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Abstract. The admissibility of spaces for Itô functional difference equations is investi-
gated by the method of modeling equations. The problem of space admissibility is closely
connected with the initial data stability problem of solutions for Itô delay differential equa-
tions. For these equations the p-stability of initial data solutions is studied as a special case
of admissibility of spaces for the corresponding Itô functional difference equation. In most
cases, this approach seems to be more constructive and expedient than other traditional
approaches. For certain equations sufficient conditions of solution stability are given in
terms of parameters of those equations.
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1. Introduction

Stability of solutions of the stochastic difference equations with aftereffect is not

a well studied issue. One of our papers [10] is devoted to some questions of stability of
solutions for Itô functional difference equations. The issue of stability for determin-

istic functional difference equations was generally studied on the basis of a classical
method of Lyapunov-Krasovsky-Razumikhin. This method assumes the existence

of a suitable Lyapunov function (Lyapunov-Krasovsky’s functional) which provides
a desirable stability property (asymptotic behavior) of solutions of the equations un-

der study. However, in the theory of solution stability for deterministic functional
differential equations and functional difference equations the method of the auxiliary
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or “model” equations, also known as “W-method” by Azbelev [2], is very effective

and widely used. Earlier in [6], [7], [8], [9] we used this method for the case of stochas-
tic functional differential equations of Itô. The major objective of this research is
the extension of this method to the case of Itô difference equations with aftereffect.

For these equations, initial data solution stability is studied as a special case of ad-
missibility of spaces for the corresponding Itô functional difference equation. Let

us note that this approach in many cases turns out to be more constructive than
other traditional approaches. In the end of the paper we present some examples of

equations for which sufficient conditions of solution stability are given in terms of
parameters of these equations.

2. Preliminary data and object of research

Assume that (Ω,ℑ, (ℑt)t>0, P ) is the stochastic basis; kn is the linear space of

n-dimensional ℑ0-measurable random variables; Bi, i = 2, . . . ,m are the scalar inde-
pendent standard Wiener processes; 1 6 p <∞; E is the mathematical expectation;
|·| is the norm in R

n; ‖·‖ is the norm of an n ×m-matrix consistent with the norm
in R

m, N is the set of natural numbers; N+ = {0} ∪N.

The main object of research is an Itô linear difference system with the following
form of aftereffect

(2.1) x(s + 1) = x(s) +

[ s
∑

j=−∞

A1(s, j)x(j) + f1(s)

]

h

+

m
∑

i=2

[ s
∑

j=−∞

Ai(s, j)x(j) + fi(s)

]

(Bi((s+ 1)h)− Bi(sh)), s ∈ N+,

where fi(s) is the ℑs-measurable n-dimensional random variable at s ∈ N+, i =

1, . . . ,m, h is a sufficiently small real number, Ai(s, j) is an n×m-matrix whose ele-

ments are ℑs-measurable random variables at i = 1, . . . ,m, j = 0, . . . , s, s ∈ N+

and Bi are ℑ0-measurable random variables at i = 1, . . . ,m, j = −∞, . . . ,−1,

s ∈ N+.
For equation (2.1), let us consider the problem

(2.2) x(j) = ϕ(j); j 6 0,

where ϕ(j) is the ℑ0-measurable n-dimensional random variable for all j 6 0.

Definition 2.1. The solution of problem (2.1), (2.2) is the sequence of random
variables x(s), s ∈ N+, where x(s) is the ℑs-measurable n-dimensional random

variable satisfying equation (2.1) P -almost everywhere under condition (2.2). Let us
denote this solution by xϕ(s), s ∈ N+.
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Special cases of (2.1) are:

a) Linear system of “ordinary” Itô difference equations

(2.3) x(s+ 1) = x(s) + [a1(s)x(s) + f1(s)]h

+

m
∑

i=2

[ai(s)x(s) + fi(s)](Bi((s+ 1)h)−Bi(sh)), s ∈ N+,

where fi(s) is an ℑs-measurable n-dimensional random variable at s ∈ N+, i =

1, . . . ,m, h > 0, ai(s) is an n×m-matrix whose elements are ℑs-measurable random

variables at i = 1, . . . ,m, s ∈ N+.
b) Linear system of Itô difference equations with bounded delay

(2.4) x(s+ 1) = x(s) +

[ s
∑

j=s−d

a1(s, j)x(j) + f1(s)

]

h

+

m
∑

i=2

[ s
∑

j=s−d

ai(s, j)x(s) + fi(s)

]

(Bi((s+ 1)h)−Bi(sh)), s ∈ N+,

where d ∈ N, fi(s) is an ℑs-measurable n-dimensional random variable at s ∈ N+,
i = 1, . . . ,m, h > 0, ai(s, j) is an n ×m-matrix whose elements are ℑs-measurable

random variables at i = 1, . . . ,m, s ∈ N+, j = 0, . . . , s, and Bi are ℑ0-measurable
random variables at i = 1, . . . ,m, s = 0, . . . , d− 1, j = −d, . . . ,−1.

