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KYBER NET IKA — VOLUM E 5 3 ( 2 0 1 7 ) , NUMBE R 1 , P AGES 5 9 – 8 1

MEAN-VARIANCE OPTIMALITY FOR SEMI-MARKOV
DECISION PROCESSES UNDER FIRST PASSAGE
CRITERIA

Xiangxiang Huang and Yonghui Huang

This paper deals with a first passage mean-variance problem for semi-Markov decision pro-
cesses in Borel spaces. The goal is to minimize the variance of a total discounted reward up
to the system’s first entry to some target set, where the optimization is over a class of policies
with a prescribed expected first passage reward. The reward rates are assumed to be possibly
unbounded, while the discount factor may vary with states of the system and controls. We
first develop some suitable conditions for the existence of first passage mean-variance optimal
policies and provide a policy improvement algorithm for computing an optimal policy. Then,
two examples are included to illustrate our results. At last, we show how the results here are
reduced to the cases of discrete-time Markov decision processes and continuous-time Markov
decision processes.

Keywords: semi-Markov decision processes, first passage time, unbounded reward rate,
minimal variance, mean-variance optimal policy

Classification: 90C40, 60J27

1. INTRODUCTION

Since Markowitz’s work in 1950s [26], mean-variance problems have been an important
class of stochastic optimization problems in economics and finance, where one seeks to
minimize the variance of a total reward among policies with (at least) a certain expected
reward. Compared with the classical optimality criteria concentrated on maximizing
expected returns [3, 8, 16], mean-variance optimality criteria consider not only the mean
of a random return but also the variability of the random return. The background of
mean-variance problems arises from the tradeoff between the mean and variance, and
the fact that a risk-aversion investor usually prefers to a return lower than the maximal
one to keep a smaller variance risk. Due to this, mean-variance problems have been
widely studied for various dynamic systems described by stochastic differential equations
[5, 7, 22, 31], Markov decision processes (MDPs) [2, 3, 8, 10, 13, 21, 27, 28], and so on.

For the issue of mean-variance in MDPs, there have been a lot of references; see,
[4, 19, 25, 28] for the finite horizon reward variance; [6, 10, 12, 20, 28, 30] for the
infinite horizon discounted reward variance; [11, 24, 30] for the first passage variance;
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and [2, 6, 8, 9, 13, 14, 21, 27, 29, 32] for the limiting average variance. To the best of our
knowledge, most of the aforementioned works in MDPs focus on solving mean-variance
problems in discrete-time MDPs (DTMDPs) [3, 4, 6, 13, 14, 21, 24, 25, 28, 30, 32] as well
as in continuous-time MDPs (CTMDPs) [8, 9, 10, 11, 12, 20, 27], nevertheless, only a
few works address mean-variance problems in semi-Markov decision processes (SMDPs);
see [2, 28] for finite SMDPs and [19] with a finite time horizon. Moreover, it should be
noted that most of the existing works on mean-variance problems for MDPs deal with
fixed finite or infinite time horizons. As far as we know, a few works [11, 24, 30] deal with
the first passage variance, where the early results on first passage variance in Section 2
of [24] is limited to the case of finite states and actions DTMDPs, where the existence of
homogeneous Markovian controls with the maximal expected reward and the minimal
variance is established. In many real-world situations, however, the control horizon may
be a random duration. For example, in a maintenance system, people may be often
concerned with the expected total repair costs before the system is restored; and in the
medical research, one’s interest may usually center on the expected total cost before
he/she is cured. These situations motivate the first passage problems [16, 18], where
the aim is usually to maximize the expected total reward before the systems fall in (or
reach) a target set which represents the set of all good or bad states according to practical
considerations. This paper attempts to consider a first passage mean-variance (FPMV)
problem for SMDPs, i. e., the problem of minimizing the variance of a first passage total
reward over a class of policies with a common expected first passage reward, which is a
new issue in SMDPs. The purpose of selecting this issue is twofold. First, as explained
above, both first passage problems and mean-variance problems are meaningful and
significant topics in reality. Second, SMDPs are a sort of more general stochastic dynamic
systems than DTMDPs and CTMDPs. As is known, the sojourn times in SMDPs are
allowed to follow an arbitrary probability distribution, while the ones in DTMDPs are
a fixed constant and the ones in CTMDPs are exponentially distributed.

The goal of the paper is to find an optimal policy with the minimal variance and a
prescribed mean of a first passage total discounted reward. We assume that the state and
control sets are Borel spaces, while the reward rates are possibly unbounded from both
above and below. The discount factor may depend on states and controls, which is an
extension of the usual constant ones in previous studies [6, 10, 12, 20, 28] and just state-
dependent ones [30]. The consideration of a varying discount factor rather than a fixed
constant one derives from the practical cases such as the interest rate in economic and
financial systems [1, 15, 23], which can be adjusted according to the real circumstances.
To investigate the FPMV optimality problem, we first characterize the policies with a
common expected first passage reward (see Theorem 3.4), and then transform the vari-
ance of the first passage reward to the expected first passage reward with a new reward
rate and another discount factor, which plays a crucial role in solving FPMV-optimal
policies; see Theorem 3.5. Further, we establish the dynamic programming equation for
our FPMV problem and the existence of FPMV-optimal policies under suitable condi-
tions, and, in addition, we derive a value iteration algorithm and a policy improvement
algorithm for calculating the value function and an FPMV-optimal policy, respectively;
see Theorem 3.9. Then, two examples are shown to illustrate the application of our
main result; see Examples 4.1 and 4.3. Finally, we exhibit the reduction of the results
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here.
The rest of this paper is organized as follows. Section 2 formulates the control model

and the optimization problem. Our main results on the existence and computation
of FPMV-optimal policies are stated in Section 3. Two examples are presented to
illustrate our results in Section 4 before giving the reductions to the cases for DTMDPs
and CTMDP in Section 5. We conclude with a summary in Section 6.

2. THE CONTROL MODEL

An FPMV model of SMDPs consists of the following objects

{E,B, (A(x) ⊂ A, x ∈ E), Q(·, ·|x, a), r(x, a), α(x, a), g(x)}, (1)

where E is a Borel state space endowed with the Borel σ-field B(E), and A is a Borel
action space endowed with the Borel σ-field B(A); B ∈ B(E) is a given target set such
as a set of failure or working states; A(x) ∈ B(A) is the collection of all actions available
to a controller at state x ∈ E. The semi-Markov kernel Q(·, ·|x, a) on R+ × E given K
describes the transition mechanism, where R+ := [0,+∞) and K := {(x, a)|x ∈ E, a ∈
A(x)} denotes the set of all feasible state-action pairs and is assumed to be a (Borel)
measurable subset of E×A. If an action a ∈ A(x) is selected in state x, thenQ(t,D | x, a)
is the joint probability that the sojourn time in state x is not greater than t ∈ R+, and
the next state is in D ∈ B(E). Furthermore, r(x, a) and α(x, a) are measurable functions
on K, denoting the reward rate and the discount factor, respectively. Finally, g(x) is a
measurable function on E, representing the mean reward one expects to earn.

Remark 2.1. (a) Our FPMV model (1) differs from the usual ones in previous studies
in the following two aspects: first, a target set B (and thus a first passage problem) is
introduced; second, the discount factor varies with states and controls rather than is a
fixed constant.

