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Abstract. We introduce statisch pairs in atomistic posets and study its relationships with
some known concepts in posets such as biatomic and dual modular pairs, perspectivity
and subspaces of atom space of an atomistic poset. We generalize the notion of exchange
property in posets and with the help of it we prove the equivalence of dual modular, biatomic
and statisch pairs in atomistic posets. Also, we prove that the set of all finite elements of
a statisch poset with such property forms an ideal. ∇-relation is partly studied by means
of statisch pairs.
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1. Introduction

The concept of a statisch (static) lattice as a subclass of atomistic lattices was

introduced by Wille [12] and studied by Janowitz [1], [2] and Maeda and Maeda [3]

in connection with modularity. Statisch lattices include the lattice of all subspaces of

any vector space and the lattice of convex subsets of a poset, etc. These lattices are

called biatomic lattices. Biatomicity in atomistic posets was introduced by Waphare

and Joshi in [9]. On the other hand, Wasadikar and Thakare introduced in [11]

statisch pairs in atomistic join-semilattices. Now, we introduce statisch pairs in

atomistic posets and study its relationships with dual modular and biatomic pairs.

We also study subspaces of atom space of an atomistic poset with the help of statisch

pairs and we investigate the set of finite elements of a statisch poset to be an ideal.

We begin with the necessary definitions and terminologies in a poset P .

An element x of a poset P is an upper bound of A ⊆ P if a 6 x for all a ∈ A.

A lower bound is defined dually. The set of all upper bounds of A is denoted by Au

(read as A upper cone), so Au = {x ∈ P : x > a for every a ∈ A} and dually,
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we have the concept of a lower cone Al of A. Aul shall mean {Au}l and Alu shall

mean {Al}u. The upper cone {a}u is simply denoted by au and {a, b}u is denoted by

(a, b)u. Similar notations are used for lower cones. Further, for A,B ⊆ P , {A∪B}u is

denoted by {A,B}u and for x ∈ P , the set {A∪{x}}u is denoted by {A, x}u. Similar

notations are used for lower cones. We note that A ⊆ Aul and A ⊆ Alu. If A ⊆ B,

then Bl ⊆ Al and Bu ⊆ Au. Moreover, Alul = Al, Aulu = Au and {au}l = {a}l = al.

If P contains a finite number of elements, it is called a finite poset. In a poset P

we say that x is covered by y and write x ≺ y if x 6 z 6 y implies x = z or z = y.

An element p of a poset P with 0 is called an atom if 0 ≺ p. The set of atoms of P

is denoted by A(P ). For a nonzero element a ∈ P , ω(a) denotes the set of atoms

contained in a, that is ω(a) = {p ∈ A(P ) : p 6 a}.

A subset I of a poset P is called an ideal if a, b ∈ I implies that (a, b)ul ⊆ I. The

set of ideals of a poset P is denoted by Id(P ), which is a lattice under set inclusion.

A poset P with 0 is called atomistic if every element of P is a join of atoms

contained in it (that is, the set of atoms of P is join-dense in P ). Equivalently, for

any two elements a, b ∈ P with a 
 b, there is a p ∈ A(P ) such as p 6 a, p 
 b.

Let P be a poset. A pair of elements a, b ∈ P is called a distributive pair, denoted

by (a, b)D, if the following condition holds:

{(a, b)u, x}l = {(a, x)l, (b, x)l}ul for every x ∈ P.

A pair of elements a, b in a poset P is said to be a modular pair, denoted by (a, b)M,

if the following condition holds:

{{a, (b, c)l}u, b}l = {(a, b)l, (b, c)l}ul for every c ∈ P.

Dually, we have the concept of a dual modular pair, denoted by (a, b)M∗, if the

following condition holds:

{{a, (b, c)u}l, b}u = {(a, b)u, (b, c)u}lu for every c ∈ P.

A pair of nonzero elements a, b of an atomistic poset P is called a biatomic pair and

is denoted by (a, b)P if for every atom p ∈ (a, b)ul there exist atoms q, r ∈ P such

that p ∈ (q, r)ul, q 6 a and r 6 b. An atomistic poset P is called biatomic if (a, b)P

holds for all a, b ∈ P . We also need the following definitions given by Waphare in [7].

