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K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 1 , P A G E S 1 1 3 – 1 2 8

SELECTION AND CORRECTION OF WEIGHTED RULES
BASED ON  LUKASIEWICZ’S FUZZY LOGIC
WITH EVALUATED SYNTAX

Jiř́ı Ivánek

The core of the expert knowledge is typically represented by a set of rules (implications)
assigned with weights specifying their (un)certainties. In the paper, a method for hierarchical
selection and correction of expert’s weighted rules is described particularly in the case when
 Lukasiewicz’s fuzzy logic with evaluated syntax for dealing with weights is used.

Keywords: uncertain knowledge, fuzzy implication, rule base,  Lukasiewicz’s fuzzy logic
with evaluated syntax, composition function

Classification: 28E10, 28E99

1. INTRODUCTION

The motivation of this research can be traced back to the seventies and eighties of the
last century, to the time of the development of expert systems. The aim of an application
of such a diagnostic expert system in a particular case was to weight each goal diagnosis
using information about the values of the input attributes. The knowledge base of such
a system contained a set of weighted rules usually obtained from experts. Rules were
given in the form of implications

A1 ∧ . . . ∧Ak =⇒ C (r)

where Ai stood for propositions (values of different attributes) or their negations, and
r was a weight of the partial knowledge that the conjunction of A1, . . . , Ak implied
the conclusion C or its negation. According to [5], the weights were typically real
numbers from some interval. Basic examples were intervals [0, 1], [−1, 1] , and [0,∞].
In this paper, we shall use the interval [−1, 1] where the weight 1 means certainly yes,
−1 means certainly no, and 0 means unknown. We have several reasons for working
with the interval [−1, 1], e. g.: this interval was used for dealing with uncertainty in
the first compositional systems MYCIN, EMYCIN (weights as certainty factors); it is
very suitable for many experts (own experience); its using makes a clear distinction
between general weights and probabilities, there exists a neutral value (0) expressing
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“ignorance”, and, as we will explain and employ later, it simply allows to separate
positive and negative rules.

Sets of weighted rules along with (possibly weighted) input values of attributes are
processed by some general inference mechanism to assign a resulting weight to each
goal diagnosis (each conclusion which is not included in the condition part of any rule).
During the process of inference that was usually realized by so called forward chaining
inference from inputs through intermediate propositions to goals, the inference mecha-
nism used several combination functions for weights calculation (for a general theory of
combination functions see [3, 5]), namely:

• NEG - when knowing the weight of a proposition, it calculated the weight of its
negation;

• CONJ - calculated the weight of propositions’ conjunction from the weights of
individual propositions;

• CTR - which calculates the weight of a conclusion of a rule, when the weight of the
rule’s condition was given; if there were more rules with the same conclusion, this
function yielded just the weight with which the rule contributed to its conclusion;

• GLOB - if there were more rules with the same conclusion, this function deter-
mined the way how the results of individual rules, the contributions of rules, were
composed together to assign the proper weight to the conclusion.

Let us consider a situation when a knowledge base is composed by an expert who
designs rules and assigns some weights to them. To explain the basic idea in a simple way,
let us assume the expert is constructing the set of rules systematically in a hierarchical
way using Occam’s razor principle: At first, he starts with the simplest rules of the form

A =⇒ C (b)

Then, when the expert considers a more complex rule of the form

A1 ∧A2 =⇒ C (r)

he has to take into consideration whether its sub-rules were already inserted to the
knowledge base, i. e. whether none, one, or both the two rules of the form

A1 =⇒ C (r1)

A2 =⇒ C (r2)

are contained in the knowledge base. Let for instance q be the weight composed by the
chosen inference mechanism from weights of these sub-rules using a particular composi-
tion function GLOB. If q differs from the weight r (expert’s assumption) then the rule
in question should be inserted into the knowledge base, however not with the weight
q, but with some corrected weight c such that the composition of weights q, c by the
function GLOB gives the required weight r.

