.414) −3.948(0.072) 2.943(0.073) −1.965(0.063) 0.956(0.082)

β̂(IWV ) 4.991(0.004) −4.003(0.002) 2.999(0.001) −1.996(0.001) 1.001(0.002)

β̂(SIV ) 3.197(4.481) −2.571(112.382) 1.984(31.052) −1.171(74.374) 0.606(29.182)

β̂(WIV ) 2.465(7.565) −6.464(6980.416) 1.197(45.941) −1.841(140.763) −0.904(533.786)

T = 100, n · T = 500, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.778(5.057) −3.942(0.053) 2.952(0.050) −1.983(0.046) 0.994(0.050)

β̂(IWV ) 4.987(0.003) −4.002(0.001) 3.000(0.001) −2.002(0.001) 1.001(0.001)

β̂(SIV ) 3.676(77.130) −4.222(910.660) 1.401(358.280) −2.561(553.206) 1.374(119.761)

β̂(WIV ) 2.587(6.335) −2.482(24.803) 1.668(23.899) −1.330(25.399) 0.539(23.336)

Tab. 14. The contamination by outliers on the level of 20 %, n = 5.

The values of variance of the disturbances randomly selected from the

interval [0.5, 1.5]. The orthogonality condition was broken (see section

2.1 up to 2.4).

T = 20, n · T = 100, h = 0.58, g = 0.59, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.552(8.207) −3.539(18.056) 2.922(36.527) −1.588(34.725) 0.746(49.470)

β̂(IWV ) 4.727(0.593) −3.836(1.518) 3.097(1.862) −1.779(1.961) 1.155(1.202)

β̂(SIV ) 2.520(48.683) −2.522(422.614) 0.526(339.076) −1.663(366.201) 0.285(1003.163)

β̂(WIV ) 2.665(187.390) −3.508(2385.093) 3.112(2780.185) 1.030(1870.871) 1.285(702.110)

T = 40, n · T = 200, h = 0.69, g = 0.70, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.618(6.166) −3.863(0.583) 2.842(0.522) −1.981(0.495) 0.918(0.506)

β̂(IWV ) 4.861(0.085) −3.991(0.080) 3.045(0.138) −1.972(0.069) 1.037(0.089)

β̂(SIV ) 2.877(11.133) −3.565(1165.820) −2.807(4169.279) −3.432(1043.672) −0.177(287.683)

β̂(WIV ) 3.190(407.369) 2.740(13753.909) 4.543(4064.493) 4.125(7558.794) −0.739(697.744)

T = 60, n · T = 300, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.664(5.713) −3.925(0.158) 2.913(0.150) −1.971(0.136) 0.969(0.116)

β̂(IWV ) 4.890(0.043) −4.009(0.015) 3.001(0.014) −1.985(0.015) 1.009(0.018)

β̂(SIV ) 3.010(5.741) −3.284(119.051) 1.498(73.685) −1.600(97.037) 0.202(56.082)

β̂(WIV ) 2.436(9.441) −2.698(82.746) 0.592(84.643) −1.446(89.175) −0.046(74.180)
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T = 80, n · T = 400, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.721(5.373) −3.949(0.081) 2.960(0.071) −1.983(0.074) 0.976(0.068)

β̂(IWV ) 4.889(0.033) −4.000(0.007) 3.007(0.008) −1.998(0.007) 1.007(0.007)

β̂(SIV ) 3.038(4.949) −2.998(27.380) 1.908(28.086) −1.626(23.583) 0.495(31.963)

β̂(WIV ) 2.487(7.324) −2.208(60.841) 1.410(34.009) −1.150(64.874) 0.482(50.356)

T = 100, n · T = 500, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.765(5.111) −3.937(0.061) 2.966(0.055) −1.973(0.050) 0.994(0.056)

β̂(IWV ) 4.895(0.026) −3.998(0.005) 3.002(0.005) −1.994(0.005) 1.006(0.005)

β̂(SIV ) 3.171(4.081) −2.752(23.800) 2.564(21.325) −1.667(20.350) 0.937(21.342)

β̂(WIV ) 2.540(6.525) −2.303(31.289) 1.975(27.224) −1.483(26.282) 0.725(26.367)

Tab. 15. The contamination by outliers on the level of 20 %, the

orthogonality condition was broken, n = 5 (see section 2.1 up to 2.4.).

The values of variance of the disturbances randomly selected from the

interval [0.5, 3.5].

