
Kybernetika

Ondřej Pavlačka; Martina Pavlačková; Vladislav Hetfleiš
Fuzzy weighted average as a fuzzified aggregation operator and its properties

Kybernetika, Vol. 53 (2017), No. 1, 137–160

Persistent URL: http://dml.cz/dmlcz/146713

Terms of use:
© Institute of Information Theory and Automation AS CR, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/146713
http://dml.cz


K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 1 , P A G E S 1 3 7 – 1 6 0

FUZZY WEIGHTED AVERAGE AS A FUZZIFIED
AGGREGATION OPERATOR AND ITS PROPERTIES

Ondřej Pavlačka, Martina Pavlačková and Vladislav Hetfleǐs

The weighted average is a well-known aggregation operator that is widely applied in various
mathematical models. It possesses some important properties defined for aggregation opera-
tors, like monotonicity, continuity, idempotency, etc., that play an important role in practical
applications. In the paper, we reveal whether and in which way such properties can be ob-
served also for the fuzzy weighted average operator where the weights as well as the weighted
values are expressed by noninteractive fuzzy numbers. The usefulness of the obtained results
is discussed and illustrated by several numerical examples.
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1. INTRODUCTION

The weighted average of real numbers x1, . . . , xn with associated weights w1, . . . , wn is
defined as

aw(x1, . . . , xn;w1, . . . , wn) =
∑n
i=1 wixi∑n
i=1 wi

. (1)

Generally, the weights w1, w2, . . . , wn are nonnegative real numbers whose sum is dif-
ferent from zero. The weighted average is a well-known aggregation operator that is
widely applied in various mathematical models. Particularly, as an example let us men-
tion multi-criteria decision making (MCDM) models, where the overall evaluations of
alternatives are often calculated as weighted averages of evaluations with respect to the
particular criteria.

In practical applications, the input parameters in the weighted average, i. e. weights
and weighted values, can be uncertain. For instance, in MCDM models the weights of
criteria are often set subjectively on the basis of experts’ experiences or opinions (see
[22]). Information about the weighted values can be incomplete, missing, or also vague,
e. g. in the case of the expert evaluation of alternatives with respect to a qualitative
criterion. Such kinds of uncertainty can be sufficiently modelled by means of tools of
fuzzy sets theory (see e. g. [18]).
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The most common way for an expert how to express uncertain weights and uncertain
weighted values is to describe their values separately by fuzzy numbers (more general
concept where the uncertain inputs are modelled by fuzzy vectors was considered in
[24]). Extension of the weighted average operation to the case where the weighted
values and/or the weights are modelled by fuzzy numbers has been studied since the
second half of 70’s (see [1]). Since then, the fuzzy weighted average has become an
important topic in both fuzzy sets theory and applications. It has been applied e. g.
in risk evaluation [27, 29], in decision making [9, 13, 14, 19, 31, 32], or in information
processing [33].

From the theoretical point of view, the research was focused mainly on the problems
connected with computation of the fuzzy weighted average of fuzzy numbers. The case
where only the weighted values x1, . . . , xn are expressed by fuzzy numbers while the
weights remain real numbers was studied e. g. in [28]. Such fuzzy extension of aw is easy
to compute since aw is monotone in arguments x1, . . . , xn and no external interactivity
constraint is involved. Unlike this case, the fact that also the weights are considered to
be fuzzy makes the calculation substantially more complex. The increase of complexity
is caused by the fact that aw is not monotone in arguments w1, . . . , wn.

As was pointed out in [6, 25], in fuzzy environment it is necessary to distinguish
whether the fuzzy weights model the uncertain values of nonnormalized weights, i. e.
there is no interaction among the weights, or the uncertain values of normalized weights,
i. e. the sum of the weights is assumed to be equal to one. For a better comprehensibility
of the text, only the first situation where the fuzzy weights are noninteractive fuzzy
numbers will be considered further in the paper. The calculation of the fuzzy extension of
aw in such a case was studied e. g. in [1, 5, 11, 12, 14, 15, 20, 21]. In the second situation,
the assumption that the sum of w1, . . . , wn is equal to one implies that uncertain values
of normalized weights have to be modelled only by a special structure of interactive
fuzzy numbers called a tuple of normalized fuzzy weights (see e. g. [22, 24, 30]). The
calculation of the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights
was studied e. g. in [4, 7, 24].

The weighted average belongs to the class of aggregation operators. The aggregation
operators are mathematical objects that have the function of reducing a set of inputs
into a unique representative, i. e. an output of the aggregation. An overview of definition
and possible properties of aggregation operators can be found, for instance, in [2, 3, 10].

The weighted average operator possesses some important properties defined for aggre-
gation operators, like monotonicity, continuity, idempotency, etc. These properties play
an important role in practical applications. The aim of the paper is to study whether
and in which way such properties can be observed also for the fuzzy weighted average
operator. The obtained results can be very helpful in order to properly employ the fuzzy
weighted average operator in fuzzy models. To the best of our knowledge, this is one
of the first attempts to generalize the properties of aggregation operators to the case of
inputs modelled by fuzzy numbers.

The paper is organized as follows. In Section 2, aggregation operators and some of
their possible properties are briefly summarized. Besides that, the weighted average
operator is defined and its properties are examined. In Section 3, the fuzzy weighted
average operator is introduced as a sequence of fuzzy weighted averages of fuzzy numbers.
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Afterwards, the properties of the fuzzy weighted average operator are studied.

2. WEIGHTED AVERAGE AS AN AGGREGATION OPERATOR

In this section, the definitions of an aggregation operator and some of its possible prop-
erties will be recalled. Afterwards, the weighted average will be introduced as an aggre-
gation operator and its properties will be examined.

An aggregation operator is defined as a sequence of aggregation functions. In the
literature, usually a collection of real numbers from the unit interval [0, 1] is considered
as the input of the aggregation, i. e. the aggregation operators are standardly defined
on [0, 1] (see e. g. [3]). The inputs of the weighted average operation, i. e. the weighted
values x1, . . . , xn, are generally defined on R. In particular applications, they might be
restricted to a certain interval. Thus, an aggregation operator on an arbitrary nonempty
interval I ⊆ (−∞,∞) will be considered in the paper. Such a more general concept was
studied e. g. in [26].

Remark 2.1. Throughout the paper, we assume that I is a nonempty real interval and
we set x− := inf I and x+ := sup I. Note that x− and x+ might belong to I or not,
possibly with x− = −∞ or x+ = +∞.

Definition 2.2. An aggregation operator A on an interval I is the sequence {An}∞n=1

of aggregation functions
An : In → I

that satisfy the following conditions:

1) A1(x) = x for each x ∈ I.