Similarly, the rule
A1 ∧ . . . ∧Ak =⇒ C (r)
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is considered by the expert as a new piece of knowledge only if the weight composed by
the chosen inference mechanism from weights of all its sub-rules already existing in the
knowledge base differs from the expert’s assumption. Once more, the rules are included
into the knowledge base with some correcting weights.

So the expert includes into the knowledge base only rules representing differences to
the results of the general inference procedure used in the system. The size of the result-
ing rule base depends on the chosen inference mechanism, specially on its composition
operation GLOB. The weights assigned to these rules are prescribed for correcting
results obtained from the weights of their sub-rules.

This general approach of hierarchical selections and corrections of expert’s weighted
rules will be more specified in the next sections for the case when  Lukasiewicz’s fuzzy
logic with evaluated syntax for dealing with weights is used.

2. INFERENCE MECHANISM BASED ON  LUKASIEWICZ’S FUZZY LOGIC WITH
EVALUATED SYNTAX

Our inference mechanism for uncertainty processing in rule-based knowledge systems was
inspired by the complete  Lukasiewicz’s fuzzy logic with evaluated syntax Ev L introduced
by J. Pavelka (see [4, 9, 10, 11]). It has been designed and implemented previously in
the System of Automatic Consultations (SAK), see [6, 8], nowadays in its follower New
Expert System (NEST).

Let us briefly mention the reasons which inspired us for applying  Lukasiewicz’s fuzzy
logic with evaluated syntax Ev L in (un)certain knowledge processing. The essence of
our approach consists in representing a knowledge base as a fuzzy axiomatic theory,
i. e. a set of formulas in which each formula is assigned a degree of membership in the
fuzzy set of special axioms. In such a way, the uncertainty degrees are interpreted as
measures of law-likeness of rules, i. e. degrees in which the rules are axioms of the field.
The whole knowledge base is represented as a fuzzy set of axioms (a fuzzy axiomatic
theory). According to this principle, the task of inference in knowledge systems with
uncertainties can be viewed as a deduction in a many-valued (fuzzy) logic with evaluated
syntax. In this logic, [α; a] stands for an evaluated formula where α is a propositional
formula and a ∈ [0, 1] is a degree assigned to α.

As a result of this theoretical considerations,  Lukasiewicz’s fuzzy logic with evaluated
syntax Ev L is preferred because of its completeness property. Due to Pavelka’s result
[11], only  Lukasiewicz’s fuzzy logic with evaluated syntax Ev L (and its isomorphic vari-
ants) out of uncountably many possible variants of fuzzy logic with evaluated syntax
with truth values in the unit interval (defined by different residuated lattices) has the
property of completeness which means (roughly speaking): for any formula ϕ and any
axiomatic theory T the degree to which ϕ follows from T semantically is equal to the
degree to which ϕ is provable from T syntactically.

More precisely, the degree t to which formula ϕ follows from the theory T semantically
(i. e. T |=t ϕ) is the infimum of the truth values of ϕ in all models val of the theory T .
Recall that a model of the theory T is a truth valuation val of propositional variables
such that the truth values of the axioms of the theory T are at least their degrees stated
in the theory. The truth values of propositional formulas are calculated from the truth
valuation of propositional variables using the truth functions of the connectives in the
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given propositional fuzzy logic.
Correspondingly, the degree s to which formula ϕ is provable from T syntactically

(i. e. T `s ϕ) is the supremum of the values d of all proofs of ϕ in the given fuzzy
theory T

[ϕ0; d0], [ϕ1; d1], . . . , [ϕn; dn], [ϕ; d],

where the value d of a proof is obtained by the sequential applications of the evaluated
inference rules of a particular logic (using fuzzy logical and special axioms from the given
theory T endowed with degrees). An inference rule

[β1; b1], . . . , [βk; bk]
[β; b]

is endowed with instructions for calculations of the degree b, which should be assigned
to the conclusion of the inference rule from degrees b1, . . . , bk having been assigned to
its premises.

Because both the degree t of truthfulness (T |=t ϕ), and the degree s of provability
(T `s ϕ) coincide in the complete  Lukasiewicz’s fuzzy logic with evaluated syntax Ev L
for every theory T and each formula ϕ, we prefer this logic as a base for our inference
mechanism.