Similar results as in Table 15 were achieved for the same framework but with the variance
of disturbances uniformly randomly selected from the interval [0.5, 5.5]. For the low level
of heteroscedasticity (σ ∈ [0.5, 1.5]) IWV are able – more or less – to cope even with
high level of contamination of 20 % but the other estimators have serious problems.
With increasing level of heteroscedasticity even IWV started to have some problems,
nevertheless for large sample size (n ≥ 300) IWV still gives some relatively good results
with acceptable MSE. For high level of heteroscedasticity (σ ∈ [0.5, 5.5]) all estimators
give a bit biased estimates. Such situations will require some additional numerical study
which e. g. we can try to rid of the heteroscedasticity by estimating it, see [41].
Now, let us turn to the results of simulations when contamination was caused by leverage
points. For the sake of space let us focus directly on the case when disturbances were
heteroscedastic.

T = 5, n · T = 100, h = 0.94, g = 0.95, cS = 6, cW = 7, qW = 0.996
β̂(IV ) 5.018(1.169) −2.897(3.809) 2.895(1.627) −1.622(1.893) 0.851(2.068)

β̂(IWV ) 5.007(0.149) −4.005(0.321) 2.937(0.406) −2.043(0.346) 0.922(0.454)

β̂(SIV ) 5.020(0.155) −4.016(0.297) 2.922(0.350) −2.063(0.286) 0.896(0.344)

β̂(WIV ) 5.017(0.160) −4.013(0.327) 2.925(0.390) −2.062(0.337) 0.896(0.374)

T = 10, n · T = 200, h = 0.94, g = 0.95, cS = 7, cW = 7, qW = 0.996
β̂(IV ) 4.972(0.675) −3.029(2.935) 2.942(1.516) −1.573(1.680) 1.016(1.574)

β̂(IWV ) 4.998(0.073) −4.032(0.219) 2.936(0.203) −2.018(0.207) 0.949(0.191)
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β̂(SIV ) 4.991(0.070) −4.038(0.226) 2.922(0.217) −2.019(0.221) 0.957(0.180)

β̂(WIV ) 4.990(0.075) −4.043(0.268) 2.927(0.256) −2.035(0.321) 0.944(0.222)

T = 15, n · T = 300, h = 0.94, g = 0.95, cS = 7, cW = 7, qW = 0.996
β̂(IV ) 5.024(0.542) −2.896(3.230) 2.971(1.504) −1.567(1.916) 0.999(1.608)

β̂(IWV ) 4.993(0.042) −3.987(0.172) 2.977(0.160) −2.007(0.167) 0.981(0.149)

β̂(SIV ) 4.990(0.044) −3.991(0.164) 2.963(0.156) −2.016(0.160) 0.974(0.171)

β̂(WIV ) 4.990(0.047) −4.019(0.229) 2.952(0.224) −2.024(0.199) 0.959(0.230)

T = 20, n · T = 400, h = 0.94, g = 0.95, cS = 6.5, cW = 6, qW = 0.995
β̂(IV ) 4.992(0.407) −2.865(3.313) 3.003(1.475) −1.432(1.695) 0.876(1.550)

β̂(IWV ) 4.997(0.034) −4.023(0.138) 2.967(0.153) −2.008(0.147) 0.977(0.139)

β̂(SIV ) 5.000(0.031) −4.043(0.157) 2.960(0.143) −2.012(0.147) 0.972(0.136)

β̂(WIV ) 4.999(0.034) −4.037(0.215) 2.959(0.210) −2.015(0.207) 0.961(0.199)

T = 25, n · T = 500, h = 0.94, g = 0.95, cS = 6.5, cW = 5, qW = 0.994
β̂(IV ) 4.999(0.284) −2.830(3.054) 2.958(1.293) −1.474(1.607) 0.990(1.319)

β̂(IWV ) 4.998(0.023) −4.014(0.141) 2.989(0.134) −1.991(0.125) 0.982(0.121)

β̂(SIV ) 5.001(0.023) −4.023(0.151) 2.993(0.124) −1.985(0.131) 0.990(0.109)

β̂(WIV ) 5.002(0.025) −4.043(0.226) 2.970(0.193) −1.989(0.196) 1.003(0.165)

Tab. 16. The contamination by 5 % of leverage points, the

orthogonality condition was broken, n = 20 (see section 2.1 up to

2.4.). The values of variance of the disturbances randomly selected

from the interval [0.5, 5.5].