Let P be an atomistic poset. A subset ω of the atom space A(P ) is called a

subspace when it satisfies the following condition:

If p ∈ A(P ), qi ∈ ω, i = 1, 2, . . . , n for some natural number n and p 6 z for all

z ∈ {q1, . . . , qn}
u, then p ∈ ω. Denote by L(A(P )) the set of all subspaces of A(P ).
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Let S be a subset of an atomistic poset P . The set of atoms contained in Sul,

which is a subspace of A(P ), is denoted by ω(S). If S = {a, b} for some a, b ∈ P ,

then ω({a, b}) may be simply denoted by ω(a, b).

An atomistic poset P is called statisch when p ∈ (a, b)ul for p ∈ A(P ) implies the

existence of a finite subset S ⊆ ω(a) ∪ ω(b) such that p ∈ Sul.

Shewale introduced in [4] the concept of a finite element in posets. An element a

of a poset P with 0 is called a finite element if either a = 0 or a ∈ {p : p ∈ ω(a)}U ,

that is, a belongs to the set of minimal elements of the set of upper bounds of ω(a);

see [6]. Therefore, a finite element in an atomistic poset P is determined as the join

of finitely many atoms of P . The set of all finite elements of an atomistic poset P is

denoted by F (P ).

A poset P is said to have the exchange property if p ∈ (q, a)ul and p 
 a together

imply that q ∈ (p, a)ul for atoms p, q ∈ P .

A poset P is said to have the weak exchange property if p ∈ (q, r)ul and p 6= r

together imply that q ∈ (p, r)ul for atoms p, q, r ∈ P .

Let a, b ∈ P with 0. We say that a and b are perspective and write a ∼x b (or

simply a ∼ b) if (a, x)ul = (b, x)ul and (a, x)l = (b, x)l = {0} for some x ∈ P . The

element x is called the axis of perspectivity. We say that a is subperspective to b if

a ∈ (b, x)ul and (a, x)l = {0} for some x ∈ P . Let P be a poset with 0 and a, b ∈ P .

We write a ∇ b when {(a, x)u, b}l = (x, b)l for every x ∈ P .

An element s of a poset P with 0 is called ∇-standard if (s, a)l = {0} implies that

s ∇ a for a ∈ P . ∇-relation is called symmetric if a ∇ b implies b ∇ a for a, b ∈ P .

2. Statisch Pairs

Definition 2.1. A pair a, b of nonzero elements of an atomistic poset P is called

a statisch pair, denoted by (a, b)S, if for an atom p ∈ (a, b)ul there exist finite elements

a1, b1 ∈ P such that a1 6 a, b1 6 b and p ∈ (a1, b1)
ul.

In other words, (a, b)S holds if p ∈ ω(a, b) implies p ∈ ω(a1, b1) for finite elements

a1 6 a, b1 6 b. If P is a finite atomistic poset and a, b ∈ P , then clearly (a, b)S holds

since every element is finite.

R em a r k 2.2. Let P be an atomistic poset. Observe that for a, b ∈ P , (a, b)S

implies (b, a)S and if a 6 b in P , then (a, b)S holds. We note that for an atom p

of P if p ∈ (a, b)ul implies that p 6 a or p 6 b, then (a, b)S holds. For, without loss

of generality, assume that p ∈ (a, b)ul and p 6 a. Since 0 6 b and both 0 and p are

finite elements, we have p ∈ (p, 0)ul and hence (a, b)S holds. We also note that if

(a, b)S holds for all nonzero elements a, b ∈ P , then P is a statisch poset.
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Lemma 2.3. In an atomistic poset P , (a, b)D implies (a, b)S.

P r o o f. Let p be an atom of P and p ∈ (a, b)ul. By (a, b)D we have pl =

{p, (a, b)u}l = {(p, a)l, (p, b)l}ul. Since p is an atom, we must have p 6 a or p 6 b.

Hence (a, b)S holds by Remark 2.2. �

The converse of Lemma 2.3 need not be true in general; see Figure 1 and observe

that every pair is a statisch pair since every element is finite, but (x, z)D does not

hold since {(x, z)u, p}l = {0, p} 6= {(x, p)l, (z, p)l}ul = {0}.

0

1

d p

x z

Figure 1.