We shall use the following logical connectives and notations for evaluated proposi-
tional formulas:

• ¬ is the negation with the truth function 1− x for x ∈ [0, 1];

• ∧ is the conjunction with the truth function min(x, y) for x, y ∈ [0, 1];

• & is  Lukasiewicz’s conjunction with the truth function max(0, x+ y− 1) for x, y ∈
[0, 1];

• g is  Lukasiewicz’s disjunction with the truth function min(1, x+y) for x, y ∈ [0, 1];

• ⇒ is  Lukasiewicz’s implication with the truth function min(1, 1−x+ y) for x, y ∈
[0, 1];

• Propositional variables and formulas will be denoted by Greek letters.

The main deduction rule of modus ponens in  Lukasiewicz’s fuzzy logic with evaluated
syntax Ev L:

[α; a], [α⇒β; w]
[β; max(0, a+ w − 1)]

means: if the premises (α), (α⇒β) have been derived in degrees a,w respectively, then
the conclusion (β) may be derived in the degree max(0, a+ w − 1).

3. RULE BASE REPRESENTATION IN  LUKASIEWICZ’S FUZZY LOGIC WITH
EVALUATED SYNTAX

When representing weights from the interval [−1, 1] by degrees from [0, 1], we have to
cope with one basic problem. A proposition is assigned a weight 0 if we do not have any
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reasons supporting either the proposition or its negation; in the case of total ignorance.
But there is not such a value in fuzzy logic. This is why we represent the weight of
each proposition by two numbers: one expressing the truth value of the considered
proposition, the other expressing the truth value of its negation.

To make this type of representation unambiguous and clear, in the sequel we will
represent each proposition V from the given knowledge base by a couple consisting of
two propositional variables ϑ−, ϑ+. In addition, some other variables are introduced to
represent formally needed steps of the composition process.

So, a knowledge base given as a set of weighted rules and input propositions (noted by
Latin letters) with weights from the interval [−1,+1] is in our approach represented as
a fuzzy theory (noted by Greek letters) that can be described in the following recurrent
way:

1. Let I be an input proposition (i. e. each proposition which is not a conclusion of
any rule of the given knowledge base) and a be its given weight from the interval
[−1, 1]. For our representation, we introduce two propositional variables ι+, ι−.

If a > 0 then we represent it by two special axioms: [ι+; a], [ι−; 0]

If a < 0 then we represent it by two special axioms: [ι+; 0], [ι−; − a]

Each occurrence of the proposition I in every assumption of consequent rules is
now changed for our representation to the formula:

(ι+&¬ι−).

Analogically, each occurrence of negation of I is represented by the formula:

(ι−&¬ι+).

Let us note that only one of the formulas (ι+&¬ι−), (ι−&¬ι+) can have a positive
(non-zero) degree (if a > 0 then it is the first one, if a < 0 then it is the second
one). So in this step formulas (ι+&¬ι−), (ι−&¬ι+) are only expressing a positive,
or a negative weight of the input proposition I, respectively. For propositions
which are conclusions of rules, these formulas describe a superiority of positive
contributions above negative ones, or a superiority of negative contributions above
positive ones, respectively (as it will be given in the next step).

2. Now, let us have the non-empty list of all rules from the knowledge base with the
same conclusion C and assume recurrently that each proposition V occurring in
any assumption of these rules was already processed by the previous representa-
tion steps. Each rule will be represented by a special axiom of a fuzzy theory
in  Lukasiewicz’s fuzzy logic with evaluated syntax. We separate positive, and
negative rules.

Let following k rules be those with the positive weights:

R+
1 =⇒ C (r+1 )

· · ·
R+

k =⇒ C (r+k ).
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For our representation, we introduce propositional variables γ+
1 , . . . , γ

+
k , and γ+.