2) If xi ≤ yi, for all i = 1, . . . , n, where n = 2, 3, . . . , then

An(x1, . . . , xn) ≤ An(y1, . . . , yn).

3) For each n ∈ N:
lim

(x1,...,xn)→(x−,...,x−)
An(x1, . . . , xn) = x−

lim
(x1,...,xn)→(x+,...,x+)

An(x1, . . . , xn) = x+.

Further, the following properties of aggregation operators will be considered.

Definition 2.3. We say that an aggregation operator A = {An}∞n=1 on I is

• compensative, if for each n ∈ N the following inequalities hold for any n-tuple
(x1, . . . , xn) ∈ In:

min{x1, . . . , xn} ≤ An(x1, . . . , xn) ≤ max{x1, . . . , xn};

• idempotent, if for all x ∈ I and all n ∈ N:

An(x, . . . , x) = x;
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• symmetric (commutative), if for all n ∈ N, each vector (x1, . . . , xn) ∈ In, and any
permutation σ of {1, . . . , n}:

An(xσ(1), . . . , xσ(n)) = An(x1, . . . , xn);

• strictly monotonic, if for all n ∈ N, An is strictly monotonic, i. e. if for all
(x1, . . . , xn), (y1, . . . , yn) ∈ In such that xi < yi for one i ∈ {1, . . . , n} and xj = yj
for any j 6= i:

An(x1, . . . , xn) < An(y1, . . . , yn);

• stable for a linear transformation, if for each n ∈ N, all r, t ∈ R, and all (x1, . . . , xn) ∈
In:

An(rx1 + t, . . . , rxn + t) = rAn(x1, . . . , xn) + t;

• Lipschitz with constant L (L-Lipschitz), where L ∈ (0,∞), if for all n ∈ N and all
(x1, . . . , xn), (y1, . . . , yn) ∈ In:

|An(x1, . . . , xn)−An(y1, . . . , yn)| ≤ L
n∑
i=1

|xi − yi|;

• continuous, if for all n ∈ N, the aggregation function An is continuous.

Remark 2.4. Continuity of an aggregation operator A = {An}∞n=1 on I means that for
all ε > 0 and all (x0

1, . . . , x
0
n) ∈ In there exists δ > 0 such that if

(x1, . . . , xn) ∈ In,
n∑
i=1

|xi − x0
i | < δ,

then
|An(x1, . . . , xn)−An(x0

1, . . . , x
0
n)| < ε.

Hence, it is clear that each aggregation operator Lipschitz with an arbitrary L ∈ (0,∞)
is also continuous (but not vice-versa).

Now, let us define the weighted average as an aggregation operator and examine its
properties.

Remark 2.5. Throughout the paper, let Wn denote the set of all n-tuples of weights,
i. e.

Wn :=

{
(w1, . . . , wn) ∈ Rn | wi ≥ 0, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}
.

Definition 2.6. Let W = {wn}∞n=1, be a sequence of weight vectors where

wn := (wn1, . . . , wnn) ∈ Wn, n = 1, 2, . . . .

The aggregation operatorAW = {AWn }∞n=1 defined for each n ∈ N and each (x1, . . . , xn) ∈
Rn by the formula

AWn (x1, . . . , xn) =
∑n
i=1 wnixi∑n
i=1 wni

is called a weighted average operator associated with W .
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It is obvious that for any sequence of weight vectors W = {wn}∞n=1, the weighted
average AW associated with W is compensative, idempotent, stable for a linear trans-
formation, 1-Lipschitz, and continuous. If for any n ∈ N, wni > 0, i = 1, . . . , n, then
AW is strictly monotonic. AW is symmetric, if and only if for any n ∈ N, wni = wnj for
all i, j ∈ {1, . . . , n}. In such a case, AW coincides with the arithmetic mean operator,
i. e. for any n ∈ N, AWn (x1, . . . , xn) = 1

n

∑n
i=1 xi.

3. FUZZY WEIGHTED AVERAGE OPERATOR AND ITS PROPERTIES

First in this section, the fuzzy weighted average operator will be defined as a sequence
of fuzzy weighted averages of fuzzy numbers. Afterwards, whether and in which way
the above mentioned properties of the weighted average operator are preserved in case
of the fuzzy weighted average operator will be examined.

As it was mentioned in Introduction, the most common way for an expert how to
express uncertain weights and uncertain weighted values is to describe their values sep-
arately by fuzzy numbers.

Definition 3.1. A fuzzy number is a fuzzy set X on R whose membership function
µX : R→ [0, 1] fulfils the following three conditions:

1. the set Core X := {x ∈ R | µX(x) = 1}, called the core of X, is nonempty,

2. for any α ∈ (0, 1], the set Xα := {x ∈ R | µX(x) ≥ α}, called the α-cut of X, is a
closed interval (the 1-cut X1 means the core of X),

3. the set Supp X := {x ∈ R | µX(x) > 0}, called the support of X, is bounded.

Remark 3.2. The set of all fuzzy numbers will be denoted by FN (R) throughout the
paper.

Remark 3.3. Any fuzzy number X can be uniquely given by the pair of functions x
and x defined on [0, 1] such that [x(α), x(α)] = Xα for all α ∈ (0, 1] and [x(0), x(0)]
means the closure of the support of X, further denoted by X0. For such a description
of a fuzzy number, the notation X = (x, x) will be used throughout the paper. It was
shown in [23] that x, x are left-continuous on (0, 1], right-continuous at 0, and

x(α) ≤ x(β) ≤ x(β) ≤ x(α) for all 0 ≤ α < β ≤ 1. (2)

Remark 3.4. A real number x ∈ R can be viewed as a fuzzy number X = (x, x), where
x(α) = x(α) = x for all α ∈ [0, 1]. This enables us to understand the weighted average
operator introduced in previous section as a particular case of the fuzzy weighted average
operator defined below. Moreover, by this convention we can handle the cases where
some input variables (weights or weighted values) are crisp and some are fuzzy.
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Remark 3.5. In the crisp case, the weights w1, w2, . . . , wn are generally supposed to be
non-negative real numbers whose sum is different from zero. It was shown in [24] that
an n-tuple of fuzzy numbers Wi = (wi, wi), i = 1, 2, . . . , n, modelling uncertain values
of weights has to satisfy the following conditions:

wi(0) ≥ 0 for all i ∈ {1, . . . , n}, (3)
wi(1) > 0 for at least one i ∈ {1, . . . , n}. (4)

An n-tuple of fuzzy numbers (W1, . . . ,Wn) satisfying conditions (3) and (4) will be called
an n-tuple of fuzzy weights hereafter. For a given n ∈ N, the set of all n-tuples of fuzzy
weights will be denoted by WF

n throughout the paper.