Lemma 2.4. Let a, b be elements of an atomistic poset and (a, b)S hold. Then

(a, b)D holds whenever (a1, b1)D holds for all finite elements a1, b1 such that a1 6 a,

b1 6 b.

P r o o f. In view of Waphare and Joshi (see [10]), to prove (a, b)D it is enough

to show that if p is an atom and p ∈ (a, b)ul, then p 6 a or p 6 b. Consider an

atom p ∈ (a, b)ul and p 
 b. We prove that p 6 a. By (a, b)S there exist finite

elements a1, b1 such that a1 6 a, b1 6 b and p ∈ (a1, b1)
ul. Clearly p 
 b1. Since

p ∈ {(a1, b1)
u, p}l and by (a1, b1)D we get {(a1, b1)

u, p}l = {(p, a1)
l, (p, b1)

l}ul =

(p, a1)
l, since (p, b1)

l = {0}. Thus p ∈ (p, a1)
l and we get p 6 a1 and consequently

p 6 a. �

In order to obtain similar type of results using finite elements instead of atoms,

we give the following definition.

Definition 2.5. Let P be a poset with 0. We say that P satisfies the generalized

exchange property if x ∈ (y, a)ul and x 
 a for x, y ∈ F (P ) and a ∈ P together

imply y ∈ (x, a)ul. We say that P satisfies the generalized weak exchange property if

x ∈ (y, z)ul and x 
 z together imply y ∈ (x, z)ul for x, y, z ∈ F (P ).

R em a r k 2.6. In a poset P generalized weak exchange property implies weak

exchange property since every atom is a finite element. The converse need not be

true; see Figure 1 in which the generalized weak exchange property does not hold

for z, p, d ∈ F (P ). In fact, z ∈ (p, d)ul and z 
 d but p /∈ (z, d)ul.
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Lemma 2.7. Let P be an atomistic poset with exchange property such that (r, a)S

holds for all r ∈ A(P ), a ∈ P and let p, q be atoms of P . Then p ∼x q for x ∈ P

implies that p ∼x1
q for some x1 ∈ F (P ) with x1 6 x.

P r o o f. Let p ∼x q in P . We have (p, x)ul = (q, x)ul and (p, x)l = (q, x)l = {0}

for some x ∈ P . Since p ∈ (q, x)ul and (q, x)S, we have p ∈ (q, x1)
ul for some

finite element x1 6 x. Therefore (p, x1)
ul ⊆ (q, x1)

ul. On the other hand, since

p 
 x, we have p 
 x1, too. Similarly q 
 x1. Hence (p, x1)
l = (q, x1)

l = {0}. By

the exchange property we have q ∈ (p, x1)
ul and consequently (q, x1)

ul ⊆ (p, x1)
ul.

Hence (p, x1)
ul = (q, x1)

ul. Therefore p ∼x1
q. �

Lemma 2.8. Let P be an atomistic poset with weak exchange property and p, q

be atoms of P . If (p, q)ul contains a third atom r, then p ∼x q. The converse holds

if the following condition is satisfied:

If p, q are atoms and p ∈ (q, a)ul, then there exists an atom r such that p ∈ (q, r)ul,

r 6 a.

P r o o f. If r is an atom such that r ∈ (p, q)ul, r 6= p, r 6= q, then we have (p, r)ul ⊆

(p, q)ul. By the weak exchange property we have p ∈ (r, q)ul, hence (p, q)ul ⊆ (p, r)ul.

Also r ∈ (p, q)ul implies that (r, p)ul ⊆ (p, q)ul and (r, q)ul ⊆ (p, q)ul. But p ∈ (r, q)ul

which implies that (p, q)ul ⊆ (r, q)ul and (p, r)ul ⊆ (r, q)ul. We infer that (p, r)ul =

(p, q)ul = (q, r)ul. Obviously (p, r)l = (q, r)l = {0}, hence p ∼x q for x = r.

Conversely, suppose that p ∼x q for some x ∈ P . Hence (p, x)ul = (q, x)ul and

(p, x)l = (q, x)l = {0}. Since p ∈ (q, x)ul, by the given condition there exists an

atom r such that p ∈ (q, r)ul, r 6 x. By the weak exchange property we have

r ∈ (p, q)ul. As (p, x)l = {0}, we get (p, r)l = {0}. This means that r 6= p. Similarly,

r 6= q and the result follows. �

Lemma 2.9. Let P be an atomistic poset with generalized weak exchange prop-

erty and let a, b be nonzero elements of P . If (a, b)S, then (a, b)M∗ and the converse

is true if b is a finite element.