We are representing the above rules by the following special axioms of the corre-
sponding fuzzy theory:

[ρ+
1 ⇒γ+

1 ; r+1 ]
· · ·

[ρ+
k ⇒γ+

k ; r+k ]

where formulas ρ+
i are obtained from R+

i by the previous representation steps, i. e.
each occurrence of the proposition V in R+

i is represented by the formula

(ϑ+&¬ϑ−),

each occurrence of negation of V is represented by the formula

(ϑ−&¬ϑ+),

respectively, and the conjunction among components of R+
i is treated as usual

fuzzy conjunction ∧.

To formally express the needed composition of the rules’ positive contributions,
we use  Lukasiewicz’s disjunction and add the special axiom

[(γ+
1 g . . .g γ+

k )⇒γ+; 1]

(or eventually [γ+; 0] if k = 0).

Similarly for l rules with the negative weights:

R−
1 =⇒ C (r−1 )

· · ·
R−

l =⇒ C (r−l )

we introduce propositional variables γ−1 , . . . , γ
−
k , γ− and state the following special

axioms of the corresponding fuzzy theory:

[ρ−1 ⇒γ−1 ; − r−1 ]
· · ·

[ρ−l ⇒γ−l ; − r−l ]

where formulas ρ−j are obtained from R−
j analogously as above for the case of

positive rules, and (− r−j ) are now numbers in [0, 1].

To formally express the needed composition of the rules’ negative contributions,
we use  Lukasiewicz’s disjunction and add the special axiom

([γ−1 g . . .g γ−l )⇒γ−; 1]

(or eventually [γ−; 0] if l = 0).
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3. Each occurrence of the proposition C in some consequent rule assumption will be
transformed for our representation to the formula:

(γ+&¬γ−)

which describes the superiority of the positive contributions to C above the nega-
tive ones.

Analogically, each occurrence of negation of C is represented by the formula:

(γ−&¬γ+)

which describes the superiority of the negative contributions to C above the posi-
tive ones.

Clearly, only one of these formulas can have a positive (non-zero) degree.

4. Finally, each goal diagnosis D (which is the conclusion of some rules but is not
included in any assumption) is in this way represented by the introduced proposi-
tional variables δ+ and δ−, and formulas

(δ+&¬δ−), (δ−&¬δ+).

A positive (non-zero) degree of the first formula will mean a recommendation of
the goal diagnosis D, a positive (non-zero) degree of the second formula will mean
the goal diagnosis D is not recommended.

Now, the whole knowledge (inputs and rules) is represented as a fuzzy set of axioms,
so the knowledge processing can be understood as formal proving in the fuzzy theory
(using  Lukasiewicz’s fuzzy logic with evaluated syntax Ev L). It can be used to calculate
the provability degrees of formulas corresponding to the goals of the knowledge base.

Evidently, the fuzzy theory composed by the above procedure from a rule base without
cycles is not contradictory due to separate representation of positive and negative contri-
butions of rules with the same conclusion by different propositional variables. Moreover,
each propositional variable π is either introduced by the special axiom [π; p] or it is a
conclusion of the unique special axiom [α⇒π; w].

The forward chaining inference procedure will start with the input propositional
variables introduced in the above representation step 1 and will arrange proofs of all
intermediate formulas (and finally also of formulas corresponding to the goals of the
knowledge base) according to the above described representation steps in such a way
that each propositional variable π will be derived by the deduction rule of modus ponens
applied to the special axiom [α⇒π; w] immediately after the premise α has been derived.

The degrees of propositional variables obtained by these proofs create the truth valu-
ation val of propositional variables. First, there are assigned the truth values val(π) = p
to all propositional variables π which are introduced by the special axioms of the form
[π; p]. Further, iteratively according to the representation steps described above in the
point 2, the truth value y is assigned to the propositional variable π when the deduc-
tion rule of modus ponens is applied in the corresponding forward chaining proof to the
special axiom [α⇒π; w] and its premise [α; a] with the conclusion [π; y].
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This valuation guarantees all axioms of our theory hold true in the requested degrees
(val is a model of the theory). To verify it, let us consider a special axiom of the form
[α⇒π; w]. Assume recurrently that its premise α was proved with value a which is also
the truth value of α in the created truth valuation val. Then π is immediately proved by
the application of the deduction rule of modus ponens in  Lukasiewicz’s fuzzy logic with
evaluated syntax Ev L with the value y = max(0, a+ w − 1). Let us assign val(π) = y.
The truth function of  Lukasiewicz’s implication gives in the truth valuation val for the
formula α⇒π the truth value

min(1, 1− a+ y) = min(1, 1− a+ max(0, a+ w − 1)) =
{
w for w > 1− a
1− a for w ≤ 1− a

which means that the special axiom [α⇒π; w] has in the created truth valuation val
the truth value which is at least its degree w stated in the theory.