R em a r k 2.1. By analogy with the determinate case, let equation (2.1) with

condition (2.2) be called the initial task. In the determinate case, Azbelev and his
followers applied the other approach when studying issues of stability for differential

equations with aftereffect [6], [7], [8], [9]. Similarly to this approach, equation is
thought of as equation (2.1) with condition (2.2) with j < 0.

As noted in Remark 2.1 equation means equation (2.1) with condition (2.2) at

j < 0. Let us rewrite this equation in the following form:

(2.5) x(s+ 1) = x(s) + [f(s) + (V x)(s)]Z(s), s ∈ N+,

where

(V x)(s) = ((V1x)(s), . . . , (Vmx)(s)) =

( s
∑

j=0

A1(s, j)x(j), . . . ,
s

∑

j=0

Am(s, j)x(j)

)

,

Z(s) = (h,B2((s+ 1)h)−B2(sh), . . . , Bm((s+ 1)h)−Bm(sh)),

f(s) =

(

f1(s) +

−1
∑

j=−∞

A1(s, j)ϕ(j), . . . , fm(s) +

−1
∑

j=−∞

Am(s, j)ϕ(j)

)

.
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By analogy with the determinate case, we call equation (2.5) the Itô functional

difference equation. For this equation, let us consider the problem

(2.6) x(0) = x0,

where x0 is an ℑ0-measurable n-dimensional random variable.

Definition 2.2. The solution of problem (2.5), (2.6) is the sequence of ran-
dom variables x(s), s ∈ N+ where x(s) is the ℑs-measurable n-dimensional random

variable satisfying condition (2.6) and equation (2.5) P -almost everywhere. Let us
denote this solution by xf (s, x0), s ∈ N+.

R em a r k 2.2. In passing to equation (2.5), initial conditions (2.2) at j < 0 be-

come the right part f of this equation. Thus, initial problem (2.1), (2.2) is equivalent
to problem (2.5), (2.6) in the case when x0 = ϕ(0).

Definition 2.3. Equation (2.5) is homogeneous, if f(s) = 0 holds P -almost

everywhere with all s ∈ N+.

R em a r k 2.3. Homogeneous equation (2.5) corresponds to equation (2.1) in the
case when fi ≡ 0 with i = 1, . . . ,m and to condition (2.2) when j < 0 in the case

when ϕ(j) = 0 (j < 0), i.e.

(2.7) x(s + 1) = x(s) +

s
∑

j=0

A1(s, j)x(j)h

+

m
∑

i=2

s
∑

j=0

Ai(s, j)x(j)(Bi((s+ 1)h)− Bi(sh)), s ∈ N+,

x(j) = 0, j < 0.

Let dn be the linear sequence space of n-matrices x(s), s ∈ N+ with elements x(s)

being ℑs-measurable n-dimensional random variables; let ln be the linear sequence
space of n ×m-matrices H(s), s ∈ N+ where elements of the matrix H(s) are ℑs-

measurable random variables. It is easy to see that V is an additive operator acting
from the space dn into the space ln. Assume 1 6 p <∞, 1 6 q 6 ∞, γ(s), s ∈ N+ is

the sequence of positive real numbers. In the sequel the following normalized linear
subspaces of the spaces dn, ln, kn are used:

mγ
p

def
=

{

x : x ∈ dn, ‖x‖mγ

p
= sup

s∈N+

(E|γ(s)x(s)|p)1/p <∞
}

, m1
p = mp;

knp
def
= {α : α ∈ kn, ‖α‖kn

p
= (E|α|p)1/p <∞};
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λγp,q
def
=

{

f : f ∈ ln, ‖f‖λγ

p,q
=

(

∑

s∈N+

(E‖γ(s)f(s)‖p)q/p
)1/q

<∞
}

;

λγp,∞
def
=

{

f : f ∈ ln, ‖f‖λγ

p,∞
= sup

s∈N+

(E‖γ(s)f(s)‖p)1/p <∞
}

.