(b) The reward rate can be negative, in which case it is interpreted as a cost rate.
The target set B may represent the set of good or bad states, the interpretation of which
depends on the practical consideration.

(c) Note that if the semi-Markov kernel Q(·, ·|x, a) is taken some particular forms,
our model can be reduced to the corresponding one of CTMDPs [10, 11, 12, 20] or of
DTMDPs [6, 24, 28, 30]; see Section 5 for further details.

To formulate the FPMV optimality problem, the concept of policies is needed.

Definition 2.2. A (deterministic stationary) policy is a measurable function from E to
A such that f(x) ∈ A(x) for every x ∈ E.

The collection of all such policies is denoted by F . Given (s, x) ∈ R+×E and f ∈ F ,
by the well-known Tulcea’s theorem , there exist a unique probability space (Ω,F , P f(s,x))
and a stochastic process {Tn, Jn, An}n≥0 such that for each t ∈ R+, C ∈ B(E) and n ≥ 0,

P f(s,x)(T0 = s, J0 = x) = 1, (2)

P f(s,x)(An = f(Jn)|T0, J0, A0, . . . , Tn−1, Jn−1, An−1, Tn, Jn) = 1, (3)

P f(s,x)(Tn+1 − Tn ≤ t, Jn+1 ∈ C|T0, J0, A0, . . . , Tn, Jn, An) = Q(t, C|Jn, An), (4)
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where Tn, Jn, An denote the nth jump epoch, the state and the action taken at the nth
jump epoch, respectively. For convenience, we denote by Θ0 := 0,Θn := Tn− Tn−1(n ≥
1) the sojourn times between two successive jump epochs. The expectation operator
associated with P f(s,x) is denoted by Ef(s,x). Particularly, we will write P f(0,x) and Ef(0,x)

as P fx and Efx , respectively. In what follows, we always set the initial jump epoch T0 := 0
without loss of generality.

To avoid the possibility of an infinite number of jumps within finite time, we make the
following assumption that the sequence {Tn}n≥0 does’t have finite accumulation points.

Assumption 2.3. For all x ∈ E and f ∈ F , P fx ({ lim
n→∞

Tn =∞}) = 1.

Assumption 2.3 obviously holds for DTMDPs. To verify it, we give a sufficient condition
below, which is the standard regular condition widely used in SMDPs; see, for instance,
[16, 17, 18].

Condition 2.4. There exist constants δ > 0 and ε > 0 such that

Q(δ, E|x, a) ≤ 1− ε ∀(x, a) ∈ K. (5)

By Proposition 2.1 in [17], Condition 2.4 indeed implies Assumption 2.3. Moreover,
it is more easily verified since the condition (5) is imposed on the primitive data of the
model (1). Under Assumption 2.3, we define an underlying continuous-time state-action
process {x(t), a(t), t ∈ R+} related to the stochastic process {Tn, Jn, An}n≥0 by

x(t) = Jn, a(t) = An for Tn ≤ t < Tn+1 and n ≥ 0.

Now, for the given target set B ∈ B(E), let

τB :=

{
inf{t ≥ 0 : x(t) ∈ B} if {t ≥ 0 : x(t) ∈ B} 6= ∅,
+∞ otherwise

(6)

be the first passage time into the set B of the state process {x(t), t ∈ R+}. Then, for
each x ∈ E, the first passage variance under a policy f ∈ F is defined as

σ2(x, f) := Efx

[(∫ τB

0

e−
R t
0 α(x(s),a(s))dsr(x(t), a(t)) dt− V (x, f)

)2
]
,

where V (x, f), denoting the first passage mean of f , is given by

V (x, f) := Efx

[ ∫ τB

0

e−
R t
0 α(x(s),a(s))dsr(x(t), a(t)) dt

]
,

provided that these expectations are well-defined. Obviously, it follows from (6) that

V (x, f) = σ2(x, f) = 0 ∀x ∈ B and f ∈ F.

Thus, we will restrict our discussion to the case of the initial state x ∈ Bc := E −B in
the upcoming argument.
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For the function g given in (1), let Fg ⊆ F denote the collection of all policies having
the same expected first passage reward g starting from every state in Bc, i. e.,

Fg := {f ∈ F | V (x, f) = g(x) ∀x ∈ Bc}.

Fg is assumed to be nonempty throughout the following. In most cases, there are usually
more than one elements in Fg (see Examples 4.1 and 4.3). In this situation, it is natural
to seek a policy with the minimal first passage variance in Fg, which leads to the FPMV
(optimality) problem we are concerned with:

MVg : minimize σ2(x, f) over f ∈ Fg for all x ∈ Bc. (7)

Our aim is to find a so-called FPMV-optimal policy f∗ ∈ Fg satisfying

σ2(x, f∗) = σ2
∗(x) ∀x ∈ Bc, (8)

where σ2
∗(x) := inff∈Fg

σ2(x, f) is the FPMV value function, or simply, the value func-
tion.

Remark 2.5. (a) If the target set B = ∅(then τB = +∞) and α(x, a) ≡ α, in which
case the optimality here is reduced to the standard infinite horizon discounted mean-
variance problem. Hence, our FPMV problem is an improvement of the ones in [6, 28]
for DTMDPs and the ones in [10, 12, 20] for CTMDPs.

(b) As is known, SMDPs are generalizations of DTMDPs and CTMDPs. That is,
in SMDPs the sojourn times are allowed to follow an arbitrary probability distribution,
while the ones in DTMDPs are a fixed constant and the ones in CTMDPs are exponen-
tially distributed. In this setting, our PFMV problem extends the previous works on
mean-variance problems for DTMDPs [6, 24, 28, 30] and CTMDPs [10, 11, 12, 20]; see
Section 5 for more details.

(c) If g has the special form

g(x) = sup
f∈F

V (x, f) ∀x ∈ Bc,

then the corresponding FPMV problem is similar to the so-called variance minimization
problem in [12, 20] for CTMDPs and [24, 30] for DTMDPs .

3. MAIN RESULTS

3.1. Characterization of policies in Fg

To solve the problem MVg in (7), it is necessary to properly characterize the policies in
Fg, which will be done in this subsection. First, we give some basic assumptions and
preliminary facts.

Assumption 3.1. There exist constants 0 < ρ < 1, M > 0, α0 > 0, and a measurable
function w ≥ 1 on E such that
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(i) |r(x, a)| ≤Mw(x) and α0 ≤ α(x, a) for all x ∈ Bc,a ∈ A(x).

(ii)
∫
Bc w

2(y)m1(dy|x, a) ≤ ρ2w2(x) for all x ∈ Bc,a ∈ A(x), where

m1(dy|x, a) :=
∫ ∞

0

e−α(x,a)tQ(dt,dy|x, a).

Remark 3.2. Letting r(x, a) := r(x, a)
∫∞

0
e−α(x,a)t(1−Q(t, E|x, a)) dt, we have

|r(x, a)| = |r(x, a)|
∫ ∞

0

e−α(x,a)t(1−Q(t, E|x, a)) dt ≤ |r(x, a)|
α0

≤ Mw(x)
α0

. (9)

Moreover, Jensen’s inequality gives∫
Bc

w(y)m1(dy|x, a) ≤ ρw(x), x ∈ Bc and a ∈ A(x),

which implies Assumption 11.2.3 in [18] for constrained first passage SMDPs with M
and β replaced by M

α0
and ρ, respectively. The role of Assumption 3.1 is to ensure the

uniqueness of the solution to the related dynamic programming equation (see Theorems
3.4 and 3.9) as well as the finiteness of V (f) and σ2(f) (see Lemma 3.3).