So, the created truth valuation val is the model of our theory. It also means the
proofs with maximum values are identified for all necessary formulas by the forward
chaining inference procedure. Due to the completeness of  Lukasiewicz’s fuzzy logic with
evaluated syntax Ev L, we have for our special theory the provability degrees which are
the degrees to which formulas follow from the theory semantically as well.

4. ILLUSTRATING EXAMPLE

We shall illustrate the described method of formal representation of rule bases in  Lukasiewicz’s
fuzzy logic with evaluated syntax Ev L on a simple example.

Let us assume a rule base:

A =⇒ F (0.4)
B =⇒ F (0.8)
F =⇒ G (0.7)

¬C ∧D =⇒ G (−0.5)
¬E =⇒ G (−0.7)

and the following assignment of weights to input propositions:

A (1)
B (0.4)
C (−0.6)
D (0.8)
E (−1).

Let us represent these inputs in the form of a fuzzy axiomatic theory:
Input propositions are represented by special fuzzy axioms (evaluated formulas) applying
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the operations of Section 3, point 1:

[α+; 1], [α−; 0]
[β+; 0.4], [β−; 0]
[γ+; 0], [γ−; 0.6]
[δ+; 0.8], [δ−; 0]
[ε+; 0], [ε−; 1].

The rules

A =⇒ F (0.4)
B =⇒ F (0.8)

and their composition are represented by special fuzzy axioms (evaluated formulas)
applying the operations of Section 3, points 1, 2:

[(α+&¬α−)⇒ϕ+
1 ; 0.4]

[(β+&¬β−)⇒ϕ+
2 ; 0.8]

[(ϕ+
1 g ϕ+

2 )⇒ϕ+; 1]
[ϕ−; 0].

The rule

F =⇒ G (0.7)

is represented by a special fuzzy axiom (evaluated formula) applying the operations of
Section 3, points 2, 3:

[(ϕ+&¬ϕ−)⇒ψ+
1 ; 0.7].

The rules

¬C ∧D =⇒ G (−0.5)
¬E =⇒ G (−0.7)

and their composition are represented by special fuzzy axioms (evaluated formulas)
applying the operations of Section 3, points 1, 2:

[(γ−&¬γ+) ∧ (δ+&¬δ−)⇒ψ−1 ; 0.5]
[(ε−&¬ε+)⇒ψ−2 ; 0.7]
[ψ+

1 ⇒ψ+; 1]
[(ψ−1 g ψ−2 )⇒ψ−; 1].

Finally, the goal diagnosis G is represented applying the operations of Section 3, point
4 by the formulas

(ψ+&¬ψ−), (ψ−&¬ψ+).
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The provability degrees of the proposition variables obtained by sequential applica-
tions of the deduction rule of modus ponens in  Lukasiewicz’s fuzzy logic with evaluated
syntax Ev L to special fuzzy axioms of our theory (and logical axioms for used connec-
tives) look as follows:

[ϕ+
1 ; 0.4], [ϕ+

2 ; 0.2], [ϕ+; 0.6],
[ψ+

1 ; 0.3], [ψ+; 0.3],
[ψ−1 ; 0.1], [ψ−2 ; 0.7], [ψ−; 0.8].

Finally, the formulas representing the goal G are proved with the degrees:

[(ψ+&¬ψ−); 0]
[(ψ−&¬ψ+); 0.5].

So, the resulting weight of the goal G is −0.5.