3. Initial data stability and admissibility of spaces

Other researchers apparently did not study the issues of space admissibility even
in the case of Itô stochastic differential equations. We should note that the problem

of space admissibility is closely connected with a problem of initial data stability of
solutions for Itô delay differential equations.

Definition 3.1. The trivial solution of homogeneous equation (2.7) is

⊲ p-stable if for any ε > 0 there is δ(ε) > 0 such that for any ϕ(j), j < 0 the estimate

E|xϕ(s)|p 6 ε at s ∈ N+ follows from the inequality sup
j<0

E|ϕ(j)|p < δ;

⊲ asymptotically p-stable if it is p-stable and, besides, for any ε > 0 there is δ(ε) > 0

such that lim
s→∞

E|xϕ(s)|p = 0 follows from the inequality sup
j<0

E|ϕ(j)|p < δ for any

ϕ(j), j < 0;

⊲ exponentially p-stable if there are numbers c > 0, β > 0 such that the inequality

E|xϕ(s)|p 6 c sup
j<0

E|ϕ(j)|p exp{−βs}, s ∈ N+ holds.

Suppose J , S, R are linear normalized subspaces of the spaces kn, dn, ln, respec-
tively.

Definition 3.2. For equation (2.5) the triplet (J, S,R) is admissible if

xf (· , x0) ∈ S for any x0 ∈ J , f ∈ R, and there exists c ∈ R
1
+ at which the

inequality

(3.1) ‖xf (· , x0)‖S 6 c(‖x0‖J + ‖f‖R)

is valid.

Theorem 3.1. Suppose J = knp , S = mγ
p , R = λγp,q for certain p, q, 1 6 p < ∞,

1 6 q 6 ∞ and a positive sequence γ(s), s ∈ N+, for equation (2.5) the triplet

(J, S,R) is admissible,

Φ
def
=

( −1
∑

j=−∞

A1(s, j)ϕ(j), . . . ,

−1
∑

j=−∞

Am(s, j)ϕ(j)

)
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belongs to the space R for any ϕ such that sup
j<0

E|ϕ(j)|p <∞,

‖Φ‖R 6 K sup
j<0

(E|ϕ(j)|p)1/p,

where K is a positive number. Then:

1) if γ(s) = 1, s ∈ N+, then the trivial solution of equation (2.7) is p-stable;

2) if γ(s) > δ, s ∈ N+ for a certain δ > 0 and lim
s→∞

γ(s) = ∞, then the trivial
solution of equation (2.7) is asymptotically p-stable;

3) if γ(s) = exp{βs}, s ∈ N+ for a certain β > 0, then the trivial solution of

equation (2.7) is exponentially p-stable.

The validity of the theorem is obvious.

4. Method of auxiliary equations or “W -method”

We need the following lemma.

Lemma 4.1. For the solution of equation (2.5) passing through x0 ∈ kn, the

representation

(4.1) xf (s, x0) = X(s)x0 + (Cf)(s), s ∈ N+

is true, where X(s), s ∈ N+ (X(0) = E is the unit matrix) is the matrix whose

columns are solutions of equation (2.5) (fundamental matrix ), and C : ln → dn is

the linear operator (Cauchy operator) such that (Cf)(0) = 0 and (Cf)(s), s ∈ N+

is the solution of equation (2.5).

Note that for the case of deterministic functional difference equations, representa-

tion (4.1) is obtained in [1] (see [3], [4]).

P r o o f. It is easy to verify that X(s)x0, s ∈ N+ where x0 ∈ kn is the solution of
equation (2.5).

For equation (2.5), let us consider the Cauchy problem

(4.2) x(0) = 0.

Cauchy problem (2.5), (4.2) is uniquely solvable with any f ∈ ln. Therefore, this
problem yields a certain operator acting from the space ln into the space dn. Let

us denote this operator by C. It is obvious that (Cf)(0) = 0, and it is possible to
verify that this operator is linear by a direct check using the unique solvability of
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problem (2.5), (4.2). This implies that (4.1) is the solution of equation (2.5). Since

the unique solution (with an accuracy up to P -equivalence) of equation (2.5) passes
through any x0 ∈ kn, we can see that any solution xf (s, x0), s ∈ N+ of equation (2.5)
is represented as (4.1).

The lemma is proved. �

Suppose (as in Section 3) J , S, R are the linear normalized subspaces of the

spaces kn, dn, ln, respectively.