Similarly as in the case when the contamination was caused by outliers our estima-
tors are able to cope with the contamination by leverage points for the levels of 5 %,
respectively, quite well. However the contamination on level 20 % starts to be a problem.
That is why we give these results separately for three levels of heteroscedasticity.
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T = 20, n · T = 100, h = 0.58, g = 0.59, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.718(44.623) −3.267(20.595) 1.995(58.747) −1.734(18.512) 1.787(230.342)

β̂(IWV ) 4.995(0.050) −3.955(0.104) 3.033(0.184) −1.962(0.159) 1.036(0.156)

β̂(SIV ) 5.700(78.064) −0.390(6546.254) 5.057(2128.281) −5.040(11608.136) 3.045(2285.545)

β̂(WIV ) 1.147(2459.371)−2.043(125.595) −1.004(2999.820) −2.401(500.419) −2.878(11236.357)

T = 40, n · T = 200, h = 0.69, g = 0.70, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.749(12.503) −3.538(1.214) 2.600(1.397) −1.690(1.136) 0.828(1.002)

β̂(IWV ) 4.995(0.010) −3.996(0.009) 3.007(0.008) −1.995(0.010) 1.015(0.009)

β̂(SIV ) 5.022(2.068) −3.884(5.831) 2.994(4.365) −1.982(3.615) 1.201(28.764)

β̂(WIV ) 3.183(14.375) −3.984(54.870) 1.869(149.714) −1.839(8.457) 0.631(18.723)

T = 60, n · T = 300, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.727(9.674) −3.637(0.473) 2.742(0.426) −1.863(0.341) 0.894(0.347)

β̂(IWV ) 4.992(0.007) −4.001(0.004) 2.999(0.003) −1.997(0.003) 1.001(0.003)

β̂(SIV ) 4.969(0.238) −3.876(15.808) 3.075(35.115) −2.084(30.430) 0.961(1.528)

β̂(WIV ) 3.085(17.244) −3.422(74.521) 2.965(79.514) −1.197(396.247) 2.140(730.823)

T = 80, n · T = 400, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.705(8.226) −3.713(0.290) 2.815(0.292) −1.868(0.225) 0.916(0.197)

β̂(IWV ) 4.996(0.004) −4.001(0.002) 3.000(0.002) −2.001(0.002) 1.000(0.002)

β̂(SIV ) 4.922(3.138) −4.132(3.583) 2.638(63.278) −2.490(115.262) 0.606(79.288)

β̂(WIV ) 2.929(6.441) −3.819(1.468) 2.755(2.121) −2.054(1.516) 0.843(1.717)

T = 100, n · T = 500, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.807(6.898) −3.735(0.224) 2.824(0.151) −1.877(0.166) 0.899(0.148)

β̂(IWV ) 5.000(0.004) −4.001(0.001) 3.001(0.001) −2.001(0.001) 1.002(0.001)

β̂(SIV ) 5.003(0.008) −4.049(0.197) 2.968(0.209) −2.020(0.176) 0.949(0.218)

β̂(WIV ) 2.976(5.717) −3.881(2.252) 2.946(1.833) −1.923(4.867) 0.923(2.226)

Tab. 17. Contamination – 20 % of leverage points, the orthogonality

condition – broken, n = 5. The values of variance of the disturbances

randomly selected from the interval [0.5, 1.5].
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Similarly as above we made for this framework the simulations for some other levels
of contaminations which confirmed that the results are plausible in the same way as in
Table 18.

T = 20, n · T = 100, h = 0.58, g = 0.59, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.944(38.147) −2.682(39.809) 2.150(22.508) −1.705(23.816) 0.887(16.748)

β̂(IWV ) 4.962(0.185) −3.702(1.978) 3.049(0.699) −1.856(0.668) 1.131(0.925)

β̂(SIV ) 4.841(6.915) −2.619(460.734) 3.032(102.980) −3.074(511.159) −0.441(1317.492)

β̂(WIV ) 2.332(297.376) −0.625(1421.285) 1.739(668.655) 1.063(5434.978) 0.606(1981.772)

T = 40, n · T = 200, h = 0.69, g = 0.70, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.856(12.802) −3.451(1.552) 2.630(1.185) −1.721(1.053) 0.840(1.125)

β̂(IWV ) 4.973(0.048) −3.945(0.093) 3.034(0.074) −1.946(0.147) 1.041(0.174)

β̂(SIV ) 4.984(1.708) −3.931(21.026) 2.887(46.724) −2.059(29.152) 0.890(13.403)

β̂(WIV ) 3.118(30.149) −3.589(18.656) 1.885(175.413) −2.040(12.851) 0.859(14.252)

T = 60, n · T = 300, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.822(8.650) −3.660(0.546) 2.735(0.427) −1.853(0.327) 0.902(0.382)

β̂(IWV ) 4.995(0.027) −3.997(0.011) 3.004(0.012) −1.998(0.012) 1.011(0.012)

β̂(SIV ) 5.048(0.556) −4.198(9.033) 2.785(8.295) −2.441(16.643) 0.443(20.833)

β̂(WIV ) 3.110(9.403) −4.181(45.182) 2.437(42.881) −2.881(291.920) 0.522(71.068)