5. COMBINATION FUNCTIONS BASED ON  LUKASIEWICZ’S FUZZY LOGIC
WITH EVALUATED SYNTAX

It is clear that the calculations of provability degrees in the fuzzy theory representing
a rule base can be realized also with original rules and weights in the interval [−1,+1]
which is frequently used in rule-based systems. The corresponding combination functions
on [−1,+1] deduced from  Lukasiewicz’s fuzzy logic with evaluated syntax Ev L can be
written as follows:

NEG(a) = −a
calculates the weight of a proposition’s negation given its weight a;

CONJ(a1, a2) = min(a1, a2)

calculates the weight of propositions’ conjunction given their weights a1, a2;

CTR(a, b) =
{
sgn(b) · (max(0, a+ |b| − 1) for a > 0
0 for a ≤ 0

calculates the weight, with which the rule A1 ∧ . . . ∧ Ak =⇒ B with the weight b
contributes to its conclusion when its assumption has the weight a. It corresponds to
the deduction rule of modus ponens of  Lukasiewicz’s fuzzy logic with evaluated syntax
Ev L adopted for the case of weights taken from [−1,+1].

Finally, the function GLOB realizes the composition of contributions c1, . . . , cn of
rules with the same conclusion C:

GLOB(c1, . . . , cn) = min

(
1,
∑
ci>0

ci

)
+ max

(
−1,

∑
ci<0

ci

)
.

This function is based on  Lukasiewicz’s disjunction modified for the case of weights taken
from [−1,+1]. The positive and negative weights are treated here separately. Let us
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note that this composition function is commutative and associative inside the subgroup
of positive arguments, and inside the subgroup of negative arguments, respectively. As
a conclusion, the value GLOB(c1, . . . , cn) does not depend on the ordering of arguments
c1, . . . , cn.

The inference mechanism based on  Lukasiewicz’s fuzzy logic with evaluated syntax
Ev L has some advantages, namely connected to the simplicity of combining uncertainties
using only operations of limited addition and subtraction of weights. This leads to the
effect that the resulting weights are in the same scale as the weights in the knowledge base
and the inputs during its processing in applications. All computations with weights are
clearly understandable for experts. Experiments with the knowledge bases processed by
standard (Prospector and MYCIN) inference mechanisms and our inference mechanism
confirmed the comparability of results [6, 8]. Nevertheless, one more advantage arises
from the possibility of introducing the special types of rules we are going to describe in
the next section.

6. CORRECTING AND TURNING RULES

Let us apply our general approach of hierarchical selections and corrections of expert’s
weighted rules outlined in the introductory section for the case when dealing with weights
based on  Lukasiewicz’s fuzzy logic with evaluated syntax Ev L is used.

A problem is arising when the difference between the required weight r and the
composed weight q is greater than 1. Although this situation is rather exceptional in
the case of knowledge base formulation by an expert, the correction process should be
arranged to also cope with it. We propose for that purpose the idea of turning rules and
the corresponding modification of the inference mechanism.

First of all, let us describe the idea of turning rules on the simplest case mentioned
in Section 1: Let us consider a rule of the form

A ∧B =⇒ C (r)

with the required weight r. Let q be the weight composed by the function GLOB from
weights r1, r2 of sub-rules

A =⇒ C (r1), B =⇒ C (r2).

If q differs from the expert’s assumption r and |r − q| ≤ 1 then the rule in question is
inserted to the knowledge base with the corrected weight c = r − q. As the result, the
sequential composition of the weights r1, r2, c gives the assumed weight r.

On the other hand, if |r − q| > 1 then it is not possible to reach the assumed weight
r by any correcting weight c from [−1,+1]. To solve this problem, the rule in question
is inserted to the knowledge base two times: first as a turning rule with the weight
t = sgn(r − q), and second as a correcting rule with the weight c = r − q − sgn(r − q).
As the result, the sequential composition of the weights r1, r2, t, c gives the required
weight r.