In order to verify the admissibility of the triplet (J, S,R) for equation (2.5) it

is necessary to check whether the solution xf (· , x0) of equation (2.5) belongs to
the space S for any x0 ∈ J , f ∈ R, and whether (3.1) is true for this equation.

Let us check the feasibility of these conditions using the equivalence conversion of
equation (2.5).

Let us consider a “model” equation (a “modeling” equation) with well-known

asymptotic properties of its solutions. Suppose the model equation has the form

(4.3) x(s+ 1) = x(s) + [(Qx)(s) + g(s)]Z(s), s ∈ N+,

where Q : dn → ln is an additive operator, g ∈ ln. It is assumed that the only
solution x (with an accuracy up to P -equivalence) of equation (4.3) passes through

any x0 ∈ kn. Then owing to Lemma 4.1, for this solution x there is a representation
x(s) = U(s)x0 +(Wg)(s), s ∈ N+, where U is the fundamental matrix and W is the

Cauchy operator for equation (4.3).

Using model equation (4.3), let us rewrite equation (2.5) as

x(s+ 1) = x(s) + [(Qx)(s) + ((V −Q)x)(s) + f(s)]Z(s), s ∈ N+

or

x(s) = U(s)x0 + (W (V −Q)x)(s) + (Wf)(s), s ∈ N+.

Let W (V −Q) = Θl, then

((I −Θl)x)(s) = U(s)x0 + (Wf)(s), s ∈ N+.

It should be noted that in the sequel the reversibility of I − Θl : S → S means

that the operator I −Θl takes the space S to itself in a one-to-one manner.

Theorem 4.1. Suppose the triplet (J, S,R) is admissible for model equation (4.3),

and the operator Θl acts in the space S. Then, if the operator I − Θl : S → S is

continuously invertible, the triplet (J, S,R) is admissible for equation (2.5).
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P r o o f. Owing to invertibility of I − Θl : S → S the equation (I − Θl)x = g

where g ∈ S has the only solution from S, i.e. x = (I − Θl)
−1g ∈ S. From this

and from the theorem conditions we can deduce that (I − Θl)
−1(Ux0 +Wf) ∈ S

for any x0 ∈ J . But, on the other hand, xf (s, x0) = ((I − Θl)
−1(Ux0 +Wf))(s),

s ∈ N+. Owing to the assumptions of the theorem we have xf (· , x0) ∈ S for any
x0 ∈ J , f ∈ R. Feasibility of inequality (3.1) for xf (s, x0), s ∈ N+ follows from

continuous invertibility of the operator I −Θl : S → S and admissibility of (J, S,R)
for equation (4.3), i.e. from the theorem conditions. Therefore, the triplet (J, S,R)

is admissible for equation (2.5).
The theorem is proved. �

Let us note that at a priori arbitrary choice of model equation (4.3) for which the

triplet (J, S,R) is admissible there are cases when the operator Θl does not act in
the corresponding functional space at all while for equation (2.5) the triplet (J, S,R)

is admissible. However, if for equation (2.5) the triplet (J, S,R) is admissible, there
is always at least one model equation for which the triplet (J, S,R) is admissible

and the operator Θl acts in the corresponding functional space, and at that the
operator I −Θl is continuously invertible in the same space. Equation (2.5) can be

considered as such model equation as (4.3).
When using Theorem 4.1 the most difficult question is that of finding continuous

invertibility conditions of I − Θl : S → S. It is possible to check the continuous
invertibility of the operator I−Θl : S → S by estimating the norm of the operatorΘl

in the space S. If it is less than 1, then the continuous invertibility is guaranteed.

5. Sufficient stability conditions

Now the following inequality is necessary:

(5.1)

(

E

∣

∣

∣

∣

∫ t+h

t

ψ(τ) dB(τ)

∣

∣

∣

∣

2p)1/(2p)

6 cp

(

E

∣

∣

∣

∣

∫ t+h

t

|ψ(τ)|2 dτ
∣

∣

∣

∣

p)1/(2p)

,

where 1 6 p < ∞, h > 0, ψ(τ) is a locally integrable martingale, cp is a certain

number depending on p, c1 = 1 whose validity follows from [5], Chapter III, Section 3,
Theorem 3.1.