At first, let us define the fuzzy weighted average of fuzzy numbers that represents the
fuzzy extension of the weighted average operation aw given by (1). It is a well-known
fact that the fuzzy weighted average of fuzzy numbers cannot be computed simply by
employing the standard fuzzy arithmetic operations because in formula (1), the same
variables (the weights) appear both in the numerator and in the denominator. Therefore,
the concept of constrained fuzzy arithmetic (see e. g. [17]) has to be applied.

Definition 3.6. Let (W1, . . . ,Wn) ∈ WF
n , and let Xi = (xi, xi), i = 1, . . . , n, be fuzzy

numbers. The fuzzy weighted average of X1, . . . , Xn with associated fuzzy weights
W1, . . . ,Wn is the fuzzy number

aFw(X1, . . . , Xn;W1, . . . ,Wn) = (aw, aw)

such that for all α ∈ [0, 1]:

aw(α) = min

{∑n
i=1 wixi(α)∑n

i=1 wi
| wi ∈Wiα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}
, (5)

aw(α) = max

{∑n
i=1 wixi(α)∑n

i=1 wi
| wi ∈Wiα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}
. (6)

Remark 3.7. In constrained optimization problems (5) and (6), the condition that∑n
i=1 wi 6= 0 is relevant only in a case where, for a given α ∈ [0, 1], 0 ∈ Wiα for all

i ∈ {1, . . . , n}. How can be such a case handled was analyzed in [24, Remark 19].

The usual approach for computing the fuzzy weighted average is the α-cut decom-
position method proposed firstly in [5]. The input fuzzy numbers are discretized into
a set of α-cuts and the boundary values of α-cuts of the fuzzy weighted average are
computed applying (5) and (6). Thus, the final fuzzy weighted average is observed only
approximately by connecting these α-cuts together. Various methods for solving con-
strained optimization problems (5) and (6) have been proposed in the literature, see e. g.
[12, 14, 15, 20]; a detailed survey can be found in [21].

Now, let us define the fuzzy weighted average operator as a sequence of mappings
similarly like in the case of the weighted average operator.
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Definition 3.8. Let WF = {WF
n }∞n=1, where

WF
n := (Wn1, . . . ,Wnn) ∈ WF

n , n = 1, 2, . . . ,

be a sequence of tuples of fuzzy weights. The fuzzy weighted average operator associated
with WF is the sequence AWF = {AWF

n }∞n=1, where for each n ∈ N, AWF
n : FN (R)n →

FN (R) is for any n-tuple of fuzzy numbers X1, . . . , Xn given by

AWF
n (X1, . . . , Xn) = aFw(X1, . . . , Xn;Wn1, . . . ,Wnn).

In the following, the way in which the three conditions from definition of an aggrega-
tion operator, namely identity, monotonicity, and the boundary condition, are reached
by the fuzzy weighted average operator will be examined first.

3.1. Identity, monotonicity, and the boundary condition

Let W = {wn}∞n=1 be an arbitrary sequence of vectors of weights and AW = {AWn }∞n=1

be the weighted average operator associated with W .
According to the first condition in Definition 2.2, the first aggregation function AW1

is an identity function, i. e.

AW1 (x) = x for all x ∈ R.

The following theorem shows that the fuzzy weighted average operator possesses this
property as well.

Theorem 3.9. Let WF = {WF
n }∞n=1 be an arbitrary sequence of tuples of fuzzy weights

and AWF = {AWF
n }∞n=1 be the fuzzy weighted average operator associated with WF .

Then
AWF

1 (X) = X for all X ∈ FN (R).

P r o o f . Let X = (x, x) ∈ FN (R), and let us denote AWF
1 (X) = (aw1, aw1). Then for

all α ∈ [0, 1]:

aw1(α) = min
{
w1x(α)
w1

| w1 ∈W11α, w1 6= 0
}

= x(α),

aw1(α) = max
{
w1x(α)
w1

| w1 ∈W11α, w1 6= 0
}

= x(α),

i. e. AWF
1 (X) = X, which completes the proof. �

The second condition in Definition 2.2 says that the aggregation functions AWn , n =
2, 3, . . ., are non-decreasing, i. e. if xi ≤ yi for i = 1, . . . , n, then

AWn (x1, . . . , xn) ≤ AWn (y1, . . . , yn).

For the purpose of verifying the fulfilment of this condition by the fuzzy weighted
average of fuzzy numbers, it is necessary to define the ordering of fuzzy numbers.
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Definition 3.10. We say that a fuzzy number X = (x, x) is less or equal than a fuzzy
number Y = (y, y), denoted by X ≤ Y , if

x(α) ≤ y(α) and x(α) ≤ y(α) for all α ∈ [0, 1].

If X ≤ Y , but Y 6≤ X, then we say that a fuzzy number X is less than a fuzzy number
Y , denoted by X < Y .

According to the following theorem, the fuzzy weighted average operator fulfils the
generalization of the second condition to a fuzzy sets environment.

Theorem 3.11. Let WF = {WF
n }∞n=1 be an arbitrary sequence of tuples of fuzzy

weights and AWF = {AWF
n }∞n=1 be the fuzzy weighted average operator associated with

WF . For any n ∈ {2, 3, . . .}, let X1, . . . , Xn and Y1, . . . , Yn be fuzzy numbers such that
Xi ≤ Yi for all i ∈ {1, . . . , n}. Then

AWF
n (X1, . . . , Xn) ≤ AWF

n (Y1, . . . , Yn).

P r o o f . Let n ∈ {2, 3, . . .} be arbitrary. Let, for all i ∈ {1, . . . , n}, Xi = (xi, xi) and
Yi = (y

i
, yi) be fuzzy numbers such that xi(α) ≤ y

i
(α) and xi(α) ≤ yi(α) for all α ∈

[0, 1]. Let us denote AWF
n (X1, . . . , Xn) = (aXwn, a

X
wn) and AWF

n (Y1, . . . , Yn) = (aYwn, a
Y
wn).

For any α ∈ [0, 1], let w∗i ∈Wniα, i = 1, . . . , n, be the weights such that

aYwn(α) = min

{∑n
i=1 wiyi(α)∑n

i=1 wi
| wi ∈Wniα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}

=

∑n
i=1 w

∗
i yi(α)∑n

i=1 w
∗
i

.

Let us denote

x∗ =
∑n
i=1 w

∗
i xi(α)∑n

i=1 w
∗
i

.

Since xi(α) ≤ y
i
(α) for all i ∈ {1, . . . , n}, x∗ ≤ aYwn(α). Further,

aXwn(α) = min

{∑n
i=1 wixi(α)∑n

i=1 wi
| wi ∈Wniα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}
≤ x∗.

Hence, aXwn(α) ≤ aYwn(α). The proof that aXwn(α) ≤ aYwn(α) would be analogous. �

Importance of this property consists, for instance, in preserving the Pareto domi-
nance in fuzzy MCDM models where the fuzzy weighted average operation is applied
for computation of the overall evaluations of alternatives. Let us illustrate this by the
following example.