Let us note that our method of rule base representation in  Lukasiewicz’s fuzzy logic
with evaluated syntax (described in Section 3) could be extended for this new case of
knowledge bases with two types of rules.
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Example. To illustrate this, let the weights in the above simplest case be r1 = 0.6, r2 =
0.3, so q = 0.9, but the required weight r = −0.5. Then the turning rule with the weight
t = sgn(r−q) = −1 and the correcting rule with the weight c = r−q−sgn(r−q) = −0.4
will be included to the knowledge base. Our representation of this knowledge base will
be:

[(α+&¬α−)⇒γ+
1 ; 0.6]

[(β+&¬β−)⇒γ+
2 ; 0.3]

[(γ+
1 g γ+

2 )⇒γ+
q ; 1]

[γ−q ; 0]

[(α+&¬α−) ∧ (β+&¬β−)⇒γ−t ; 1]
[γ+

t ; 0]
[((γ+

q &¬γ−q ) g (γ+
t &¬γ−t ))⇒γ+

s ; 1]

[((γ−q &¬γ+
q ) g (γ−t &¬γ+

t ))⇒γ−s ; 1]

[(α+&¬α−) ∧ (β+&¬β−)⇒γ−c ; 0.4]
[γ+

c ; 0]
[((γ+

s &¬γ−s ) g (γ+
c &¬γ−c ))⇒γ+; 1]

[((γ−s &¬γ+
s ) g (γ−c &¬γ+

c ))⇒γ−; 1]

where the propositional variables γ+
q , γ

−
q , γ

+
t , γ

−
t , γ

+
s , γ

−
s , γ

+
c , γ

−
c and the corresponding

axioms are newly introduced in such a way that the sequential composition of the weights
r1, r2, t, c is ensured. Suppose input propositions A,B are true so they are represented
by formulas

[α+; 1], [α−; 0], [β+; 1], [β−; 0].

Provability degrees obtained by sequential applications of the deduction rule of modus
ponens in  Lukasiewicz’s fuzzy logic with evaluated syntax Ev L to the above fuzzy axioms
(and logical axioms for the connectives used) look as follows:

[γ+
q ; 0.9], [γ−q ; 0]

[γ+
t ; 0], [γ−t ; 1]

[γ+
s ; 0.9], [γ−s ; 1]

[γ+
c ; 0], [γ−c ; 0.4]

[γ+; 0], [γ−; 0.5].

Then the formulas representing the conclusion C are proved with the degrees:

[(γ+&¬γ−); 0]
[(γ−&¬γ+); 0.5].

So, the resulting weight of the proposition C is −0.5 as it was requested.
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In general, the extension of our method of rule base representation in  Lukasiewicz’s
fuzzy logic with evaluated syntax (described in Section 3) for the case of knowledge bases
with two types of rules (turning and correcting ones) is rather formally complicated. The
paper is primarily determined to the reader interested in construction of knowledge bases
and their applications to real-world problems. Therefore the rest of the paper neglects
the formal apparatus and concentrates on the practical instructions for hierarchical
knowledge base construction.

The function GLOB which realizes the composition of contributions c1, . . . , cn of
rules with the same conclusion C should be adopted for working with both correcting
(CR) and turning (TR) rules. The modified function GLOB∗ is defined in such a way
that GLOB is applied sequentially according to lengths of rules.

Let TRi, CRi be the sets of all turning rules, and correcting rules, respectively, with
the conclusion C and the length i. Let us define partial compositions:

• ti as the result of GLOB on the weights of rules from TRi (in fact, ti ∈ {−1, 0, 1}
reflects the result of voting of positive turning rules against negative ones), and

• wi as the result of GLOB on the weights of rules from CRi.

Let us mention that ti, wi do not depend on the ordering of rules in TRi, and CRi,
respectively, because ofGLOB(c1, . . . , cn) does not depend on the ordering of arguments.

Then we apply the operation

g(a, b) =

 min(1, a+ b) for a, b > 0
max(−1, a+ b) for a, b < 0
a+ b for a · b < 0

for the sequence of values t1, w1, t2, w2, . . . (from the left) to obtain the resulting value
w∗ of the modified composition function GLOB∗ applied on weights of correcting and
turning rules with the conclusion C .