To show the finiteness of σ2(f), it would be more convenient to consider the second
moment instead of the variance. Thus, for each x ∈ E and f ∈ F , we denote by

V (2)(x, f) := Efx

[(∫ τB

0

e−
R t
0 α(x(s),a(s))dsr(x(t), a(t)) dt

)2
]

the second moment of the first passage discounted reward. For every x ∈ Bc, it is obvious
that

V (2)(x, f) = σ2(x, f) + V 2(x, f) ∀f ∈ F (10)
= σ2(x, f) + g2(x) ∀f ∈ Fg. (11)

Hence, the FPMV problem MVg is equivalent to the following problem

minimize V (2)(x, f) over all f ∈ Fg for all x ∈ Bc. (12)

In relation to (10), for any given policy f ∈ F , the finiteness of V (2)(f) and V (f)
indicates the finiteness of σ2(f), for which we have the following fact.

Lemma 3.3. Suppose that Assumptions 2.3 and 3.1 are satisfied. Then, for each x ∈ Bc
and f ∈ F , we have

|V (x, f)| ≤Mw(x)/α0(1− ρ), and 0 ≤ V (2)(x, f) < M2w2(x)/α2
0(1− ρ)2.

P r o o f . By Remark 3.2, Assumption 3.1 indicates Assumption 11.2.3 in [18]. Then, it
follows from Lemma 11.3.1(a) in [18] that

|V (x, f)| ≤Mw(x)/α0(1− ρ) ∀x ∈ Bc, f ∈ F.
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We now turn to proving the second statement. Since the positive of the discount factor
implies

∫∞
0
e−2α(x,a)tQ(dt,D|x, a) < m1(D|x, a) for all D ∈ B(E) and (x, a) ∈ K, we

obtain∫
Bc

w2(y)
∫ ∞

0

e−2α(x,a)tQ(dt,dy|x, a) <
∫
Bc

w2(y)m1(dy|x, a) ∀(x, a) ∈ K,

which, together with Assumption 3.1(ii), yields∫
Bc

w2(y)m2(dy|x, a) < ρ2w2(x) ∀x ∈ Bc, a ∈ A(x) (13)

with m2 defined by

m2(dy|x, a) :=
∫ ∞

0

e−2α(x,a)tQ(dt,dy|x, a). (14)

Under Assumptions 2.3 and 3.1(ii), by (13) and the same argument to (11.11) in Lemma
11.3.1(a) of [18] with ρ2, w2 and 2α in lieu of β, w and α, respectively, we have

Efx

[ n−1∏
k=0

e−2α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}w
2(Jn)

]
< ρ2nw2(x) ∀x ∈ Bc, f ∈ F. (15)

Here and below, ID is the indicator function on a set D, and
m∏
k=n

yk = 1 when m < n

for any sequence {yk}.
By Lemma 11.3.1 in [18], the second moment V (2)(f) can be expressed as

V (2)(x, f) = Efx

[( ∞∑
n=0

n−1∏
k=0

e−α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}r(Jn, An)∆n+1

)2]
∀x ∈ Bc, f ∈ F, (16)

with ∆n+1 :=
∫ Θn+1

0
e−α(Jn,An)t dt, which, along with (15) and a straightforward calcu-

lation, gives that

V (2)(x, f) ≤ Efx
[( ∞∑

n=0

n−1∏
k=0

e−α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}|r(Jn, An)|∆n+1

)2]
= Efx

[ ∞∑
n=0

∑
k+l=n

( k−1∏
m=0

e−α(Jm,Am)Θm+1I{J0∈Bc,...,Jk∈Bc}|r(Jk, Ak)|∆k+1

)

×
( l−1∏
m=0

e−α(Jm,Am)Θm+1I{J0∈Bc,...,Jl∈Bc}|r(Jl, Al)|∆l+1

)]
=

∞∑
n=0

∑
k+l=n

Efx

[( k−1∏
m=0

e−α(Jm,Am)Θm+1I{J0∈Bc,...,Jk∈Bc}|r(Jk, Ak)|∆k+1

)

×
( l−1∏
m=0

e−α(Jm,Am)Θm+1I{J0∈Bc,...,Jl∈Bc}|r(Jl, Al)|∆l+1

)]
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≤
∞∑
n=0

∑
k+l=n

{
Efx

[( k−1∏
m=0

e−α(Jm,Am)Θm+1I{J0∈Bc,...,Jk∈Bc}|r(Jk, Ak)|∆k+1

)2]} 1
2

×
{
Efx

[( l−1∏
m=0

e−α(Jm,Am)Θm+1I{J0∈Bc,...,Jl∈Bc}|r(Jl, Al)|∆l+1

)2]} 1
2

=
∞∑
n=0

∑
k+l=n

[
Efx

( k−1∏
m=0

e−2α(Jm,Am)Θm+1I{J0∈Bc,...,Jk∈Bc}r
2(Jk, Ak)

(
∆k+1

)2)] 1
2

×
[
Efx

( l−1∏
m=0

e−2α(Jm,Am)Θm+1I{J0∈Bc,...,Jl∈Bc}r
2(Jl, Al)

(
∆l+1

)2)] 1
2

≤ M2

α2
0

∞∑
n=0

∑
k+l=n

[
Efx

( k−1∏
m=0

e−2α(Jm,Am)Θm+1I{J0∈Bc,...,Jk∈Bc}w
2(Jk)

)] 1
2

×
[
Efx

( l−1∏
m=0

e−2α(Jm,Am)Θm+1I{J0∈Bc,...,Jl∈Bc}w
2(Jl)

)] 1
2

<
M2

α2
0

∞∑
n=0

∑
k+l=n

[ρ2kw2(x)]
1
2 [ρ2lw2(x)]

1
2

=
M2

α2
0

w2(x)
∞∑
n=0

(n+ 1)ρn = M2w2(x)/α2
0(1− ρ)2.

On the other hand, by the definition of V (2)(f), it directly follows that V (2)(x, f) ≥ 0
for every x ∈ Bc, f ∈ F , which completes the proof. �

To facilitate the upcoming argument, we introduce the concept of the w-weighted
norm similar to that in [18] with w as in Assumption 3.1. A (real-valued) function u

on Bc is called w-bounded if the w-weighted norm of u, i. e., ‖u‖w := supx∈Bc
|u(x)|
w(x) , is

finite. The Banach space of all w-bounded measurable functions on Bc is denoted by
Mw(Bc). Obviously, from Lemma 3.3 we have

V (·, f) ∈Mw(Bc) and V (2)(·, f) ∈Mw2(Bc)

for each f ∈ F .
Since our optimization is over all policies in Fg, it is helpful to characterize elements of

Fg in terms of primitive data in (1). The following theorem gives such a characterization.

Theorem 3.4. Under Assumptions 2.3 and 3.1, the following assertions hold.