Example 3.12. Let us consider the following fuzzy MCDM model: Alternatives are
evaluated with respect to n criteria; the particular evaluations are expressed by fuzzy
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numbers (for instance, they can represent mathematical meaning of terms from a given
linguistic scale). The vaguely given information about importance of particular criteria
is modelled by an n-tuple of fuzzy weights W1, . . . ,Wn. The overall fuzzy evaluations of
alternatives, based on which the alternatives are compared, are computed as the fuzzy
weighted averages of the fuzzy evaluations with respect to the particular criteria.

Let us assume that we have two alternatives x1 and x2 such that their evaluations
with respect to the particular criteria are given by fuzzy numbers X11, . . . , X1n, and
X21, . . . , X2n, respectively. If x1 is Pareto dominant with respect to x2, i. e. if X1i ≥ X2i

for all i ∈ {1, . . . , n}, then, regardless of the applied n-tuple of fuzzy weights, x1 will not
be preferred by x2 since the following relation holds:

aFw(X11, . . . , X1n;W1, . . . ,Wn) ≥ aFw(X21, . . . , X2n;W1, . . . ,Wn).

Let us focus now on the third condition in Definition 2.2, i. e. on the boundary
condition. In our case, I = R, so for any n ∈ N, we get

lim
(x1,...,xn)→(−∞,...,−∞)

AWn (x1, . . . , xn) = −∞,

lim
(x1,...,xn)→(+∞,...,+∞)

AWn (x1, . . . , xn) = +∞.

In the case of input fuzzy numbers, we have to discuss first how to express the
divergence of a fuzzy number to −∞ or +∞. Let X = (x, x) be a fuzzy number. Then,
considering the relations given in (2), we can say that the fuzzy number X diverges
to −∞ if x(0) → −∞, since this implies that x(α) → −∞ and x(α) → −∞ for any
α ∈ [0, 1]. Analogously, we can say that X diverges to +∞ if x(0) → +∞. Next
theorem shows that under such convention the fuzzy weighted average operator satisfies
the generalization of the boundary condition.

Theorem 3.13. Let WF = {WF
n }∞n=1 be an arbitrary sequence of tuples of fuzzy

weights and AWF = {AWF
n }∞n=1 be the fuzzy weighted average operator associated with

WF . Then the following holds for each n ∈ N: Let Xi = (xi, xi), i = 1, . . . , n, be fuzzy
numbers. Let us denote AWF

n (X1, . . . , Xn) = (awn, awn). Then

lim
(x1(0),...,xn(0))→(−∞,...,−∞)

awn(0) = −∞, (7)

and
lim

(x1(0),...,xn(0))→(+∞,...,+∞)
awn(0) = +∞. (8)

P r o o f . Eqs. (7) and (8) follow directly from the fact that for any n-tuple of weights
(w1, . . . , wn) ∈ Wn it holds that

lim
(x1(0),...,xn(0))→(−∞,...,−∞)

∑n
i=1 wixi(0)∑n

i=1 wi
= −∞,

lim
(x1(0),...,xn(0))→(+∞,...,+∞)

∑n
i=1 wixi(0)∑n

i=1 wi
= +∞.

�
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Remark 3.14. From the practical point of view, it is worth to note that if the in-
put fuzzy numbers Xi = (xi, xi), i = 1, . . . , n, are restricted to an interval I, i. e. if
[x(0), x(0)] ⊆ I for i = 1, . . . , n, then we can in Theorem 3.13 replace −∞ and +∞ by
x− and x+ and the theorem remains valid.

This property can be interpreted in such a way that if we aggregate only the minimal
(maximal) possible inputs, then we obtain the minimal (maximal) possible output by
the fuzzy weighted average operation, regardless of the applied tuple of fuzzy weights.
Significance of this property is illustrated by the following example.

Example 3.15. Let us consider the fuzzy MCDM model described in Example 3.12.
According to Theorem 3.13, if all the fuzzy evaluations with respect to the particular
criteria tend to the worst (best) possible evaluation, then the overall fuzzy evaluation of
an alternative also tend to the worst (best) one, regardless of the applied n-tuple of fuzzy
weights. According to Remark 3.14, in the special case of such fuzzy MCDM model in
which the fuzzy evaluations of alternatives with respect to the particular criteria are
restricted to [0, 1], where 0 means the worst possible and 1 the best possible evaluation,
we get

aFw(0, . . . , 0;W1, . . . ,Wn) = 0 and aFw(1, . . . , 1;W1, . . . ,Wn) = 1.

Hence, the overall fuzzy evaluation of the worst possible and of the best possible alter-
native are equal to 0, and to 1, respectively, regardless of the applied n-tuple of fuzzy
weights.

Thus, we have shown that for any sequence of tuples of fuzzy weights the correspond-
ing fuzzy weighted average operator satisfies generalized conditions from the definition
of an aggregation operator. This fact especially means that if we aggregate in the model
only fuzzy numbers restricted to some interval I (e. g. [0, 1]), then the resulting fuzzy
weighted average is also a fuzzy number restricted to I.

In next sections, the way how can be the other properties of the weighted average
operator observed for the fuzzy weighted average operator will be examined.

3.2. Compensation

The weighted average operator AW associated with any sequence of weight vectors W
is a compensative aggregation operator. This property means that for any n ∈ N, the
result of the aggregation of any n-tuple of real numbers x1, . . . , xn satisfies

min {x1, . . . , xn} ≤ AWn (x1, . . . , xn) ≤ max {x1, . . . , xn}.

In the following theorem, it is proved that the fuzzy weighted average of fuzzy numbers
can be bounded by fuzzy numbers representing the fuzzy extension of the functions
minimum and maximum according to the extension principle.
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Theorem 3.16. Let WF = {WF
n }∞n=1 be an arbitrary sequence of tuples of fuzzy

weights and AWF = {AWF
n }∞n=1 be the fuzzy weighted average operator associated with

WF . For any n ∈ N and any n-tuple of fuzzy numbers Xi = (xi, xi), i = 1, . . . , n, let us
consider fuzzy numbers MIN =

(
min,min

)
and MAX = (max,max) such that for all

α ∈ [0, 1]:

min(α) = min{x1(α), . . . , xn(α)} and min(α) = min{x1(α), . . . , xn(α)},
max(α) = max{x1(α), . . . , xn(α)} and max(α) = max{x1(α), . . . , xn(α)}.

Then
MIN ≤ AWF

n (X1, . . . , Xn) ≤MAX.

