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INTERVAL FUZZY MATRIX EQUATIONS

EMmiLIA DRAZENSKA AND HELENA MYSKOVA

This paper deals with the solvability of interval matrix equations in fuzzy algebra. Fuzzy
algebra is the algebraic structure in which the classical addition and multiplication are replaced
by maximum and minimum, respectively.

The notation A ® X ® C = B, where A, B, C are given interval matrices and X is an
unknown matrix, represents an interval system of matrix equations. We can define several
types of solvability of interval fuzzy matrix equations. In this paper, we shall deal with four of
them. We define the tolerance, weak tolerance, left-weak tolerance, and right-weak tolerance
solvability and provide polynomial algorithms for checking them.

Keywords: fuzzy algebra, interval matrix equation, tolerance solvability, weak tolerance
solvability

Classification: 15A06, 65G30

1. MOTIVATION

Fuzzy equations have found a broad area of applications in causal models which empha-
size relationships between input and output variables. They are used in diagnosis models
[1L T2, 16, I7] or models of nondeterministic systems [I8]. Diagnostic models are par-
ticularly important because they cope with the uncertainty in many real-life situations
concerning either medical diagnoses or diagnoses of technical devices. In the simplest
formulation we are faced with a space of symptoms and a space of faults. Elements of
faults are related with elements of symptoms by means of a fuzzy relation. Usually, the
stronger the relationship between the symptom and a fault, the higher is the value of
the corresponding argument. The solution of the fuzzy relational equation of the form
A®x = b, where A is a matrix, b and = are vectors of suitable dimensions and clas-
sical addition and multiplication operations are replaced by maximum and minimum,
provides a maximal set of symptoms that produce the given fault.

The solvability of the systems of fuzzy linear equations is well reviewed. In this paper,
we shall deal with the solvability of fuzzy matrix equations of the form A X @ C' = B,
where A, B, and C are given matrices of suitable sizes and X is an unknown matrix. In
the following example we will show one of possible applications.
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Example 1.1. Let us consider a situation, in which passengers from places P;, Py, Ps,
and P, want to transfer to holiday destinations Dq, Do, and D3. Different transporta-
tion means provide transporting passengers from places Pi, Py, P3, and P, to airport
terminals 77 and T3 (See Figure . We assume that the connection between P; and T;
is possible only via one of the check points Q1,Q2, and Q3. On Figure [1] there is an
arrow (P; Q;) if there exists the road from P; to @; and there is an arrow (7; Dy) if
terminal 7; handles the passengers traveling to destination Dy (i =1,2,3,4, j = 1,2, 3,
k=1,2,3,1 =1,2). The symbols along arrows represent the capacities of the corre-
sponding connections.

Fig. 1. Transportation system.

Denote by a;; (i) the capacity of the road from P; to Q; (from T; to Dy). If Q;
is linked with 7; by a road with the capacity z;;, then the capacity of the connection
between P; and Dy, via @Q); using terminal T} is equal to min{a;;, zi, cix }-

Suppose that the number of passengers traveling from place P; to destination Dy
is denoted by b;r. To ensure the transportation for all passengers from P; to their
destinations the following equations must be satisfied:

max min{alh1’117011}7min{a12,1‘217611}} = b1,
max min{an,x11,012}7min{am,xm,012}7min{a127:c22,622}} = b1z,

max min{an, T12, 623}, min{an, 11, 613}7 min{alg, 21, C13}7 min{alg, 22, 023}} = b13.

Similar equalities must be satisfied to ensure the transportation for all passengers from
P,, P; and P, to their destinations.

In general, suppose that there are m places Py, Ps,...,P,, n transfer points
Q1,Q2,...,Qy, s terminals 11,75, ...,T,, and r destinations Dy, Ds, ..., D,. If there
is no road from P; to Q; (from T; to Dy), we put a;; = 0 (¢ = 0). Our task is
to choose the appropriate capacities xj; for any j € N = {1, 2,..., n}, and for any
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leS={1,2,...,s} such that the maximum capacity of the road from P; to Dy is equal
to a given number b;, for any i € M = {1,2,...,m} and for any k € R ={1,2,...,r},
i.e.,

jeHJ\lf,al)»(ESmin{aij’le’Clk} = bik- (1)

A certain disadvantage of any necessary and sufficient condition for the solvability
of stems from the fact that it only indicates the existence or non-existence of the
solution but does not indicate any action to be taken to increase the degree of solvability.
However, it happens quite often in modelling real situations that the obtained system
turns out to be unsolvable.