(a) For each f ∈ F , V (·, f) is a unique solution in Mw(Bc) to the equation

u(x) = r(x, f(x)) +
∫
Bc

u(y)m1(dy|x, f(x)) ∀x ∈ Bc,

with r as in (9).
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(b) A policy f ∈ Fg if and only if f(x) ∈ Ag(x) for every x ∈ Bc, where Ag(x) is given
by

Ag(x) :=
{
a ∈ A(x)|g(x) = r(x, a) +

∫
Bc

g(y)m1(dy|x, a)
}
, x ∈ Bc. (17)

P r o o f . (a) As indicated in Lemma 3.3, V (·, f) is in Mw(Bc) under Assumptions 2.3
and 3.1. In addition, by Remark 3.2,

∫
Bc w(y)m1(dy|x, a) ≤ ρw(x) for every x ∈ Bc and

a ∈ A(x), and thus, the statement can be obtained using the similar way as in Lemma
11.3.2(a) in [18].

(b) Since the nonempty of Fg implies g ∈ Mw(Bc), part (a), together with the
definition of Fg, completes the proof. �

3.2. Transformation of the second moment into a mean

As mentioned in (12), our original problem MVg is equivalent to minimizing V (2)(f)
over Fg. In this subsection, we will place our concern on the second moment V (2)(f)
and show how to transform it into a mean.

Theorem 3.5. Under Assumptions 2.3 and 3.1, for each f ∈ Fg, V (2)(·, f) is the unique
solution in Mw2(Bc) to the following equation

u(x) = R(x, f(x)) +
∫
Bc

u(y)m2(dy|x, f(x)), x ∈ Bc, (18)

where m2 is as in (14) and

R(x, a) : =
r2(x, a)
α2(x, a)

[1 +m2(E|x, a)− 2m1(E|x, a)]

+
2r(x, a)
α(x, a)

∫
Bc

g(y)[m1(dy|x, a)−m2(dy|x, a)].

Moreover, the second moment V (2)(f) is expressed by means of the first moment, i. e.,

V (2)(x, f) = Efx

[∫ τB

0

e−
R t
0 2α(x(s),a(s)) dscg(x(t), a(t)) dt

]
=: J(x, f),

where

cg(x, a) :=
R(x, a)∫∞

0
e−2α(x,a)t(1−Q(t, E|x, a)) dt

∀(x, a) ∈ Kg (19)

with Kg := {(x, a)|x ∈ Bc, a ∈ Ag(x)}.
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P r o o f . Let f ∈ Fg and x ∈ Bc be arbitrarily fixed. By (16), a direct calculation gives

V (2)(x, f) = Efx

[( ∞∑
n=0

n−1∏
k=0

e−α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}r(Jn, An)∆n+1

)2]
= Efx

[(
r(J0, A0)I{J0∈Bc}∆1

+
∞∑
n=1

n−1∏
k=0

e−α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}r(Jn, An)∆n+1

)2]
=: L1 + L2 + L3,

where

L1 := Efx

[(
r(J0, A0)I{J0∈Bc}∆1

)2]
,

L2 := 2Efx
[
r(J0, A0)I{J0∈Bc}∆1

×
( ∞∑
n=1

n−1∏
k=0

e−α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}r(Jn, An)∆n+1

)]
,

L3 := Efx

[( ∞∑
n=1

n−1∏
k=0

e−α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}r(Jn, An)∆n+1

)2]
.

Noting that J0 = x ∈ Bc, we have

L1 = Efx

[
r2(J0, A0)I{J0∈Bc}

(1− e−α(J0,A0)Θ1

α(J0, A0)

)2]
=

r2(x, f(x))
α2(x, f(x))

[
1 +

∫ +∞

0

(
e−2α(x,f(x))t − 2e−α(x,f(x))t

)
Q(dt, E|x, f(x))

]
=

r2(x, f(x))
α2(x, f(x))

[1 +m2(E|x, f(x))− 2m1(E|x, f(x))].

Furthermore, it follows from the property of conditional expectation and the Markov
property that

L2 = 2Efx
{
Efx

[( ∞∑
n=1

n−1∏
k=0

e−α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}r(Jn, An)∆n+1

)
×r(J0, A0)I{J0∈Bc}∆1|T0, J0, A0, T1, J1

]}
= 2Efx

[
r(J0, A0)e−α(J0,A0)Θ1I{J0∈Bc,J1∈Bc}∆1

×Efx
( ∞∑
n=1

n−1∏
k=1

e−α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}r(Jn, An)∆n+1|T0, J0, A0, T1, J1

)]
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=
2r(x, f(x))
α(x, f(x))

∫
Bc

∫ ∞
0

[e−α(x,f(x))t − e−2α(x,f(x))t]Q(dt, dy|x, f(x))

×Efx
( ∞∑
n=1

n−1∏
k=1

e−α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}r(Jn, An)∆n+1

|T0 = 0, J0 = x,A0 = f(x), T1 = t, J1 = y
)

=
2r(x, f(x))
α(x, f(x))

∫
Bc

[m1(dy|x, f(x))−m2(dy|x, f(x))]

Efy

( ∞∑
n=0

n−1∏
k=0

e−α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}r(Jn, An)∆n+1

)
=

2r(x, f(x))
α(x, f(x))

∫
Bc

[m1(dy|x, f(x))−m2(dy|x, f(x))]V (y, f)

=
2r(x, f(x))
α(x, f(x))

∫
Bc

g(y)[m1(dy|x, f(x))−m2(dy|x, f(x))]

where the third equality is due to the properties (2) – (4).
Similarly, we have

L3 = Efx

{
Efx

[( ∞∑
n=1

n−1∏
k=0

e−α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}r(Jn, An)∆n+1

)2

∣∣T0, J0, A0, T1, J1

]}
= Efx

{
e−2α(J0,A0)Θ1I{J0∈Bc,J1∈Bc}E

f
x

[( ∞∑
n=1

n−1∏
k=1

e−α(Jk,Ak)Θk+1

I{J0∈Bc,...,Jn∈Bc}r(Jn, An)∆n+1

)2∣∣T0, J0, A0, T1, J1

]}
=

∫
Bc

∫ ∞
0

e−2α(x,f(x))tQ(dt, dy|x, f(x))

×Efx
[( ∞∑

n=1

n−1∏
k=1

e−α(Jk,Ak)Θk+1I{J0∈Bc,...,Jn∈Bc}r(Jn, An)∆n+1

)2

∣∣T0 = 0, J0 = x,A0 = f(x), T1 = t, J1 = y
]

=
∫
Bc

V (2)(y, f)m2(dy|x, f(x)).