P r o o f . Let n ∈ N be arbitrary. For any n-tuple of fuzzy numbers X1, . . . , Xn, let
AWF
n (X1, . . . , Xn) = (awn, awn). Since a weighted average is a compensative operator,

it holds for any n-tuple of real weights w1, . . . , wn that

min{x1(α), . . . , xn(α)} ≤
∑n
i=1 wixi(α)∑n

i=1 wi
≤ max{x1(α), . . . , xn(α)}.

As

awn(α) = min

{∑n
i=1 wixi(α)∑n

i=1 wi
| wi ∈Wniα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}
,

it is clear that
min(α) ≤ awn(α) ≤ max(α) for all α ∈ [0, 1].

Analogously, we would obtain that

min(α) ≤ awn(α) ≤ max(α) for all α ∈ [0, 1],

which completes the proof. �

This property is very significant for application of the fuzzy weighted average operator
in fuzzy MCDM models. It ensures that the overall fuzzy evaluation of an alternative
computed as the fuzzy weighted average of the fuzzy evaluations with respect to the
particular criteria do not exceeded the boundaries formed by the worst and the best
particular fuzzy evaluation. Let us illustrate this by the following numerical example.

Example 3.17. An alternative x is to be evaluated with respect to four criteria. The
fuzzy weights of the criteria are given by the quadruple of triangular fuzzy numbers
W1, . . . ,W4 ∈ FN ([0, 10]), and the fuzzy evaluations of x with respect to the particular
criteria are expressed by the triangular fuzzy numbers X1, . . . , X4 ∈ FN ([0, 1]). The
membership functions of the fuzzy weights and fuzzy weighted values are depicted in
Figure 1.

The overall fuzzy evaluation of x is expressed by the fuzzy number X ∈ FN ([0, 1]),
X := aFw(X1, . . . , X4;W1, . . . ,W4). In Figure 2, we can see that the fuzzy number X is
between the fuzzy numbers MIN and MAX that express the fuzzy minimum and fuzzy
maximum of the fuzzy evaluations X1, . . . , X4.
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Fig. 1. Fuzzy weights W1, . . . , W4 and fuzzy weighted values

X1, . . . , X4.
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Fig. 2. Fuzzy numbers MIN , X, and MAX.

3.3. Idempotency

Another property of the weighted average operator AW is idempotency. For any n ∈ N
and for any n-tuple of weights, it holds that

AWn (x, . . . , x) = x for all x ∈ R.

Let us show now that the fuzzy weighted average operator possesses the identical prop-
erty.

Theorem 3.18. Let WF = {WF
n }∞n=1 be an arbitrary sequence of tuples of fuzzy

weights and AWF = {AWF
n }∞n=1 be the fuzzy weighted average operator associated with

WF . Then for each X ∈ FN (R) it holds that

AWF
n (X, . . . ,X) = X for all n ∈ N.
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P r o o f . Let X = (x, x) be an arbitrary fuzzy number. For each n ∈ N, let us denote
AWF
n (X, . . . ,X) = (awn, awn). Then for all α ∈ [0, 1]:

awn(α) = min

{∑n
i=1 wix(α)∑n
i=1 wi

| wi ∈Wniα, i = 1, . . . , n,
n∑
i=1

wi 6= 0

}

= min

{
x(α)

∑n
i=1 wi∑n
i=1 wi

| wi ∈Wniα, i = 1, . . . , n,
n∑
i=1

wi 6= 0

}
= x(α).

The equality awn(α) = x(α) for all α ∈ [0, 1] can be derived analogously. �

Remark 3.19. Let a real number x be viewed as a fuzzy number by convention made
in Remark 3.4. Then, according to Theorem 3.18, AWF

n (x, . . . , x) = x for any associated
n-tuple of fuzzy weights. Thus, in such a case, the fuzziness of the weights does not
affect the resulting fuzzy weighted average as it is equal to the real number x.

As it is noted in [3], idempotency is supposed to be a genuine property of aggregation
operators in some areas, e. g., in MCDM (see [8]). In fuzzy MCDM models, the property
observed in Theorem 3.18 can be read as follows: if all criteria are satisfied in the same
fuzzy degree X, then also the overall fuzzy evaluation is X, regardless of the applied
tuple of fuzzy weights. Thus, the fuzziness of the weights affects the resulting fuzzy
weighted average only in the case where the fuzzy weighted values are not all the same.

3.4. Stability for a linear transformation

An important property of the weighted average operator AW is stability for a linear
transformation described as follows: For all n ∈ N, all r, t ∈ R, and all (x1, . . . , xn) ∈ Rn:

AWn (rx1 + t, . . . , rxn + t) = rAWn (x1, . . . , xn) + t.

Let us show now that the identical property can be observed also for the fuzzy weighted
average operator.

Theorem 3.20. Let WF = {WF
n }∞n=1 be an arbitrary sequence of tuples of fuzzy

weights and AWF = {AWF
n }∞n=1 be the fuzzy weighted average operator associated with

WF . Then, for each n ∈ N, all r, t ∈ R, and all (X1, . . . , Xn) ∈ FN (R)n it holds that

AWF
n (rX1 + t, . . . , rXn + t) = rAWF

n (X1, . . . , Xn) + t. (9)

P r o o f . Let n ∈ N and r, t ∈ R be arbitrary. Let Xi = (xi, xi), i = 1, . . . , n, be
arbitrary fuzzy numbers. Let us denote AWF

n (X1, . . . , Xn) = (awn, awn). Then

rAWF
n (X1, . . . , Xn) + t = (rawn + t, rawn + t).
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Further, let us denote AWF
n (rX1 + t, . . . , rXn + t) = (artwn, a

rt
wn). For all α ∈ [0, 1], we

get

artwn(α) = min

{∑n
i=1 wi(rxi(α) + t)∑n

i=1 wi
| wi ∈Wniα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}

= min

{
r

∑n
i=1 wixi(α)∑n

i=1 wi
+ t | wi ∈Wniα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}

= rmin

{∑n
i=1 wixi(α)∑n

i=1 wi
| wi ∈Wniα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}
+ t

= rawn(α) + t.

The proof that artwn(α) = rawn(α) + t for all α ∈ [0, 1] would be analogous. �

Remark 3.21. Analogously, it can be shown that the equality (9) holds also if the real
constants r and t are replaced by arbitrary fuzzy numbers R and T .

In fuzzy models, this property ensures us that a linear transformation can be applied
either to the fuzzy weighted values X1, . . . , Xn, i. e. before the aggregation by the fuzzy
weighted average, or to the resulting fuzzy weighted average aFw(X1, . . . , Xn;W1, . . . ,Wn).
The result of the aggregation will be the same, regardless of the applied n-tuple of fuzzy
weights. For instance, if we want to change in the fuzzy MCDM model considered in
Example 3.17 the units of the evaluations of alternatives from the fuzzy degrees of satis-
faction, belonging to [0, 1], to the fuzzy percentages of satisfaction, belonging to [0, 100],
we can either multiply by 100 the fuzzy evaluations X1, . . . , X4 and then compute the
fuzzy weighted average, or multiply by 100 the overall fuzzy evaluation X, the result
will be the same.