One of the possible methods of restoring the solvability is to replace the exact input
values by intervals of possible values. The result of the substitution is so-called interval
fuzzy matrix equation. The theory of interval computations, in particular of interval
systems in the classical algebra is already quite developed, see e.g. the monograph [7]
or [14, [15]. Interval systems of linear equations in fuzzy algebra have been studied in
[3, 4, 8L [@]. In this paper, we deal with the solvability of interval fuzzy matrix equations.
We define the tolerance, right-weak tolerance, left-weak tolerance, and weak tolerance
solvability and provide polynomial algorithms for checking them.

2. PRELIMINARIES

Fuzzy algebra is the triple (Z,®,®), where Z = [O, I] is a linear ordered set with the
least element O, the greatest element I, and two binary operations a ® b = max{a, b}
and a ® b = min{a, b}.

Denote by M, N, R, and S the index sets {1,2,...,m}, {1,2,...,n}, {1,2,...,r},
and {1,2,...,s}, respectively. The set of all m x n matrices over Z is denoted by
Z(m,n) and the set of all column n vectors over Z by Z(n).

Operations @& and ® are extended to matrices and vectors in the same way as the
operations in the classical algebra. We will consider the ordering < on the sets Z(m,n)
and Z(n) defined as follows:

o for A,Ce€Z(m,n): A< Cifa;; <c¢jforallie M, jeN,
o forz,yeZ(n): z<yifz; <y;foraljeN.

We will use the monotonicity of ®, which means that for any A,C € Z(m,n) and for
any B, D € Z(n,s) the implication

fA<Cand B<Dthen A B<C®D

holds true.
Let A € Z(m,n) and b € Z(m). In fuzzy algebra, we can write the system of equations
in the matrix form

A®x=b. (2)

The crucial role for the solvability of system in fuzzy algebra is played by the principal
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solution of system , defined by

for any 7 € N, where min () = I.
The following theorem describes the importance of the principal solution for the
solvability of (2.

Theorem 2.1. (Cuninghame-Green [], Zimmermann [19]) Let A € Z(m,n) and b €
Z(m) be given.

(i) f A®z =0 for x € Z(n), then z < 2*(A,b).
(i) A®z*(A,b) <b.
(iii) The system A ® x = b is solvable if and only if z*(A,d) is its solution.

The properties of a principal solution are expressed in the following assertions.

Lemma 2.2. (Cechldrova [3]) Let A € Z(m,n) and b,d € Z(m) be given and let b < d.
Then z*(A,b) < z*(A4,d).

Lemma 2.3. (Myskovd [8]) Let b € Z(m) and C, D € Z(m,n) be given and let D < C.
Then z*(C,b) < 2*(D,b).

Lemma 2.4. Let A € Z(m,n), b € Z(m) and ¢ € Z. Then
min{z} (A ® ¢,b), c} = min{z;(A,b), c}

for any j € N.

Proof. Inthe case that z7(A,b) > ¢ we have 25 (A®c, b) > ¢, according to Lemma 2.3
so both minima are equal to c. In the second case z (A,b) = b; < cfor somei € M, whic

follows that a;; > b;. Then a;; ® ¢ > b; and consequently oy (A®eb) <b; = x;f(A, b).
Together with 27 (A ® ¢,b) > z7(A,b) we obtain the equality. O

3. MATRIX EQUATIONS AND TENSOR PRODUCT

Let A€ ZI(m,n), B€Z(m,r), X € Z(n,s)and C € Z(s,r) be given matrices. It is easy
to see that [A® X ® Clix = I}lvafsmin{aij,xﬂ,clk}. Hence, we can write in the
Jje S

s

form
A® X ®C =B. (4)

In the following, we shall deal with the solvability of . We shall use the notion of
tensor product.
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Definition 3.1. Let A = (a;;) be an m x n matrix and let B = (b;;) be an r x s matrix.
The tensor product of A and B is the following mr X ns matrix:

A®by1 ARbi2 ... A®bi
AR B — ARby A®Dby ... AR by,
ARby ARbyy ... AQb,

Let X € B(n,s). Denote by vec (X) the vector (X1, Xa,...,X,)", where X; is Ith
column of matrix X. Similarly we define vec (B).