Therefore, taking all the above results of L1, L2, L3 into consideration, we obtain

V (2)(x, f) = R(x, f(x)) +
∫
Bc

V (2)(y, f)m2(dy|x, f(x)),

which, together with Lemma 3.3, shows that V (2)(f) is a solution in Mw2(Bc) to the
equation (18).
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On the other hand, consider the following expected first passage cost

J(x, f) = Efx

[ ∫ τB

0

e−
R t
0 2α(x(s),a(s)) dscg(x(t), a(t)) dt

]
with cg(x, a) as in (19). Under Assumption 3.1, for all x ∈ Bc and a ∈ A(x), we have∣∣∣cg(x, a)

∫ ∞
0

e−2α(x,a)t(1−Q(t, E|x, a)) dt
∣∣∣ =

∣∣R(x, a)
∣∣

<
3M2 + 2Mρα0‖g‖w

α2
0

w2(x), (20)

and
∫
Bc w

2(y)m2(dy|x, a) < ρ2w2(x) (see (13)). Thus, a similar argument to the finite-
ness of V (f) in Lemma 3.3 yields

|J(x, f)| < 3M2 + 2Mρα0‖g‖w
α2

0(1− ρ2)
w2(x), (21)

and hence J(·, f) ∈ Mw2(Bc) for all f ∈ Fg. Moreover, letting w in Theorem 3.4(a)
be replaced with w2, we conclude that J(f) is the unique solution in Mw2(Bc) to the
equation (18). Recalling that V (2)(f) is a solution in Mw2(Bc) to (18), we immediately
obtain that V (2)(x, f) = J(x, f) for each x ∈ Bc and f ∈ Fg. �

Remark 3.6. In fact, Theorem 3.5 holds for any policy f ∈ F with g(x) replaced by
V (x, f) for each x ∈ Bc. More precisely, as an argument of Theorem 3.5, we get that
V (2)(·, f) is the unique solution within Mw2(Bc) to the following equation

u(x) = R̄(x, f) +
∫
Bc

u(y)m2(dy|x, f(x)) ∀x ∈ Bc, f ∈ F,

with

R̄(x, f) : =
r2(x, f(x))
α2(x, f(x))

[1 +m2(E|x, f(x))− 2m1(E|x, f(x))]

+
2r(x, f(x))
α(x, f(x))

∫
Bc

V (y, f)[m1(dy|x, f(x))−m2(dy|x, f(x))].

Furthermore, for each f ∈ F , the second moment V (2)(x, f) has the following expression

V (2)(x, f) = Efx

[∫ τB

0

e−
R t
0 2α(x(s),f(x(s))) dsc(x(t), f) dt

]
,

where

c(x, f) :=
R̄(x, f)∫∞

0
e−2α(x,f(x))t(1−Q(t, E|x, f(x))) dt

∀x ∈ Bc.
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3.3. On the existence of FPMV-optimal policies

In this subsection, we will establish the existence and computation of an FPMV-optimal
policy via the so-called FPMV optimality equation (23) below.

From Theorem 3.5 and the relation (11), the original problem MVg (7) can be further
reduced to

minimize J(x, f) over all f ∈ Fg for all x ∈ Bc,

which is a classical expectation (rather than variance) minimization problem and can
be solved via the following first passage SMDPs model

{E,B, (Ag(x) ⊂ A, x ∈ E), Q(·, ·|x, a), cg(x, a), 2α(x, a)}, (22)

with cg as in (19), Ag as in (17) and the other data as in (1). In this setup, the existing
results on first passage SMDPs [18] can be applied.

For simplicity of notation, we introduce dynamic programming operators T f and T
on Mw2(Bc) as follows: for each f ∈ Fg, x ∈ Bc and u ∈ Mw2(Bc), with R(x, a) as in
Theorem 3.5,

T fu(x) := R(x, f(x)) +
∫
Bc

u(y)m2(dy|x, f(x)),

Tu(x) := inf
a∈Ag(x)

{
R(x, a) +

∫
Bc

u(y)m2(dy|x, a)
}
.

To obtain the existence of the FPMV-optimal policy, we also require the continuous-
compactness condition as below.

Assumption 3.7. Let w and m1 be as in Assumption 3.1, and m2 be as in (14).

(i) A(x) is compact for each x ∈ Bc.

(ii) For each fixed x ∈ Bc, t ∈ R+, Borel set D ⊂ Bc and D = E, the functions r(x, a),
α(x, a), and Q(t,D|x, a) are continuous in a ∈ A(x).

(iii) The functions
∫
Bc w(y)m1(dy|x, a) and

∫
Bc w

2(y)m2(dy|x, a) are continuous in a ∈
A(x) for each x ∈ Bc.

Lemma 3.8. Under Assumptions 3.1 and 3.7, for each fixed x ∈ Bc, we have the
following statements.

(a) m1(D|x, a) and m2(D|x, a) are continuous in a ∈ A(x) for every Borel set D ⊂ Bc
and D = E.

(b) u′(x, a) :=
∫
Bc u(y)m1(dy | x, a) and v′(x, a) :=

∫
Bc v(y)m2(dy | x, a) are continu-

ous in a ∈ A(x) for every function u ∈Mw(Bc) and v ∈Mw2(Bc), respectively.

(c) Ag(x) is compact.
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P r o o f . (a) For each fixed x ∈ Bc and Borel set D ⊂ Bc, let {an} ⊂ A(x) be an
arbitrary sequence such that an → a ∈ A(x), and m1 be as in Assumption 3.1. For
every n, we have

m1(D|x, an) =
∫ ∞

0

e−α(x,an)tQ(dt,D|x, an).

Letting n→∞ in the above equality, by Assumption 3.7(ii) and the generalized domi-
nated convergence theorem in Proposition A.4 [8], we conclude that m1(D|x, a) is con-
tinuous in a ∈ A(x) for each x ∈ Bc and Borel set D ⊂ Bc and D = E. Similarly, the
conclusion for m2(D|x, a) can be achieved.

(b) Using a similar argument to the proof of Lemma 8.3.7 in [13], part (b) follows
from Assumption 3.7(iii) and part (a).

(c) Let x ∈ Bc be arbitrarily fixed. To show that Ag(x) is compact, it suffices to
prove that Ag(x) is closed because Ag(x) ⊂ A(x) and A(x) is compact. Indeed, let
{an} ⊂ Ag(x) be an arbitrary sequence such that an → a ∈ A(x). Then, for each n, we
have

g(x) = r(x, an) +
∫
Bc

g(y)m1(dy | x, an)

Since g ∈ Mw(Bc), it follows from part (b) that
∫
Bc g(y)m1(dy | x, a) is continuous in

a ∈ A(x). Moreover, r(x, an) is continuous in a ∈ A(x) by the dominated convergence
theorem. Thus, taking n→∞ in the above equality, under Assumption 3.7, we obtain

g(x) = r(x, a) +
∫
Bc

g(y)m1(dy | x, a),

which shows that a ∈ Ag(x). �

Now, we are ready to state the main result concerning the existence and computation
of FPMV-optimal policies.

Theorem 3.9. Under Assumptions 2.3, 3.1 and 3.7, the following assertions hold.

(a) (σ2
∗+g2) is the unique solution within Mw2(Bc) to the so-called FPMV optimality

equation u(x) = Tu(x), i. e.,

(σ2
∗ + g2)(x) = T (σ2

∗ + g2)(x) ∀x ∈ Bc, (23)

where σ2
∗ is as in (8).

(b) A policy f ∈ Fg is FPMV-optimal if and only if f(x) attains the minimum in (23)
for each x ∈ Bc, i.e, (σ2

∗ + g2)(x) = T f (σ2
∗ + g2)(x),∀x ∈ Bc.

(c) There exists a policy f∗ such that (σ2
∗ + g2) = T f

∗
(σ2
∗ + g2), and such a policy f∗

is FPMV-optimal.

(d) The value function σ2
∗ can be approximated by the following iteration sequence:

σ2
∗ = lim

n→∞
un − g2 with un+1 := Tun, n ≥ 0, and u0 = 0.

(e) An FPMV-optimal policy can be obtained by the following algorithm:
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Policy improvement algorithm:

(1) For a given expected reward g, compute Ag(x) for each x ∈ Bc, and then get Fg
by Theorem 3.4(b).

(2) Pick an arbitrary policy f ∈ Fg. Let k = 0 and set hk := f .