P r o o f. Let P be an atomistic poset with generalized weak exchange prop-

erty. Suppose that (a, b)S holds for a, b ∈ P and we claim that (a, b)M∗ also

holds. By the definition of (a, b)M∗ it suffices to prove that for arbitrary elements

x ∈ {(a, b)u, (b, c)u}l and y ∈ {{a, (b, c)u}l, b}u for c ∈ P , we have x 6 y. Since P is

atomistic, it is sufficient to prove that every atom contained in x is also contained

in y.

Let p be an atom with p 6 x.

Case 1 : if p 6 b, then p 6 y since b 6 y.
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Case 2 : suppose that p 
 b. Note that p 6 x ∈ (a, b)ul, therefore p ∈ (a, b)ul and

since (a, b)S holds, there exist finite elements a1, b1 ∈ P such that a1 6 a, b1 6 b

and p ∈ (a1, b1)
ul. Clearly, p 
 b1; otherwise we would have p 6 b which is not

possible. Now, p 
 b1 and by the generalized weak exchange property we must

have a1 ∈ (p, b1)
ul. Moreover, p ∈ (b, c)ul as p 6 x ∈ (b, c)ul and b1 ∈ (b, c)ul as

b1 6 b ∈ (b, c)ul and so (p, b1)
ul ⊆ (b, c)ul. Since a1 6 a and a1 ∈ (p, b1)

ul, we have

a1 ∈ {(p, b1)
u, a}l ⊆ {(b, c)u, a}l. From this together with p ∈ (a1, b1)

ul and b1 6 b

we conclude that {{a, (b, c)u}l, b}u ⊆ (a1, b1)
u ⊆ pu. Now, y ∈ {{a, (b, c)u}l, b}u and

so y ∈ pu concluding that p 6 y. Hence, every atom contained in x is essentially

contained in y.

Conversely, assume that (a, d)M∗ holds, with d being a finite element. We prove

that (a, d)S also holds. If d 6 a, then (a, d)S clearly holds, therefore assume that

d 
 a. Let p be an atom such as p ∈ (a, d)ul. If p 6 d, then (a, b)S holds by

Remark 3.2.1, so suppose that p 
 d. Now, by (a, d)M∗ we have {{a, (d, p)u}l, d}ul =

{(d, p)u, (a, d)u}l. Clearly, {a, (d, p)u}l 6= {0}; otherwise p 6 d, since p ∈ (p, d)ul and

p ∈ (a, d)ul and so p ∈ {(p, d)u, (a, d)u}l = {{a, (d, p)u}l, d}ul, which is not possible.

By the atomisticity there exists an atom q (which is necessarily a finite element)

contained in {a, (d, p)u}l, that is, q 6 a as well as q ∈ (p, d)ul. Observe that q 6= d,

otherwise we get q 
 a which is not true. Now, by the generalized weak exchange

property we have p ∈ (q, d)ul and since q and d are finite elements with q 6 a, we

conclude that (a, d)S holds. �

Lemma 2.10. In an atomistic poset, (a, b)P implies (a, b)S.

P r o o f. Let p ∈ (a, b)ul. By (a, b)P there exist atoms q 6 a, r 6 b such that

p ∈ (q, r)ul. As q, r ∈ F (P ), we have (a, b)S. �

The converse of Lemma 2.10 need not be true in general. Consider the poset

depicted in Figure 1 and observe that every pair is a statisch pair since every element

is finite, but (x, z)P does not hold. In fact, p ∈ (x, z)ul but the required condition

of biatomicity is not satisfied.

Lemma 2.11. Let a, b be nonzero elements of an atomistic poset P with general-

ized weak exchange property. If (b, d)M∗ holds for every finite element d ∈ P , then

(a, b)S if and only if (a, b)M∗.