3.5. Lipschitzianity and continuity

For any sequence of weight vectors W , the weighted average operator AW is 1-Lipschitz.
This means that for all n ∈ N and all (x1, . . . , xn), (y1, . . . , yn) ∈ Rn:

|AWn (x1, . . . , xn)−AWn (y1, . . . , yn)| ≤
n∑
i=1

|xi − yi|.

In order to show the way in which the fuzzy weighted average operator possesses such
a property, instead of the distance measure d : R2 → R+

0 , defined for any x, y ∈ R by
d(x, y) = |x− y|, a distance measure on the set of all fuzzy numbers has to be applied.
Let us consider the popular distance measure of fuzzy numbers dF : FN (R)2 → R+

0 ,
studied e. g. in [16], that is for any fuzzy numbers X = (x, x) and Y = (y, y) given by

dF (X,Y ) =
∫ 1

0

(
|x(α)− y(α)|+ |x(α)− y(α)|

)
dα.

The following theorem shows that applying the metric dF , the fuzzy weighted average
operator is also 1-Lipschitz.
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Theorem 3.22. Let WF = {WF
n }∞n=1 be an arbitrary sequence of tuples of fuzzy

weights and AWF = {AWF
n }∞n=1 be the fuzzy weighted average operator associated

with WF . For all n ∈ N, it holds the following: Let Xi = (xi, xi) and Yi = (y
i
, yi),

i = 1, . . . , n, be fuzzy numbers. Let us denote AWF
n (X1, . . . , Xn) = (aXwn, a

X
wn) and

AWF
n (Y1, . . . , Yn) = (aYwn, a

Y
wn). Then∫ 1

0

|aXwn(α)− aYwn(α)|+ |aXwn(α)− aYwn(α)|dα

≤
n∑
i=1

∫ 1

0

|xi(α)− y
i
(α)|+ |xi(α)− yi(α)|dα.

P r o o f . Let n ∈ N be arbitrary, and let α ∈ [0, 1] be such that aXwn(α) ≥ aYwn(α). Then

|aXwn(α)− aYwn(α)| = aXwn(α)− aYwn(α)

= min

{∑n
i=1 wixi(α)∑n

i=1 wi
| wi ∈Wniα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}

−min

{∑n
i=1 wiyi(α)∑n

i=1 wi
| wi ∈Wniα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}

= min

{∑n
i=1 wixi(α)∑n

i=1 wi
| wi ∈Wniα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}

−
∑n
i=1 w

∗
i yi(α)∑n

i=1 w
∗
i

≤
∑n
i=1 w

∗
i xi(α)∑n

i=1 w
∗
i

−
∑n
i=1 w

∗
i yi(α)∑n

i=1 w
∗
i

=

∑n
i=1 w

∗
i (xi(α)− y

i
(α))∑n

i=1 w
∗
i

≤
∑n
i=1 w

∗
i |xi(α)− y

i
(α)|∑n

i=1 w
∗
i

≤
n∑
i=1

|xi(α)− y
i
(α)|.

If α ∈ [0, 1] is such that aXwn(α) < aYwn(α), then

|aXwn(α)− aYwn(α)| = −aXwn(α) + aYwn(α)

= −min

{∑n
i=1 wixi(α)∑n

i=1 wi
| wi ∈Wniα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}

+ min

{∑n
i=1 wiyi(α)∑n

i=1 wi
| wi ∈Wniα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}

= −
∑n
i=1 w

∗∗
i xi(α)∑n

i=1 w
∗∗
i
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+ min

{∑n
i=1 wiyi(α)∑n

i=1 wi
| wi ∈Wniα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}

≤ −
∑n
i=1 w

∗∗
i xi(α)∑n

i=1 w
∗∗
i

+

∑n
i=1 w

∗∗
i yi(α)∑n

i=1 w
∗∗
i

=

∑n
i=1 w

∗∗
i (y

i
(α)− xi(α))∑n

i=1 w
∗∗
i

≤
n∑
i=1

|y
i
(α)− xi(α)| =

n∑
i=1

|xi(α)− y
i
(α)|.

Summing up, we obtain for all n ∈ N and α ∈ [0, 1] that

|aXwn(α)− aYwn(α)| ≤
n∑
i=1

|xi(α)− y
i
(α)|.

Analogously, we can obtain that

|aXwn(α)− aYwn(α)| ≤
n∑
i=1

|xi(α)− yi(α)|.

Therefore, ∫ 1

0

(
|aXwn(α)− aYwn(α)|+ |aXwn(α)− aYwn(α)|

)
dα

≤
n∑
i=1

∫ 1

0

(
|xi(α)− y

i
(α)|+ |xi(α)− yi(α)|

)
dα,

which completes the proof. �

The fact that the fuzzy weighted average operator AWF is 1-Lipschitz in the metric
dF implies that the following holds for all n ∈ N: For all ε > 0 and for any fuzzy numbers
X0
i = (x0

i , x
0
i ), i = 1, . . . , n, there exists δ > 0 such that if Xi = (xi, xi), i = 1, . . . , n,

are fuzzy numbers satisfying
n∑
i=1

∫ 1

0

(
|xi(α)− x0

i (α)|+ |xi(α)− x0
i (α)|

)
dα < δ,

then it holds for AWF
n (X0

1 , . . . , X
0
n) = (a0

wn, a
0
wn) and AWF

n (X1, . . . , Xn) = (awn, awn)
that ∫ 1

0

(
|awn(α)− a0

wn(α)|+ |awn(α)− a0
wn(α)|

)
dα < ε.

Hence, the fuzzy weighted average is continuous with respect to the metric dF .
As it is written in [3], continuous aggregation operators are usually applied in engi-

neering applications, reflecting the property that a “small” error in inputs cannot cause
a “big” error in the output. That is, this property is a guaranty for a certain consis-
tency and for a non chaotic behaviour. In case of the fuzzy weighted average operator,
it means that regardless of the applied tuple of fuzzy weights if the fuzzy weighted val-
ues are changed only slightly, the resulting fuzzy weighted average will be close to the
original one.



Fuzzy weighted average as a fuzzified aggregation operator and its properties 153

3.6. Strict monotonicity

In case of positive weights, the weighted average operator AW is strictly monotone, i. e.
for each n ∈ N, if we have (x1, . . . , xn) ∈ Rn and (y1, . . . , yn) ∈ Rn such that xi < yi for
one i ∈ {1, . . . , n} and xj = yj for all j ∈ {1, . . . , n}, j 6= i, then

AWn (x1, . . . , xn) < AWn (y1, . . . , yn).