(3) Policy evaluation: Compute J(hk) = σ2(hk)+g2 as the unique solution inMw2(Bc)
to the equation u(x) = Thku(x) for all x ∈ Bc.

(4) Policy improvement: For any k ≥ 0, take hk+1 ∈ F as follows:

hk+1(x) ∈ D(hk, x) if D(hk, x) 6= ∅, and
hk+1(x) := hk(x) if D(hk, x) = ∅, x ∈ Bc,

where

D(hk, x) := {a ∈ Ag(x)|R(x, a) +
∫
Bc

J(y, hk)m2(dy|x, a) < J(x, hk)}.

(5) If hk+1(x) = hk(x) for all x ∈ Bc, then, hk is FPMV-optimal. Otherwise, increase
k by 1 and return to step (3).

P r o o f . (a) First, we prove that T is a contraction operator from Mw2(Bc) to itself.
Indeed, by Lemma 3.8, R(x, a) +

∫
Bc u(y)m2(dy|x, a) is continuous in a ∈ A(x) for each

x ∈ Bc and u ∈Mw2(Bc). Then, it follows from the measurable selection theorem (e. g.,
Lemma 8.3.8 in [13]) that there exists f ∈ F such that Tu(x) = T fu(x). Therefore,
Tu(·) is measurable on Bc for all u ∈ Mw2(Bc), and for any function u ∈ Mw2(Bc), by
(20) and (13), we have

|Tu(x)| ≤
∣∣R(x, f(x))

∣∣+
∣∣ ∫
Bc

u(y)m2(dy|x, f(x))
∣∣

<
3M2 + 2Mρα0‖g‖w

α2
0

w2(x) + ‖u‖w2ρ2w2(x)

=
(
(3M2 + 2Mρα0‖g‖w)/α2

0 + ‖u‖w2ρ2
)
w2(x) ∀x ∈ Bc,

which shows that Tu(·) is w2-bounded.
Furthermore, for each u, v ∈Mw2(Bc), we have

|Tu(x)− Tv(x)|

=
∣∣∣− sup

a∈Ag(x)

[
−R(x, a)−

∫
Bc

u(y)m2(dy|x, a)
]

+ sup
a∈Ag(x)

[
−R(x, a)−

∫
Bc

v(y)m2(dy|x, a)
]∣∣∣

≤ sup
a∈Ag(x)

∣∣∣ ∫
Bc

[u(y)− v(y)]m2(dy|x, a)
∣∣∣

≤ ‖u− v‖w2 sup
a∈Ag(x)

∫
Bc

w2(y)m2(dy|x, a)

< ‖u− v‖w2ρ2w2(x) ∀x ∈ Bc.
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Hence, ‖Tu − Tv‖w2 < ‖u − v‖w2ρ2, and thus T is a contraction operator from the
Banach space Mw2(Bc) to itself. By Banach’s Fixed Point Theorem, T has a unique
fixed point u∗ in Mw2(Bc). Note that J∗(·) := inff∈Fg

J(·, f) is in Mw2(Bc) (see (21)).
Thus, it remains to prove u∗ = J∗, which, for the model (22) with w2, 2α and cg in lieu
of w, α and r in [18], respectively, can be verified by the similar manner as in Lemma
11.3.2(b) of [18]. Finally, using Theorem 3.5 again, we have J∗(·) = σ2

∗(·) + g2(·).
(b) By Theorem 3.5, we see that J(f) = σ2(f)+g2 is the unique solution in Mw2(Bc)

to the equation (18). This, together with the definition of FPMV-optimal policies, gives
the statement.

(c) It is an immediate result of parts (a)–(b) and the measurable selection theorem
(e. g., Lemma 8.3.8 in [13]).

(d) Note that from the proof of part (a), T is a contraction operator from Mw2(Bc)
to itself. Hence, by Banach’s Fixed Point Theorem and part (a), we have σ2

∗ + g2 =
lim
n→∞

Tnu for some u ∈ Mw2(Bc), which proposes the iteration algorithm of the value
function.

(e) It follows from Theorem 7.5.1 in [3]. �

Remark 3.10. It is worth to mention that the way we used here to ensure the exis-
tence of the optimality equation is Banach’s theory rather than the method of dynamic
programming in continuous-time Markov decision processes such as [9, 10, 11].

4. EXAMPLES

In this section, we use two examples to illustrate the application of our main result. One
shows that elements in Fg are not unique and an FPMV-optimal policy is derived when
the set Fg is finite, another justifies the existence of FPMV-optimal policies when the
set Fg is infinite.

Example 4.1. The control model under consideration is given by: E = {y1, y2, y3};B =
{y3}; A(y1) = {a11, a12}, A(y2) = {a21, a22}, A(y3) = {a31}; Q(t, y|x, a) = (1 −
e−t)p(y|x, a) for every t ∈ R+, a ∈ A(x) and x ∈ Bc, where p(y|x, a) are the tran-
sition probabilities defined by

p(y1|y1, a11) = 0, p(y2|y1, a11) =
3
10
, p(y3|y1, a11) =

7
10

;

p(y1|y1, a12) = 0, p(y2|y1, a12) =
1
2
, p(y3|y1, a12) =

1
2

;

p(y1|y2, a21) =
3
4
, p(y2|y2, a21) = 0, p(y3|y2, a21) =

1
4

;

p(y1|y2, a22) =
1
5
, p(y2|y2, a22) =

1
5
, p(y3|y2, a22) =

3
5
.

Moreover, let

r(y1, a11) = 3, r(y1, a12) =
5
2
, r(y2, a21) = 3, r(y2, a22) = 5;

α(y1, a11) = α(y2, a21) =
1
2
, α(y1, a12) = α(y2, a22) = 1; g(y1) = 2, g(y2) = 3.
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The policy set F = {f1, f2, f3, f4}, where f1(y1) = a11, f1(y2) = a21; f2(y1) = a11, f2(y2) =
a22; f3(y1) = a12, f3(y2) = a21; f4(y1) = a12, f4(y2) = a22.

Now we have the following result.

Proposition 4.2. For the control model in Example 4.1, the set Fg is equal to {f3, f4},
and the policy f3 is FPMV-optimal.

P r o o f . By a direct calculation, we get

m1(y1|y1, a11) = 0, m1(y2|y1, a11) =
1
5
, m1(y1|y1, a12) = 0, m1(y2|y1, a12) =

1
4
,

m1(y1|y2, a21) =
1
2
, m1(y2|y2, a21) = 0, m1(y1|y2, a22) =

1
10
, m1(y2|y2, a22) =

1
10

;

m2(y1|y1, a11) = 0, m2(y2|y1, a11) =
3
20
, m2(y1|y1, a12) = 0, m2(y2|y1, a12) =

1
6
,

m2(y1|y2, a21) =
3
8
, m2(y2|y2, a21) = 0, m2(y1|y2, a22) =

1
15
, m2(y2|y2, a22) =

1
15

;

and

r(y1, a11) = 2, r(y1, a12) =
5
4
, r(y2, a21) = 2, r(y2, a22) =

5
2
.

Obviously, Example 4.1 satisfies Assumptions 2.3, 3.1 and 3.7. Thus, by Theorem
3.9, there exists an FPMV-optimal policy. Furthermore, it follows from Theorem 3.4(a)
that (

V (y1, f1)
V (y2, f1)

)
=

(
8
3
10
3

)
,

(
V (y1, f2)
V (y2, f2)

)
=

(
115
44
135
44

)
,

and (
V (y1, f3)
V (y2, f3)

)
=
(
V (y1, f4)
V (y2, f4)

)
=
(

2
3

)
=
(
g(y1)
g(y2)

)
.