P r o o f. By Lemma 2.9, (a, b)S implies (a, b)M∗. Since generalized weak ex-

change property implies weak exchange property and every biatomic pair is a statisch

pair and every atom is a finite element, we have (a, b)M∗ implies (a, b)P and hence

(a, b)S holds by Lemma 2.10. �

130



Combining Lemma 2.9 and Lemma 2.11, we obtain:

Theorem 2.12. Let P be an atomistic poset with generalized weak exchange

property. Then (a, b)M∗ if and only if (a, b)S.

In atomistic posets with weak exchange property, Waphare and Joshi obtained the

equivalence of (a, b)P and (a, b)M∗ (see [9]). Thus, we have the following result.

Theorem 2.13. The following statements are equivalent in an atomistic poset P

with generalized weak exchange property.

(1) (a, b)M∗.

(2) (a, b)S.

(3) (a, b)P .

We now study statisch pairs in connection with subspaces of atomistic posets.

Theorem 2.14 ([7]). Let P be an atomistic poset. The set L(A(P )) of all sub-

spaces of A(P ) is a compactly atomistic complete lattice ordered by set inclusion.

The meet of two subspaces ω1, ω2 is their intersection and the join is

ω1 ∨ ω2 = {p ∈ A(P ) : p ∈ Sul, S is a finite subset of ω1 ∪ ω2}.

For any element a ∈ P , the set ω(a) is a subspace of A(P ) and the map f :

P → L(A(P )) defined by a 7→ ω(a) is a biorder preserving mapping of P onto

f(P ) ⊆ L(A(P )). This mapping satisfies the following properties:

(1) ω(0) = 0, (ω(1) = 1 if P has 1);

(2) f(F (P )) ⊆ F (L(A(P ))).

For the sake of completeness we give the skeleton of the proof.

P r o o f. The singletons of the set of atoms is an atom of L(A(P )) and arbitrary

intersection of subspaces is again a subspace and so L(A(P )) is a complete atomistic

lattice. Observe that ω(a), a ∈ P is a subspace. If p 6 z for all z ∈ Su, where S is

a finite subset of ω(a), then a ∈ Su and p 6 a as well. If a 6 b, then ω(a) ⊆ ω(b)

and conversely. As P is atomistic, the mapping a 7→ ω(a) of P into L(A(P )) is

one-one order preserving. Observe that if a ∈ P is finite, then ω(a) is finite; for,

let a =
∨
{p1, . . . , pn} for some natural number n and pi ∈ A(P ), then ω(a) =

ω(p1)∨. . .∨ω(pn), since ω(pi) = {pi}. Therefore, F (L(A(P ))) is isomorphic to F (P )

by the mapping a 7→ ω(a). �

Proposition 2.15. Let P be an atomistic poset and a, b ∈ P . Then (a, b)S implies

that ω(a, b) = ω(a) ∨ ω(b).
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P r o o f. As it is always true that ω(a) ∨ ω(b) ⊆ ω(a, b), we prove that ω(a) ∨

ω(b) ⊇ ω(a, b). Suppose that p ∈ ω(a, b), then p ∈ (a, b)ul and by (a, b)S we have

p ∈ (a1, b1)
ul, where a1, b1 ∈ F (P ) and a1 6 a, b1 6 b. We note that a1 =

∨
{pi :

i = 1, 2, . . . , n} and b1 =
∨
{qj : j = 1, 2, . . . ,m}. It means that there exists a

finite subset S = {pi : i = 1, 2, . . . , n} ∪ {qj : j = 1, 2, . . . ,m} such that p ∈ Sul.

Since S ⊆ ω(a) ∪ ω(b) and S is essentially a finite set, by Theorem 2.14 we have

p ∈ ω(a) ∨ ω(b). �

Lemma 2.16. In an atomistic poset P if every pair is a statisch pair, then we

have (ω(a), ω(b))S for all a, b ∈ P .

P r o o f. Let ω(p) 6 ω(a) ∨ ω(b) for an atom p and a, b ∈ P . Since (a, b)S

holds, by Proposition 2.15 we have ω(a) ∨ ω(b) = ω(a, b). Hence p ∈ (a, b)ul and

there exist finite elements a1 6 a, b1 6 b such that p ∈ (a1, b1)
ul. This means

that p ∈ ω(a1, b1) = ω(a1) ∨ ω(b1) and ω(a1) 6 ω(a), ω(b1) 6 ω(b). Therefore

ω(p) 6 ω(a1) ∨ ω(b1), that is, (ω(a), ω(b))S. �

It is well-known that the set of finite elements of an AC-lattice forms an ideal. An

AC-lattice is an atomistic lattice with covering property, that is, in a lattice with 0,

if p is an atom and a ∧ p = 0, then a ≺ a ∨ p. Maeda and Maeda in [3] essentially

proved that in an AC-lattice if a is a finite element and b 6 a, then b is also a finite

element and hence, the set of finite elements forms an ideal.