Theorem 3.2. Matrix equation
(A19XRC)®(AXRC)® & (A, 09X ®C,) =B, (5)

where A;, C;, and B are matrices of compatible sizes, is equivalent to the vector-matrix

system
(ARC] @ ARC) ©...A,RC) @ vec(X) = vec (B). (6)

Proof. The proof is equivalent to the similar one in the max-plus algebra, which is
given in [2]. O

For r = 1, the matrix equation in the form takes the form A® X ® C = B.
Denote by X*(A,B,C) = (x;.‘l(A, B, C’)) the matrix defined as follows

751(4, B, C) = min{z3(A ® cuk, Bi)}- @

We shall call the matrix X*(A, B, C) a principal matriz solution of . The following
theorem expresses the properties of X*(A, B, C) and gives the necessary and sufficient
condition for the solvability of .

Theorem 3.3. Let A € Z(m,n), B € Z(m,r) and C € Z(m,n).
(i) FA® X ®C =B for X € Z(n,s), then X < X*(4, B,C).
(i) A® X*(A,B,C)® C < B.
(iii) The matrix equation A ® X ® C' = B is solvable if and only if X*(A, B,C) is its

solution.

Proof. The consequence of Theorem is that interval fuzzy matrix equation is
solvable if and only if the vector-matrix equation

(AR CT) @ vec (X) = vec (B) (8)
is solvable. By Theorem (iii) the solvability of is equivalent to the equality

(ARCT)®2*(ARCT,vec(B)) = vec (B).
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We will prove that z*(AX CT,vec(B)) = vec(X*(A,B,C)). For this reason, we
rewrite into the following form:

AQci1 AQca1 ... AQcy X5 By
ARcls AR®con ... ARcs @ X5 B By
A®crr, A®coy ... A®cy XS Br.

Using we have

ZL‘ﬂ = min { ’Iblelhl/fl{bzl L Qg & cpp > b11}7?61§\1/[1{b12 L Qg X cro2 > big}, ey

---m}&l{bir D ai; ® cpy > bir}}

1€
= min {x;(A ©en, B, (A® i, By),..., 7l (A® clT,BT)} = mina(4® . By).

Hence the proof of parts (i), (ii) and (iii) follows directly from Theorem [2.1 O

Remark 3.4. Equality can be written in the form
X*(A,B,C) = (X{(4,B,C), X3(A,B,C),..., X (A, B,C)),
where

X'(A,B = minz*(A By).
[(A,B,C) gél}f%ll"( ® cu, Bi) (9)

Lemma 3.5. Let A, AV, A®) € Z(m,n), B, BY, B® ¢ I(m,r) and C, CV, C? ¢
I(s,r).

(i) If A® < AW then X*(AWB,C) < X* (AP B, C).
(ii) If BM < B® then X*(A,BM, C) < X*(A,B?,C).
(iii) If C® < M then X*(A4,B,CM) < X*(A, B,C?).

Proof.

(i) Since A? @ ¢ < AM @ ¢, by Lemma we obtain the inequality
25 (AN @cy, Br) < 23(AP@cyy, By) for any k € R which implies 23, (AM, B, C) <
:rjl(A(Q),B,C) forany j€ N,l € S.

.o * (1) * (2) 1
(ii) By Lemmaﬁwe have q:j(A ® i, By ) < xj(A ® ¢, By’) for any k € R which
implies 27,(A, B, C) < z%(A, B®,C) for any j € N, [ € S.

(iii) By Lemma we have 27 (A ® cl(,i), By) <zi(A® cl(,z), By,) for any k € R which
implies 27,(A, B,CV) < z%(A, B,C®) for any j € N, [ € S.

O
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Lemma 3.6. Let A, A® ¢ Z(m,n), B®), B® ¢ Z(m,r), and CV, C? € I(s,r).
The system of matrix inequalities of the form

AV e x @ 0cW < BO, (10)
AP @ X ®Cc® > B® (11)

is solvable if and only if
A @ x*(AM, B cW)y g c® > B®@), (12)

Proof. According o Theorem (ii) the matrix X*(AM, BW CM) satisfies in-
equality (10). If | ) is satisfied, then the matrlx X*(A(1 ) 1),0(1) satisfies the
inequality 1. , too, so the system of inequalities , is solvable with solution
X*(AW, ) o),

For the converse implication suppose that the system of inequalities , 1)
is solvable and a matrix Y is its solution. It follows from AV @ Y @ ¢ < BO
that there exists a matrix D € Z(m,r) such that AV @ Y @ CM) = D < BMW. Accord-
ing to Theorem (i) we have Y < X*(AM D,cMW) < Xx*(AW, BMW CM)) where the
last inequality follows from Lemma (ii). We obtain