7. HIERARCHICAL SELECTION AND CORRECTION OF WEIGHTED RULES

The composition function GLOB∗ (which is now defined for working with both correct-
ing and turning rules) allows us to realize our hierarchical selection and correction of
weighted rules.

Keep in mind that the hierarchical process of a knowledge base construction proceed
from shorter rules to longer ones. Therefore, when considering a rule

A1 ∧ . . . ∧Ak =⇒ C (r),

all shorter rules have already been considered (and in the case of necessity included into
the knowledge base as the correcting rules or even turning ones).

Let q∗ be the weight composed by the function GLOB∗ from the weights of all sub-
rules of the considered rule which have already been included in the rule base:

q∗ = GLOB∗(t1, w1, . . . , tk−1, wk−1)

where ti is the partial composition of the weights of the turning sub-rules of the length i,
and wi is the partial composition of the weights of the correcting sub-rules of the length
i, respectively.
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1. If q∗ is equal to the expert’s assumption r, then the rule in question is redundant
and will not be inserted to the rule base under construction.

2. If q∗ differs from the expert’s assumption r and |r − q∗| ≤ 1 then the rule in
question is inserted to the rule base with the corrected weight c = r − q∗. As the
result, the composition of all the weights of sub-rules and the corrected weight c
by function GLOB∗ gives the required weight r because

GLOB∗(t1, w1, . . . , tk−1, wk−1, tk, wk) = GLOB∗(t1, w1, . . . , tk−1, wk−1, 0, c)

= g(q∗, r − q∗) = r.

3. On the other hand, if |r − q∗| > 1 then the rule in question is inserted to the
knowledge base two times: first as a turning rule with the weight t = sgn(r− q∗),
and second as a correcting rule with the weight c = r − q∗ − sgn(r − q∗). As the
result, the composition of all the weights of sub-rules and the weights t, c gives the
required weight r.

To show this, let us discuss two possible cases:

• Let r > 0 > q∗. Then t = sgn(r − q∗) = 1 and

GLOB∗(t1, w1, . . . , tk−1, wk−1, tk, wk) = GLOB∗(t1, w1, . . . , tk−1, wk−1, t, c)

= g(g(q∗, 1), r − q∗ − 1) = g(q∗ + 1, r − q∗ − 1) = r

because q∗ + 1 > 0, r − q∗ − 1 > 0.

• Let r < 0 < q∗. Then t = sgn(r − q∗) = −1 and

GLOB∗(t1, w1, . . . , tk−1, wk−1, tk, wk) = GLOB∗(t1, w1, . . . , tk−1, wk−1, t, c)

= g(g(q∗,−1), r − q∗ + 1) = g(q∗ − 1, r − q∗ + 1) = r

because q∗ − 1 < 0, r − q∗ + 1 < 0.

As the result, the rule base will be in our case composed by two sets of rules:

• TR is the set of turning rules with weights from {−1, 1},

• CR is the set of correcting rules with weights from [−1,+1].

Let us mention once more that a particular turning rule reflects an exceptional sit-
uation when the direction of the rule proposed by the expert is totally opposite to the
direction deduced from its already stated sub-rules.
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8. CONCLUSION

We proposed an application of the correction principle during hierarchical constructions
of the rule base in the frame of the inference mechanism based on  Lukasiewicz’s fuzzy
logic with evaluated syntax Ev L. More complex rules are added into the rule set only
when the requested weight of the rule in question differs from the composed weight
(value obtained when composing weights of all sub-rules which have been inserted into
the rule base already). At this moment, a weight correcting the composed weight to the
requested one is calculated. We proposed addition of turning rules to the rule base in
situations when the composed and the required weight are strongly opposite. This leads
to some modifications of the composition function.

The described approach to a hierarchical selection and correction of weighted rules
can be used in the frame of some other approaches for dealing with uncertainties of rules.
As an example we can remind our method for automatic knowledge base construction
from categorical data (see [1, 2, 7]). Possible applications of  Lukasiewicz’s fuzzy logic
with evaluated syntax Ev L in this case are a topic of an ongoing research.
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