Definition 2.17. A poset P is said to have strong exchange property if the

following condition holds.

For atoms p, q and a subset A ⊆ P if p ∈ {A, {q}}ul and p /∈ Aul, then

q ∈ {A, {p}}ul.

Lemma 2.18. Let P be a statisch poset with strong exchange property. Then

L(A(P )) is an AC-lattice.

P r o o f. By Theorem 2.14, L(A(P )) is atomistic. We show that L(A(P )) has the

covering property. For an atom p let ω(p) 
 ω in L(A(P )). Let ω < ω1 6 ω ∨ ω(p).

By definition,

ω ∨ ω(p) = {t ∈ A(P ) : t ∈ Sul, S is a finite subset of ω ∪ ω(p)}.

Therefore there exists a finite set of atoms {q1, . . . , qn} ⊆ ω such that ω ∨ ω(p) =

{t ∈ A(P ) : t ∈ {q1, . . . , qn, p}
ul}. Take an atom r ∈ ω1 with r /∈ ω (such atom exists

since L(A(P )) is atomistic). As ω1 6 ω ∨ ω(p), we have r ∈ {q1, . . . , qn, p}
ul. Since

r /∈ ω and ω is a subspace, we have r /∈ {q1, . . . , qn}
ul. Now, by the strong exchange

property we have p ∈ {q1, . . . , qn, r}
ul and therefore p ∈ ω1. This means that every
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atom contained in ω ∨ ω(p) is also contained in ω1 and hence ω1 = ω ∨ ω(p) and

consequently P has the covering property. �

Proposition 2.19. The set of finite elements of a statisch poset with strong

exchange property forms an ideal.

P r o o f. For a, b ∈ F (P ) of a statisch poset P we prove that (a, b)ul ⊆ F (P ).

For x ∈ (a, b)ul we show that x ∈ F (P ). Observe that ω(x) ⊆ ω(a, b). Since P is

statisch, ω(a, b) = ω(a) ∨ ω(b) and hence ω(x) 6 ω(a) ∨ ω(b) in L(A(P )). Since a, b

are finite, so are ω(a), ω(b) and therefore ω(a) ∨ ω(b) is finite. Since L(A(P )) is an

AC-lattice by Lemma 2.18, we conclude that ω(x) is finite in L(A(P )) and since for

every atom p we have ω(p) = {p}, we conclude that x is finite in P . �

We now study statisch pairs in connection with ∇-relation.

Theorem 2.20 ([8]). Let P be an atomistic poset. The following statements are

equivalent for a ∈ P .

(α) a is a standard element.

(β) a is a ∇-standard element.

(γ) a is a distributive element.

(δ) If p is an atom and p 
 a, then a ∇ p.

(ε) If an atom p is subperspective to a, then p 6 a.

(ζ) If an atom p ∈ (a, x)ul for x ∈ P , then p 6 a or p 6 x.

R em a r k 2.21. We note that condition (ζ) implies that (a, x)S holds. Therefore

if P is an atomistic poset satisfying any of the conditions of Theorem 2.20, then

(a, x)S holds for all x ∈ P .

Theorem 2.22. Let P be an atomistic poset. Then the following statements are

equivalent.

(α) Every atom of P is ∇-standard.

(β) If p, q ∈ A(P ) and p is subperspective to q, then p = q.

(γ) (p, x)P holds for any p ∈ A(P ) and (0 6=)x ∈ P and ω(p, q) = {p, q}.

P r o o f. (α) ⇔ (β): follows from Theorem 2.20.

(β) ⇒ (γ): Let q ∈ A(P ) and q ∈ (p, x)ul. If q 
 x, then q is subperspective to p

and by assumption q = p. Hence, taking any atom r with r 6 x we have q ∈ (p, r)ul

and (p, x)P holds. If q 6 x, we may take r = q and (p, x)P holds. Next, if p 6= q,

then for any atom r ∈ (p, q)ul we have r = p or r = q by Theorem 2.20. Therefore

ω(p, q)ul = {p, q}.