A® @ x*(AD BW cW)yg0c® > AP gy o ¢® > B®,
Hence inequality is satisfied. O

4. INTERVAL MATRIX EQUATIONS

Similarly to [8 @, [13], we define interval matrices A, B, and C as follows:

BN

A=[AA = {AcIimn); A<A<

A
B=[BB|={BeI(mr);B<B<B
c=[C,Cl={CeI(sr);C<C

Denote by
AR X®C=B (13)

the set of all matrix equations of the form such that A € A, B € B, and C € C.
We call an interval fuzzy matriz equation.

We shall think over the solvability of interval fuzzy matrix equation on the ground of
the solvability of matrix equations of the form such that A€ A, Be B,and C € C.
We can define several types of solvability of an interval fuzzy matrix equation.

Let us return to Example [[.I} Suppose that we do not know exactly capacities of
connections from places P; to check points @); and the capacities of the flights from 7} to
Dy.. We only know that they are from the given intervals of possible values. We want to
observe transportations capacities from @); to 7} such that in each case all capacities of
connection from P; to Dy will be in the given intervals of possible values. The existence
of such transportation times is called the tolerance solvability.
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4.1. Tolerance Solvability

Definition 4.1. A matrix X is called a tolerance solution of interval fuzzy matrix equa-
tion of the form if forany A€ A and forany C € Cis A® X ® C € B.

Theorem 4.2. A matrix X is a tolerance solution of if and only if it satisfies the
system of inequalities
(14)

(15)

Proof. A matrix X is a tolerance solution of if for any A € A and for any C € C
the product A ® X ® C lies in B. This leads to the requirement for the validity of
the system of matrix inequalities B < A® X ® C < B for any A € A and for any
C € C. The left inequality is satisfied for any A € A and for any C' € C if and only
if A® X ® C > B, i.e., inequality holds. The right inequality is satisfied for any
A € A and for any C € C if and only if it holds for the matrices A and C, so holds.

O

Definition 4.3. Interval fuzzy matrix equation of the form is called tolerance solv-
able if there exists X € Z(n,s) such that X is a tolerance solution of (L3).

Theorem 4.4. Interval fuzzy matrix equation of the form is tolerance solvable if
and only if
A®X*"(A,B,C)®C > B. (16)

Proof. The tolerance solvability of means that there exists a vector X € Z(n,s)
such that X is a tolerance solution. According to Theorem [£.2] it is equivalent to the
solvability of the system of inequalities , (15). Using Lemma we obtain . |

The following theorem deals with the complexity of checking the tolerance solvability
of an interval fuzzy matrix equation. For the sake of simplicity, in the next theorem we
will suppose that m =r = s = n.

Theorem 4.5. There is an algorithm which decides whether the given interval fuzzy
matrix equation is tolerance solvable in O(n*) steps.

Proof. Checking the tolerance solvability is based on the verifying of inequality
. Since computing z* (A ® ¢, B) requires O(n?) arithmetic operations, computing

X7 (A, B,C) by @ for fixed [ requires n - O(n?) = O(n?) arithmetic operation. Hence,
computing the matrix X* (4, B, C) requires n-O(n?) = O(n*) operations. Matrix multi-
plications need O(n?) arithmetic operations and checking matrix inequality requires
O(n?) arithmetic operations.

Hence the total complexity of the algorithm for checking the tolerance solvability of

is O(n*) + O(n®) + O(n?) = O(n?). O
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Example 4.6. Let Z = [0, 10] and let
[1,3] [5,8] [

A= [1,2] [4,6]
2,7 [2,3]

We check whether the interval fuzzy matrix equation A ® X ® C = B is tolerance
solvable.

3,
3,
4

)

o B O

3,5
, B=1 [3,5]
4,6

)

Solution:
We have

A®cy =

N W DN W
w W w oD
w w S = Ot

ARCy =

=N W N oW
Wk = WO
= R O e Ot

w
w
w

We compute the principal matrix solution by @D:

10 6 10 10 6 10
X*(A,B,C) = | min 5 , 5 , min 10 |, 10 = 5 10 |.

10 10 10 10 10 10
We have to check inequality :

4 5
A X*(A,B,C)eC=| 4 4 | >B.
4 4

According to Theorem [£.4] the given interval fuzzy matrix equation is tolerance solvable.