Therefore, the set Fg is given by Fg = {f3, f4}.
On the other hand, using Theorem 3.5 and Remark 3.6, we have(

V (2)(y1, f1)
V (2)(y2, f1)

)
=

(
1520
151
2080
151

)
,

(
V (2)(y1, f2)
V (2)(y2, f2)

)
=

(
58425
6094
3225
277

)
,

and (
V (2)(y1, f3)
V (2)(y2, f3)

)
=

(
232
45
164
15

)
,

(
V (2)(y1, f4)
V (2)(y2, f4)

)
=

(
430
83
920
83

)
,

which implies that σ2(x, f3) < σ2(x, f4) < σ2(x, f2) < σ2(x, f1) for every x ∈ Bc.
Therefore, the policy f3 is FPMV-optimal although the objective expected reward g
here is not the maximal one. �

Finally, we illustrate the application of the policy improvement algorithm.
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• For each x ∈ {y1, y2}, solving (17) gives that Ag(y1) = {a12} and Ag(y2) =
{a21, a22}. Therefore (by Theorem 3.4(b)), Fg = {f3, f4}.

• Pick a policy f4 ∈ Fg and take h0 := f4.

• Obtain J(h0) =
(

430
83
920
83

)
.

• Policy improvement: h1(y1) = a12, h1(y2) = a21.

• Since h0 6= h1, a further iteration yields h1 = h2 =
(
a12

a21

)
. Thus, f3 is FPMV-

optimal.

Example 4.3. Consider a model {E,B, (A(x) ⊂ A, x ∈ E), Q(·, ·|x, a), r(x, a), α(x, a), g(x)},
where E = A := (−∞,+∞), A(x) := [−|x|, |x|] for every x ∈ E, B := (1,+∞), and
Q(·, ·|x, a), r(x, a), α(x, a), g(x) are defined by

Q(t,D|x, a) := (1− e−t)
∫
D

1√
2π
e−

(y−|x|+|a|)2
2 dy,

r(x, a) := (x2 − 1)
10|x|+ 9 + a

|x|+ 1
+

1√
2π
e−

1
2 ,

α(x, a) :=
a− 1
|x|+ 1

+ 9, g(x) := x2 − 1

for each (x, a) ∈ K, D ∈ B(E) and t ∈ R+.

Now, we have the following result.

Proposition 4.4. For the control model in Example 4.3, Ag(x) = {−|x|, |x|} for all
x ∈ Bc = (−∞, 1]. Moreover, there exists an FPMV-optimal policy.

P r o o f . Let w(x) = x2 + 1 for all x ∈ E. A direct calculation yields that

Q(t, E|x, a) = 1− e−t, r(x, a) = x2 − 1 +
|x|+ 1

10|x|+ 9 + a

2√
2π
e−

1
2 ,

m1(D|x, a) =
|x|+ 1

10|x|+ 9 + a

∫
D

1√
2π
e−

(y−|x|+|a|)2
2 dy,

m2(D|x, a) =
|x|+ 1

19|x|+ 17 + 2a

∫
D

1√
2π
e−

(y−|x|+|a|)2
2 dy,∫

Bc

w(y)m1(dy|x, a) =
|x|+ 1

10|x|+ 9 + a

∫ 1

−∞

1√
2π

(y2 + 1)e−
(y−|x|+|a|)2

2 dy,∫
Bc

w2(y)m2(dy|x, a) =
|x|+ 1

19|x|+ 17 + 2a

∫ 1

−∞

1√
2π

(y2 + 1)2e−
(y−|x|+|a|)2

2 dy
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for every (x, a) ∈ K, D ∈ B(E) and t ∈ R+. Using the dominated convergence theorem,
from the above expressions we see that Assumptions 2.3 and 3.7 are obviously holds.
Next, we will verify Assumption 3.1. Indeed, for each (x, a) ∈ K α(x, a) ≥ 8,

|r(x, a)| =
∣∣(x2 − 1)

10|x|+ 9 + a

|x|+ 1
+

1√
2π
e−

1
2
∣∣ ≤ (11 +

1√
2π
e−

1
2 )(x2 + 1),

and∫ 1

−∞
(y2 + 1)2m1(dy|x, a) ≤ |x|+ 1

10|x|+ 9 + a

∫ ∞
−∞

(y4 + 2y2 + 1)
1√
2π
e−

(y−|x|+|a|)2
2 dy

=
|x|+ 1

10|x|+ 9 + a
[6 + 8(|x| − |a|)2 + (|x| − |a|)4]

≤ 1
9

[6 + 12x2 + 6x4] =
2
3

(x2 + 1)2,

which shows that Assumption 3.1 holds with α0 = 8, M = 11+ 1√
2π
e−

1
2 and ρ =

√
6

3 . As
analyzed above, all conditions required for Theorem 3.9 are fulfilled. Thus, by Theorem
3.9, there exists an FPMV-optimal policy.

For each x ∈ (−∞, 1], letting the date in the equation of (17) be replaced with ones
in Example 4.3, we immediately get∫ 1

−∞
(y2 − 1)

1√
2π
e−

(y−|x|+|a|)2
2 dy = − 1√

2π
e−

1
2 .

Solving the above equation, we obtain two solutions a1 := −|x| and a2 := |x|. Thus,
Ag(x) = {−|x|, |x|} for all x ∈ Bc = (−∞, 1], which implies that there are an infinite
number of policies in Fg. �

Remark 4.5. Example 4.3 only justifies the existence of an FPMV-optimal policy but
not gives an explicit FPMV-optimal policy. To obtain an explicit FPMV-optimal policy,
numerical experiments by executing the value iteration or policy improvement algorithms
proposed in Theorem 3.9 are needed.

5. REDUCTION TO THE CASES FOR DTMDPS AND CTMDPS

In this section, we will show how a first passage variance model for SMDPs becomes
that for DTMDPs and CTMDPs if the semi-Markov kernel Q is of the special forms as
below.

Case 1. the first passage variance model for DTMDPs
Suppose that the semi-Markov kernel Q has the expression

Q(t,D|x, a) =

{
p(D|x, a), t ≥ 1,
0, otherwise

for all D ∈ B(E) and (x, a) ∈ K, with p(·|x, a) as a stochastic kernel on E given K.
In this case, Tn = n almost everywhere for each n ≥ 0, and thus {Tn, Jn, An} is the
standard DTMDPs.
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By some transformations of structure, for each x ∈ E, f ∈ F, V (x, f) can be rewritten
as

V (x, f) = Efx

[ ∫ τB

0

e−
R t
0 α(x(s),a(s)) dsr(x(t), a(t)) dt

]
= Efx

[ ∞∑
n=0

∫ n+1

n

e−
Pn−1

k=0 α(Jk,Ak)−α(Jn,An)(t−n)I{J0∈Bc,...,Jn∈Bc}r(Jn, An) dt
]

= Efx

[ ∞∑
n=0

e−
Pn−1

k=0 α(Jk,Ak)I{J0∈Bc,...,Jn∈Bc}r(Jn, An)
∫ 1

0

e−α(Jn,An)t dt
]
.