(γ) ⇒ (β): Let p, q ∈ A(P ) and p ∈ (q, x)ul and (p, x)l = {0}. If x = 0, then p = q.

If x 6= 0, then since (q, x)P holds, there exists an atom r 6 x and p ∈ (q, r)ul. Then
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q 6= r since otherwise p 6 x, a contradiction. Hence, by assumption p ∈ ω(q, r) =

{q, r}. But p 6= r and hence p = q. �

Corollary 2.23. Let P be an atomistic poset whose every atom is ∇-standard.

Then (p, x)S holds for every p ∈ A(P ) and nonzero element x ∈ P .

Lemma 2.24. Let P be an atomistic poset whose every atom is ∇-standard.

Consider the following statements.

(α) P is ∇-symmetric.

(β) Every element of P is ∇-standard.

(γ) (a, b)S holds for every a, b ∈ P .

Then (α) ⇒ (β) ⇒ (γ).

P r o o f. (α) ⇒ (β): Let a ∈ P . If an atom p 
 a, then since p is ∇-standard,

we have p ∇ a and therefore a ∇ p by (α). Hence, a is ∇-standard by Theorem 2.20.

(β) ⇒ (γ): For arbitrary elements a, b ∈ P let p ∈ (a, b)ul. By Theorem 2.20, we

have either p 6 a or p 6 b and consequently (a, b)S holds. �

We remark that the validity of the implication (γ) ⇒ (α) is still questionable.

Corollary 2.25. If every element of an atomistic poset P is ∇-standard, then

(a, b)S holds for every a, b ∈ P .

P r o o f. Let every element of P be ∇-standard and p ∈ (a, b)ul with p 6 a.

Then (a, b)S holds by Remark 2.2. �

Lemma 2.26. Let q be an atom of an atomistic poset P . If q is ∇-standard

element, then (q, x)S holds for all x ∈ P .

P r o o f. Let p ∈ (q, x)ul, then by Theorem 2.20 we have either p 6 x or p = q.

If p = q, then p ∈ (p, 0)ul and (q, x)S holds. If p 6= q, then p ∈ (p, q)ul for p 6 x and

again (q, x)S holds. �

Lemma 2.27 ([5]). In a poset P for a, b ∈ P :

(1) If a ∇ b and b ∈ (x, a)ul for x ∈ P , then b 6 x.

(2) a ∇ b, a1 6 a and b1 6 b imply that a1 ∇ b1.

Using Lemma 2.27, we obtain the following result.

Lemma 2.28. Let P be an atomistic poset and a, b ∈ P . Let (a, x)S holds for

all x ∈ P . Then a ∇ b if and only if a1 ∇ b1 for all finite elements a1, b1 such that

a1 6 a, b1 6 b.
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P r o o f. By Lemma 2.27, a ∇ b implies a1 ∇ b1 for all finite elements a1, b1 such

that a1 6 a, b1 6 b.

Conversely, suppose that a1 ∇ b1 holds for all finite elements a1, b1 such that

a1 6 a, b1 6 b. Let y ∈ {(a, x)u, b}l. To prove a ∇ b, it is sufficient to show that

y 6 x.

Assume on the contrary that y 
 x. By the atomisticity of P , there exists an

atom p such that p 6 y ∈ (a, x)ul and p 
 x. Since p 6 y, and using (a, x)S we have

finite elements a2, b2 ∈ P such that p ∈ (a2, b2)
ul, a2 6 a, b2 6 x. Evidently p 
 b2

as b2 6 x and p 
 x. But then p ∈ {(a2, b2)
u, p}l = (b2, p)

l = {0} by a2 ∇ p, a

contradiction. Hence y 6 x as required. �

Statisch lattices with covering property have connections with modularity, sym-

metricity and matroid lattices. Besides, the ideal of finite elements of AC-lattices

has connections with parallelism and Wilcox lattices (recently, these two concepts

have been generalized to posets by Shewale in [4]). As we have shown that the set

of finite elements of a statisch poset with strong exchange property forms an ideal,

the investigation and generalization of above mentioned connections appear a wide

open research area.
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