Let us show now that this property can be observed for the fuzzy weighted average
operator as well.

Remark 3.23. We say that fuzzy weights Wi = (wi, wi), i = 1, . . . , n, are positive if
wi(0) > 0 for all i ∈ {1, . . . , n}.

Theorem 3.24. Let W+
F = {W+F

n }∞n=1 be an arbitrary sequence of tuples of positive

fuzzy weights and AW
+
F = {AW

+
F

n }∞n=1 be the fuzzy weighted average operator associated
with W+

F . Let, for all n ∈ N, Xi = (xi, xi) and Yi = (y
i
, yi), i = 1, . . . , n, be fuzzy

numbers such that Xi < Yi for one i ∈ {1, . . . , n} and Xj = Yj for all j ∈ {1, . . . , n},
j 6= i. Then

A
W+

F
n (X1, . . . , Xn) < A

W+
F

n (Y1, . . . , Yn).

P r o o f . Let n ∈ N be arbitrary. Let us denote AW
+
F

n (X1, . . . , Xn) = (aXwn, a
X
wn) and

A
W+

F
n (Y1, . . . , Yn) = (aYwn, a

Y
wn). Let us assume that there exists α ∈ [0, 1] such that

xi(α) < y
i
(α). Then

aXwn(α) = min
{∑n

i=1 wixi(α)∑n
i=1 wi

| wi ∈Wniα, i = 1, . . . , n
}

= min


∑n
j=1
j 6=i

wjxj(α) + wixi(α)∑n
i=1 wi

| wi ∈Wniα, i = 1, . . . , n


< min


∑n
j=1
j 6=i

wjyj(α) + wiyi(α)∑n
i=1 wi

| wi ∈Wniα, i = 1, . . . , n

 = aYwn(α).

The proof that aXwn(α) < aYwn(α) if xi(α) < yi(α) would be analogous. �

The importance of this property can be illustrated by the following example that is
based on the fuzzy MCDM model considered in Example 3.12.

Example 3.25. Let the fuzzy weights W1, . . . ,Wn expressing the importance of the
particular criteria be positive. Let the fuzzy evaluations of the two alternatives x1 and x2

with respect to the particular criteria be expressed by the fuzzy numbers X11, . . . , X1n,
and X21, . . . , X2n, respectively. Let, for some i ∈ {1, . . . , n}, X1i > X2i, and X1j = X2j

for all j ∈ {1, . . . , n}\{i}, i. e. the alternative x1 is better than x2 with respect to the ith
criterion and is equal with x2 with respect to the rest of the criteria. Then the overall
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fuzzy evaluation of x1 will be better than the overall fuzzy evaluation of x2 because the
following relation holds:

aFw(X11, . . . , X1n;W1, . . . ,Wn) > aFw(X21, . . . , X2n;W1, . . . ,Wn).

3.7. Symmetry

As it was mentioned before, the weighted average operator AW associated with a se-
quence of weight vectors W is symmetric, if and only if for any n ∈ N, wni = wnj for all
i, j ∈ {1, . . . , n}. In such a case, AW coincides with the arithmetic mean operator, i. e.
for any n ∈ N, AWn (x1, . . . , xn) = 1

n

∑n
i=1 xi for all x1, . . . , xn ∈ R.

The following theorem shows that if the particular fuzzy weights are the same in each
tuple of fuzzy weights, then the fuzzy weighted average operator is also symmetric.

Theorem 3.26. Let EF = {EF
n }∞n=1 be a sequence of tuples of fuzzy weights EF

n =
(W1n, . . . ,Wnn) such that Wni = Wnj for all i, j ∈ {1, . . . , n}. Let AEF = {AEF

n }∞n=1

be the fuzzy weighted average operator associated with EF . Then for all n ∈ N, each
n-tuple of fuzzy numbers (X1, . . . , Xn), and any permutation σ of {1, . . . , n} it holds
that

AEF
n (Xσ(1), . . . , Xσ(n)) = AEF

n (X1, . . . , Xn).

P r o o f . Let n ∈ N be arbitrary. Let W ∈ FN (R) be such that Wni = W for
i = 1, . . . , n, i. e. EF

n = (W, . . . ,W ). Let Xi = (xi, xi), i = 1, . . . , n, be arbi-
trary fuzzy numbers, and let σ be arbitrary permutation of {1, . . . , n}. Let us denote
AEF
n (X1, . . . , Xn) = (awn, awn) and AEF

n (Xσ(1), . . . , Xσ(n)) = (aσwn, a
σ
wn). Then for all

α ∈ [0, 1] we get

awn(α) = min

{∑n
i=1 wixi(α)∑n

i=1 wi
| wi ∈Wα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}

= min

{∑n
i=1 wixσ(i)(α)∑n

i=1 wi
| wi ∈Wα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}
= aσwn(α),

since the range Wα for the admissible values of the weights does not depend on i. The
proof that awn(α) = aσwn(α) for all α ∈ [0, 1] would be analogous. �

In practical applications, this property means that if the uncertain values of the
weights are expressed by the equal fuzzy numbers, then, analogously as in the crisp
case, the resulting fuzzy weighted average does not depend on the sequence of the fuzzy
weighted values. However, next theorem shows that in contrast to the crisp case, the
fuzzy weighted average operator associated with a sequence of tuples of equal fuzzy
weights does not coincide with the fuzzy arithmetic mean operator M. The fuzzy
arithmetic mean operator is defined in the following way: M = {Mn}∞n=1 where for any
n ∈ N, Mn represents the fuzzy arithmetic mean of fuzzy numbers; it is given for any
fuzzy numbers Xi = (xi, xi), i = 1, . . . , n, by

Mn(X1, . . . , Xn) =

(
1
n

n∑
i=1

xi,
1
n

n∑
i=1

xi

)
.
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Theorem 3.27. Let EF = {EF
n }∞n=1 be a sequence of tuples of fuzzy weights EF

n =
(W1n, . . . ,Wnn) such that Wni = Wnj for all i, j ∈ {1, . . . , n}. Let AEF = {AEF

n }∞n=1

be the fuzzy weighted average operator associated with EF . Let M = {Mn}∞n=1 be
the fuzzy arithmetic mean operator. Then for all n ∈ N and for each n-tuple of fuzzy
numbers (X1, . . . , Xn):

Mn(X1, . . . , Xn) ⊆ AEF
n (X1, . . . , Xn), (10)

where the equality Mn(X1, . . . , Xn) = AEF
n (X1, . . . , Xn) holds, if and only if at least

one of the following three conditions is satisfied:

1. n = 1,

2. EF
n = (w, . . . , w), where w ∈ R+,

3. Xi = Xj for all i, j ∈ {1, . . . , n}.

P r o o f . Let n ∈ N be arbitrary. Let W ∈ FN (R) be such that Wni = W for all
i ∈ {1, . . . , n}, i. e. EF

n = (W, . . . ,W ). Let Xi = (xi, xi), i = 1, . . . , n, be arbitrary
fuzzy numbers. Let us denote AEF

n (X1, . . . , Xn) = (awn, awn) and Mn(X1, . . . , Xn) =
(mn,mn). For any α ∈ [0, 1]:

1
n

n∑
i=1

xi(α) ∈

{∑n
i=1 wixi(α)∑n

i=1 wi
| wi ∈Wα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}
,

because 1
n

∑n
i=1 xi(α) =

Pn
i=1 wxi(α)Pn

i=1 w
, where w ∈Wα, w 6= 0. Hence

min

{∑n
i=1 wixi(α)∑n

i=1 wi
| wi ∈Wα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}
≤ 1
n

n∑
i=1

xi(α),

i. e. awn(α) ≤ mn(α). Analogously, it can be shown that

max

{∑n
i=1 wixi(α)∑n

i=1 wi
| wi ∈Wα, i = 1, . . . , n,

n∑
i=1

wi 6= 0

}
≥ 1
n

n∑
i=1

xi(α),

i. e. awn(α) ≥ mn(α). Therefore, Mn(X1, . . . , Xn) ⊆ AEF
n (X1, . . . , Xn). Further, let us

examine the cases when Mn(X1, . . . , Xn) = AEF
n (X1, . . . , Xn).

For n = 1, the equality is obvious since M1(X1) = X1 = AEF
1 (X1) for any X1 ∈

FN (R). Let n ≥ 2 and α ∈ [0, 1] be arbitrary. If Wα = {w}, where w ∈ R+, then

awn(α) = min
{∑n

i=1 wxi(α)∑n
i=1 w

}
=

1
n

n∑
i=1

xi(α) = mn(α)

and

awn(α) = max
{∑n

i=1 wxi(α)∑n
i=1 w

}
=

1
n

n∑
i=1

xi(α) = mn(α).
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If xi(α) = x(α) and xi(α) = x(α) for all i ∈ {1, . . . , n}, then, applying Theorem 3.18,
awn(α) = x(α) = 1

n

∑n
i=1 x(α) = mn(α) and awn(α) = x(α) = 1

n

∑n
i=1 x(α) = mn(α).

Thus, if EF
n = (w, . . . , w), where w ∈ R+, or if Xi = Xj for all i, j ∈ {1, . . . , n}, then

AEF
n (X1, . . . , Xn) = Mn(X1, . . . , Xn).
Finally, for n ≥ 2 and for some α ∈ [0, 1], let us assume thatWα = [w(α), w(α)], where

w(α) < w(α), and that Xiα 6= Xjα for some i, j ∈ {1, . . . , n}, i 6= j. If xi(α) < xj(α),
then obviously awn(α) < 1

n

∑n
k=1 xk(α) = mn(α), as for instance

w(α)xi(α) +
∑n
k=1,k 6=i w(α)xk(α)

w(α) + (n− 1)w(α)
<

1
n

n∑
k=1

xk(α).

Analogously, it can be shown that if xi(α) < xj(α), then awn(α) > 1
n

∑n
k=1 xk(α) =

mn(α). Hence, Mn(X1, . . . , Xn)α is a strict subset of AEF
n (X1, . . . , Xn)α. �

The fuzziness of the equal fuzzy weights affects the fuzziness of the resulting fuzzy
weighted average the more, the more the fuzzy weighted values differ from each other.
In the extreme case where the fuzzy weighted values are identical, the fuzziness of the
equal fuzzy weights remains hidden due to the idempotency of the fuzzy weighted average
operator. The problem is illustrated by the following numerical example.

Example 3.28. For n = 4, let all the fuzzy weights W1, . . . ,W4 be equal to the tri-
angular fuzzy number W = (w,w), where w(α) = 3 + 2α and w(α) = 7 − 2α for any
α ∈ [0, 1]. Let us consider two quadruples of fuzzy weighted values, X1, . . . , X4 and
Y1, . . . , Y4, whose membership functions are depicted in Figure 3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
X

2
X

1
X

3
X

4 Y
3

Y
2

Y
1 Y

4

Fig. 3. Fuzzy weighted values X1, . . . , X4 and Y1, . . . , Y4.

The fuzzy arithmetic means M4(X1, . . . , X4) and M4(Y1, . . . , Y4) coincide; they are
equal to the fuzzy number M = (m,m), where m(α) = 0.3+0.2α and m(α) = 0.7−0.2α
for any α ∈ [0, 1]. However, X1, . . . , X4 differ more from each other than Y1, . . . , Y4.
Therefore, the fuzzy weighted average AWX = aFw(X1, . . . , X4;W, . . . ,W ) is more uncer-
tain than AWY = aFw(Y1, . . . , Y4;W, . . . ,W ); this can be easily seen from Figure 4, where
the membership functions of AWX , AWY and M are depicted.
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Y and M .

For instance, if the fuzzy weighted values X1, . . . , X4 and Y1, . . . , Y4 represent the
fuzzy evaluations of the two alternatives x and y with respect to the given four criteria
in a fuzzy MCDM model, i. e. if the fuzzy weighted averages AWX and AWY express the
overall fuzzy evaluations of x and y, then the greater uncertainty of AWX corresponds
to the fact that despite the same mean, the fuzzy evaluations of x with respect to the
particular criteria are more inconsistent and therefore, the overall fuzzy evaluation of x
is more dependant to the values of the weights of criteria. Thus, this information will
affect the final ranking of the alternatives.

4. CONCLUSION

In the paper, the properties of the fuzzy weighted average operator where the weights
as well as the weighted values are expressed by noninteractive fuzzy numbers were ex-
amined. First, it was shown that the fuzzy weighted average operator fulfils the fuzzy
extension of the three conditions that characterize an aggregation operator. Afterwards,
it was revealed the way in which the fuzzy weighted average operator preserve the
properties of the crisp weighted average operator, namely compensation, idempotency,
stability for linear transformation, lipschitzianity, continuity, strict monotonicity in case
of positive fuzzy weights, and symmetry in case of equal fuzzy weights. The usefulness
of the obtained results was discussed and illustrated by several examples.

Further research in this area could be focused on the properties of other kinds of fuzzy
weighted average operator, e. g. when the special structure of interactive fuzzy numbers
called normalized fuzzy weights is applied, or when the weights and/or the weighted
values are described by fuzzy vectors (see [24] for more details). It is also worth to study
the properties of the fuzzy extension of other aggregation operators, like fuzzy OWA
operator, etc.
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