4.2. One-side weak tolerance solvability
We define two types of one-side weak tolerance solvability.
Definition 4.7. Interval fuzzy matrix equation of the form is called

(i) right-weakly tolerance solvable if for any C' € C there exists X € Z(n, s) such that
forany Ac Ais AR X ®C € B,

(ii) left-weakly tolerance solvable if for any A € A there exists X € Z(n,s) such that
forany C € Cis AR X ®C € B.

Lemma 4.8. Interval fuzzy matrix equation of the form is

(i) right-weakly tolerance solvable if and only if for any C' € C holds the inequality

A® X*(4,B,C)®C > B, (17)
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(ii) left-weakly tolerance solvable left-weakly tolerance solvable if and only if for any
A € A holds the inequality

A® X*(A,B,C)®C > B. (18)

Proof. (i) Let C € C be arbitrary but fixed. The existence of X € Z(n,s) such that
A® X®C € [B,B] for any A € A is equivalent to the tolerance solvability of the fuzzy
matrix equation with constant matrix C = C = C, which is, according to Theorem
equivalent to . Therefore, interval fuzzy matrix equation is right-weakly
tolerance solvable if and only if inequality is fulfilled for any matrix C' € C.

(ii) For a given matrix A € A the existence of X € Z(n,s) such that AQ X ®C € B
for any C € C is equivalent to the tolerance solvability of the fuzzy matrix equation
with constant matrix A = A = A, which is equivalent to . To ensure the left-weak
tolerance solvability, inequality has to be satisfied for any matrix A € A. O

Lemma does not give an algorithm for checking the one-side weak tolerance solv-
ability. It follows from the definitions that the tolerance solvability implies the right-weak
and left-weak tolerance solvability. The converse implications may not be valid. In the
following we will prove that both types of the one-side weak tolerance solvability are
equivalent to the tolerance solvability in fuzzy algebra.

Theorem 4.9. The following assertions are equivalent:
(i) Interval fuzzy matrix equation of the form is tolerance solvable.
(i) Interval fuzzy matrix equation of the form is right-weakly tolerance solvable.

(iii) Interval fuzzy matrix equation of the form is left-weakly tolerance solvable.

Proof. As mentioned above the implications (i) = (ii) and (i) = (iii) are trivial. It is
sufficient to prove the implications (ii) = (i) and (iii) = (i).

I. (ii)= (i): Suppose that an interval fuzzy matrix equation is not tolerance solvable.

It means that there exist i € M, and p € R such that [A® X*(4,B,C) ® C| i < bip-
Denote by CP) the matrix with the following entries

(p) qr fork=ples,
Clk_{clk forke R, k#p,leS. (19)

We will prove that

[A® X*(4,B,cW) 0 CV], =[A2 X*(4,B,C)aC] (20)

ip’
We can rewrite the both sides of as

[A® X*(A, B, o) C’(p)]ip = maésmm{aw, x5 (A, B, C(p)),cl(;’)}
i€
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and
[A@ X*(A,B,C)® Q]Z_p = ]e%al)ésmm{am, 5 (A, B,C), ¢}
We prove that
min{a;;, 25, (4, B,0"), ¢} = min{a;;, 2514, B, C), ¢, } (21)

for any j € N, [ € S. The left-hand side of is equal to

min{a;;, z},(4, B, C(p)),cl(g)} = min {g

R

Ikn;nx (A®Clk7Bk) ‘(A®lepr)7§lp}
and the right-hand side is equal to

min{g;, A, B,C),¢,} = min{

Qij’

15 jl( I]gl;gx (A®Clk7Bk) (Z®Elpa§p)7glp}'

We shall prove that
min{a5(A® ¢, By)s iy} = minda} (A @7, By), o). (22)
According to Lemma, we obtain
min{z(A® ¢, By), 1} = min{e} (4,B,), )
and
min{z} (Z@Elp,ﬁp),glp} = min{x; (A® ey, By), Cips Cp} = min{z (Z Ep)@lp}.

From the assumption and we obtain [A ® X*(4,B,C")® C(p)]l,p < b;,- Hence,

inequality is not satisfied for the matrix C®) and according to Lemma (i) an
interval fuzzy matrix equation is not right-weakly tolerance solvable.

IL. (iii)= (i): To prove the converse implication let us suppose that there are ¢ € M
and t € R such that [A® X*(4,B,C) ® C] g < by Denote by A the matrix with
the entries

(‘Z) { Qij fOI‘ Z =q, .] S Na (23)
%ij [ foriEM,i;éq,jEN.