T = 80, n · T = 400, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.731(8.279) −3.736(0.347) 2.795(0.282) −1.860(0.245) 0.877(0.217)

β̂(IWV ) 4.979(0.018) −4.000(0.007) 3.001(0.008) −1.993(0.008) 0.995(0.007)

β̂(SIV ) 5.012(0.261) −4.112(1.236) 2.888(2.719) −2.103(2.628) 0.852(1.419)

β̂(WIV ) 2.949(6.615) −3.789(10.501) 2.703(2.540) −1.999(2.796) 1.011(11.101)

T = 100, n · T = 500, h = 0.80, g = 0.81, cS = 3, cW = 4.5, qW = 0.997
β̂(IV ) 2.901(7.015) −3.767(0.187) 2.812(0.164) −1.881(0.143) 0.961(0.134)

β̂(IWV ) 4.982(0.017) −3.994(0.005) 2.997(0.005) −1.997(0.005) 0.996(0.005)

β̂(SIV ) 4.993(0.039) −4.139(0.802) 2.890(0.755) −2.149(0.735) 0.917(0.550)

β̂(WIV ) 3.044(5.943) −4.110(1.721) 2.777(2.034) −2.093(1.678) 0.876(1.426)

Tab. 18. Contamination – 20 % of leverage points, the orthogonality

condition – broken, n = 5. The values of variance of the disturbances

randomly selected from the interval [0.5, 3.5].
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5. CONCLUSIONS OF SIMULATION STUDIES

Let us recall once again that β̂(IWV,n,w), β̂(SIV,ρ,n) and β̂(WIV,ρ,qW ,n) do not need any
studentization of residuals. It is of course an advantage with respect to M -estimators
because the studentization need not be simple task. Of course, we pay for it by the
complexity of proofs (see Part I of this paper or [34]). But it is a disadvantage which is
not important for the potential user. The complexity of proofs has its roots in the fact
that all these estimators estimate implicitly scale of disturbances. However they do it by
different ways and moreover S- and W -estimators estimate also the covariance matrix
of data which causes that they may have problems in some situation when data contain
except of contamination also good leverage points. For all these estimators we have
codes in different languages and the speed of their computation is very high. It allows to
accommodate the weight function (for LWS and IWV ) as well as cS , cW and qW (for
S- and W -estimators, respectively) for given data. We start with conservatively selected
values and we decrease robustness of estimator in repeated computation of estimator so
long when some break of estimated regression coefficients appears. In other words, we
pursuit forward search, just as in [3], and we so attain maximal possible efficiency of
estimator for given contamination of data (for an example with economic data see [35]).
In the case when data are not contaminated we reach (or nearly reach) the efficiency of
the ordinary least squares, see [40]. In [22] one can find an attempt to solve the problem
of optimality of estimator also by theoretical tools.

The results demonstrate that instrumental weighted variables are in the sense of MSE
very well comparable with SIV - and WIV -estimators and for some kind of data – when
there are not only outliers and/or bad leverage points but also good leverage points (see
Figure 2), they give (much) better results than their competitors (see Table 10 and 11).
In other words, the numerical study “discovered” the fact that in the presence of good
leverage points some robust estimators which can have larger problems with the outliers
than with the leverage points. The explanation is as follows:

Any estimator which estimates (implicitly or explicitly) standard deviation (or more
generally, covariance matrix of data, including response and explanatory variables) will
consider good leverage points in the upper right corner dangerous while the influence
of group of outliers need not be depressed. If we increase the robustness of estimator –
to depress the fateful influence of outliers, the influence of good leverage points is also
depressed. In other words, we loose the information brought by the good leverage points
and consequently MSE of the estimator increases.
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Fig. 2. The data which can (not necessarily do) cause problems to

the estimator which – explicitly or implicitly – estimate covariances of

data.
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[19] J. Jurečková and A. H. Welsh: Asymptotic relations between L- and M -estimators in the
linear model. Ann. Inst. Statist. Math. 42 (1990), 671–698. DOI:10.1007/bf02481144

[20] R. Koenker and G. Bassett: Regression quantiles. Econometrica 46 (1978), 33–50.
DOI:10.2307/1913643

[21] R. A. Maronna and V. J. Yohai: Asymptotic behaviour of general M -estimates for re-
gression and scale with random carriers. Z. Wahrscheinlichkeitstheorie verw. Gebiete 58
(1981), 7–20. DOI:10.1007/bf00536192
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[40] J. Á. Vı́̌sek: Least weighted squares with constraints and under heteroscedasticity. Bull.
Czech Econometr. Soc. 20 (2012), 31, 21–54.

[41] J. M. Wooldridge: Introductory Econometrics. A Modern Approach. MIT Press, Cam-
bridge 2006. Second edition 2009.
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