Let α̃(x, a) := e−α(x,a) and r̃(x, a) := r(x, a)
∫ 1

0
e−α(x,a)t dt. Then

σ2(x, f) = Efx

[( ∞∑
n=0

n−1∏
k=0

α̃(Jk, Ak)I{J0∈Bc,...,Jn∈Bc}r̃(Jn, An)− V (x, f)
)2
]

= Efx

[( τB−1∑
n=0

n−1∏
k=0

α̃(Jk, Ak)r̃(Jn, An)− V (x, f)
)2
]
,

which coincides with the first passage discounted variance for DTMDPs. Thus, the
optimality equation becomes

σ2
∗(x) + g2(x) = inf

a∈Ag(x)

{
r̃(x, a)[2g(x)− r̃(x, a)] + α̃2(x, a)

∫
Bc

[σ2
∗(y) + g2(y)]p(dy|x, a)

}
.

This extends the results of [24, 30] to the case of state-action dependent discount factors
and an arbitrary function g. In fact, the above equation is the optimality equation in
the first passage variance model for DTMDPs with a target set B, the discount factor
α̃(x, a), the transition probability p(·|x, a) and reward function r̃(x, a).

Case 2. the first passage variance model for CTMDPs
Suppose that the semi-Markov kernel Q has the form

Q(t,D|x, a) =

{
(1− e−q(x,a)t) q(D|x,a)

q(x,a) , x /∈ D, t ≥ 0,

0, otherwise

for all D ∈ B(E) and (x, a) ∈ K, where q(·|x, a) is a conservative and stable transition
rates on E given K, q(x, a) := −q({x}|x, a). In this case, we have

m1(D|x, a) =
∫ ∞

0

e−α(x,a)tQ(dt,D|x, a) =
1

α(x, a) + q(x, a)
q(D|x, a),

m2(D|x, a) =
∫ ∞

0

e−2α(x,a)tQ(dt,D|x, a) =
1

2α(x, a) + q(x, a)
q(D|x, a), ∀ x /∈ D.

Although the policies for CTMDPs are different from those for SMDPs, they are identical
for the stationary policies. Then, the model (1) becomes

{E,B, (A(x) ⊂ A, x ∈ E), q(·|x, a), r(x, a), α(x, a), g(x)}.
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Under the first passage variance criterion, the optimality equation (23) can be written
by

inf
a∈Ag(x)

{
2r(x, a)g(x) +

∫
Bc

[σ2
∗(y) + g2(y)]q(dy|x, a)− 2[σ2

∗(x) + g2(x)]α(x, a)
}

= 0,

which is exactly the optimality equation in the first passage model with the variance
criterion for CTMDPs in [11].

6. CONCLUDING REMARKS

In this paper, we have studied a new and interesting issue – the FPMV problem for
SMDPs. Our work extends the previous works from DTMDPs and CTMDPs to SMDPs,
from fixed finite or infinite time horizons to a random time horizon, and from a constant
discount factor to a varying one. To solve the FPMV problem of SMDPs, we characterize
the policies with a common expected first passage reward, transform the variance of the
first passage reward to a mean, and develop suitable conditions under which an FPMV-
optimal policy is ensured. Also, we have derived a policy improvement algorithm as
well as a value iteration algorithm to compute an FPMV-optimal policy. To show the
application of our main results, we give two illustrative examples. At last, a reduction
of the results to the cases of DTMDPs and CTMDPs is exhibited.
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[3] N. Bäuerle and U. Rieder: Markov decision processes with applications to finance. In:
Universitext, Springer, Heidelberg 2011. DOI:10.1007/978-3-642-18324-9

[4] E. Collins: Finite-horizon variance penalised Markov decision processes. OR Spektrum
19 (1997), 35–39. DOI:10.1007/s002910050017

[5] O. L. V. Costa, A. C. Maiali, and A. de C. Pinto: Sampled control for mean-variance
hedging in a jump diffusion financial market. IEEE Trans. Automat. Control 55 (2010),
1704–1709. DOI:10.1109/tac.2010.2046923

[6] J. A. Filar, L. C. M. Kallenberg, and H. M. Lee: Variance-penalized Markov decision
processes. Math. Oper. Res. 14 (1989), 147–161. DOI:10.1287/moor.14.1.147

http://dx.doi.org/10.1016/j.physa.2003.10.039
http://dx.doi.org/10.1007/978-3-642-18324-9
http://dx.doi.org/10.1007/s002910050017
http://dx.doi.org/10.1109/tac.2010.2046923
http://dx.doi.org/10.1287/moor.14.1.147


80 X.X. HUANG AND Y.H. HUANG

[7] C. P. Fu, A. Lari-Lavassani, and X. Li: Dynamic mean-variance portfolio se-
lection with borrowing constraint. European J. Oper. Res. 200 (2010), 312–319.
DOI:10.1016/j.ejor.2009.01.005

[8] X. P. Guo and O. Hernández-Lerma: Continuous-Time Markov Decision Processes: The-
ory and Applications. Springer-Verlag, Berlin 2009. DOI:10.1007/978-3-642-02547-1

[9] X. P. Guo and X. Y. Song: Mean-variance criteria for finite continuous-time
Markov decision processes. IEEE Trans. Automat. Control 54 (2009), 2151–2157.
DOI:10.1109/tac.2009.2023833

[10] X. P. Guo, L. E. Ye, and G. Yin: A mean-variance optimization problem for discounted
Markov decision processes. European J. Oper. Res. 220 (2012), 423–429.

[11] X. P. Guo, X. X. Huang and Y. Zhang: On the first passage g-mean variance optimality
for discounted continuous-time Markov decision processes. SIAM J. Control Optim. 53
(2015), 1406–1424. DOI:10.1137/140968872

[12] Q. Y. Hu: Continuous time Markov decision processes with discounted moment criterion.
J. Math. Anal. Appl. 203 (1996), 1–12. DOI:10.1006/jmaa.1996.9999

[13] O. Hernández-Lerma and J. B. Lasserre: Further Topics on Discrete-Time Markov Control
Processes. Springer-Verlag, New York 1999. DOI:10.1007/978-1-4612-0561-6

[14] O. Hernández-Lerma, O. Vega-Amaya and G. Carrasco: Sample-path optimality and
variance-minimization of average cost Markov control processes. SIAM J. Control Optim.
38 (1999), 79–93.

[15] S. Haberman and J. H. Sung: Optimal pension funding dynamics over infinite control
horizon when stochastic rates of return are stationary. Insurance Math. Econom. 36
(2005), 103–116. DOI:10.1016/j.insmatheco.2004.10.006

[16] Y. H. Huang and X. P. Guo: First passage models for denumerable semi-Markov decision
processes with nonnegative discounted costs. Acta Math. Appl. Sin. Engl. Ser. 27 (2011),
177–190. DOI:10.1007/s10255-011-0061-2

[17] Y. H. Huang, X. P. Guo, and X. Y. Song: Performance analysis for controlled semi-Markov
systems with application to maintenance. J. Optim. Theory Appl. 150 (2011), 395–415.
DOI:10.1007/s10957-011-9813-7

[18] Y. H. Huang and X. P. Guo: Constrained optimality for first passage criteria in semi-
Markov decision processes. Optimization, Control, and Applications of Stochastic Sys-
tems, pp. 181–202, Systems Control Found. Appl., Birkhäuser/Springer, New York 2012.
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