We will prove that
(AW @ X*(A9,B,C)C]  =[A® X*(4,B,C)®C]|
qt

The both sides of can be rewritten as

[A(q) ® X* (AW B,0) ® C] ot = H]\lraz)ésmm{aqj’ 25 (A B, C), ¢}
and o L
[A® X*(A,B,C) ®Q]qt = max min{a,;, 5, (A, B,C), ¢, }-

JEN,leS
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We prove that

A B C), ¢, =min{a, A,B,0), ¢}

min{a,

quT;z( q35° Jl(

for any j € N, 1l € S. Let us remember that

m;l<A(Q)’§’€) = min { kenl%l? {biy, - P @ G > bir}, mln{b kG ® T > qu}}

and

x;l (Z, E, 6) = min { kenl%ln;é {b kG QCp > bzk} mln{b k:Gg QCp > bqk}}
17q

To prove , we show that
min { l;ellei;t}{bqk tag; @k > bqk},gqj} = min { géig{bqk 1T ® Cr > bqk},gqj}. (25)

There are two possibilities: either {bgx : a,; @ Tk > bgr} = {bgk : Gg; @ T > bgi} or
{b kG ®Clk > bqk} - {b k:Qgj ®Crp > bqk}
In the first case equality . trivially holds. In the second case denote by R* the set
={k€R:a,; @ < by Nlygj @ > bqk} Since for any k € R* the mequahty

; < by holds, we obtain mln{ mln byk, a,;} = a,;- Hence, the right-hand side of (2

is equalto
min { min{byy : g R > bok a-}:min{mingk:a RTik > Dok}, a mingk}z
{kGR{ q q) q }771;” kGR{ q q }’ qj,kER* q

min { gleig{bqk ta,; @k > bqk}agqj}v
so equality is satisfied. Since is satisfied, from the assumption we obtain

[A9 @ Xx*(AW,B,0) ® C] gt < byt~ According to Lemma (ii), an interval fuzzy
]

matrix equation is not left-weakly tolerance solvable.
4.3. Weak tolerance solvability

Definition 4.10. Interval fuzzy matrix equation of the form is called weakly tol-
erance solvable if for any A € A and for any C € C there exist X € Z(n, s) such that
A X®(C e B.

Theorem 4.11. Interval fuzzy matrix equation of the form is weakly tolerance
solvable if and only if it is tolerance solvable.

Proof. Suppose that is weakly tolerance solvable. We obtain the following se-
quence of implications

(VA€ A)(VC € C)(3X € I(n,s)A® X @ C e B 2E&I

(VA € A)(EX € I(n,s))(¥C € C)A® X © C € B 2&3
(3X €Z(n,s))(VAe A)(VC e C)A X ®C € B,
hence is tolerance solvable. The converse implication trivially holds. ]
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Remark 4.12. Interval matrix equations in max-plus algebra have been studied in [I1].
There is a similar condition for the tolerance solvability in max-plus and fuzzy algebra.
A significant difference is in the left-weak and right-weak tolerance solvability, which
are equivalent to the tolerance solvability in the fuzzy algebra, but not in the max-plus
algebra.

Remark 4.13. Suppose that interval matrix B is not a closed interval. If B is a left
open interval, then inequality turns into inequality A® X*(A, B,C)®C > B. If B
is a right open interval, then we have to add the inequality A ® X*(A, B,C)® C < B.
In case that B is an open interval, we have to make both changes in Theorem [£.:4] The
cases that the entries of interval matrices matrices A and C' are not closed intervals

have to be studied separately.

5. CONCLUSION

In this paper, we dealt with the solvability of matrix equations in fuzzy algebra. Fuzzy
algebra is a useful tool for describing real situation in the economy and industry. In
Example the values a;j,x;, and ¢, represent the capacities of corresponding con-
nections. In economics, those values may represent for example the financial costs for
the production or transporting of some products. In another possibility, a;; represents
a measure of the preference of the property P; of some object before the property @;,
similarly z;; (¢x) represent a measure of the preference of the property @; before the
property T} (the property T; before the property Dy).

In practice, the values a;; and c¢;; may depend on external conditions, so they are
from intervals of possible values. Due to this fact, it is significant to deal with fuzzy
matrix equations with interval data. We have studied four types of the solvability of
interval fuzzy matrix equation. We intend to deal with another solvability concepts in
further research.

(Received May 5, 2016)
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