In order to determine the p-stability of the trivial solution of (2.7) or admissibility
of the triplet (knp ,m

γ
p , λ

γ
p,q) for equation (2.5) using Theorem 4.1 it is necessary that

for model equation (4.3) the triplet (knp ,m
γ
p , λ

γ
p,q) should be admissible. In this

regard, first of all we consider the question of admissibility of (kn2p,m
γ
2p, λ

γ
2p,q), where

γ(s) = exp{βs}, s ∈ N+ for a certain positive number β, for the equation often taken
as a model equation.
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Suppose for model equation (4.3) we have (Qx)(s) = (−αx(s), 0, . . . , 0) where α
is the certain positive number such that 0 < α < 1/h. The following lemma is true.

Lemma 5.1. For model equation (4.3) the triplet (kn2p,m
γ
2p, λ

γ
2p,q) is admissible

for all 0 6 β < − ln(1− αh).

P r o o f. Let us note that for the solution x(s) of (4.3) under the previous as-

sumptions the representation x(s) = U(s)x(0) + (Wg)(s), s ∈ N+, where U(s) =

exp{ln(1 − αh)s}E, (Wg)(s) =
s
∑

τ=0
U(s)(U(τ))−1g(τ)Z(τ) is true. As Ux(0) ∈ mγ

2p

at any x(0) ∈ kn2p and ‖Ux(0)‖mγ

2p
6 ‖x(0)‖kn

2p
, for proving the lemma it is enough

to show that for any g ∈ λγ2p,q we haveWg ∈ mγ
2p and ‖Wg‖mγ

2p
6 c‖g‖λγ

2p,q
, where c

is a positive number.

First, let us prove that for any τ ∈ N and n ×m-matrix ϑ with ℑ0-measurable

columns ϑi, i = 1, . . . ,m, the inequality is true

(5.2) E|ϑ(τ)Z(τ)|2p 6 c1E‖ϑ(τ)‖2p,

where c1 is a positive number depending on p and h.

Validity of inequality (5.2) follows from

E|ϑ(τ)Z(τ)|2p = E

∣

∣

∣

∣

ϑ1(τ)h+

m
∑

i=2

ϑi(τ)(Bi((τ + 1)h)−Bi(τh))

∣

∣

∣

∣

2p

= E

∣

∣

∣

∣

ϑ1(τ)h+

m
∑

i=2

ϑi(τ)

∫ (τ+1)h

τh

dBi(ς)

∣

∣

∣

∣

2p

6 c
(1′)
1 E|ϑ1(τ)h|2p + c

(2)
2

m
∑

i=2

E|ϑi(τ)|2p 6 c1E‖ϑ(τ)‖2p.

In the previous estimates inequality (5.1) is used.

We have

‖Wg‖mγ

2p
= ‖γWg‖m2p

=

∥

∥

∥

∥

γ

(·)
∑

τ=0

U(s)(U(τ))−1g(τ)Z(τ)

∥

∥

∥

∥

m2p

= sup
s∈N+

(

E

∣

∣

∣

∣

γ(s)

s
∑

τ=0

U(s)(U(τ))−1g(τ)Z(τ)

∣

∣

∣

∣

2p)1/(2p)

6 sup
s∈N+

( s
∑

τ=0

(E|γ(s)U(s)(U(τ))−1g(τ)Z(τ)|2p)1/(2p)
)
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6 c
1/(2p)
1 sup

s∈N+

( s
∑

τ=0

(E‖γ(s)U(s)(U(τ))−1g(τ)‖2p)1/(2p)
)

6 c2 sup
s∈N+

( s
∑

τ=0

exp{(ln(1− αh) + β)(s − τ)}(E‖γ(τ)g(τ)‖2p)1/(2p)
)

,

where c2 is a positive number.

When q = 1 by virtue of exp{(ln(1− αh) + β)(s − τ)} 6 1 we obtain

‖Wg‖mγ

2p
6 c3‖g‖λγ

2p,q
,

i.e. for any g ∈ λγ2p,q there is Wg ∈ mγ
2p with ‖Wg‖mγ

2p
6 c3‖g‖λγ

2p,q
where c3 is

a positive number.
As for any positive number a = − ln(1− αh)− β the equality

(5.3)
s

∑

τ=0

exp{−a(s− τ)} = 1 + exp{−a}+ . . .+ exp{−as}

=
1− exp{−a(s+ 1)}

1− exp{−a}

is true, the theorem becomes obvious when q = 1.
For 1 < q <∞ we obtain

‖Wg‖mγ

2p
6 c4 sup

s∈N+

[( s
∑

τ=0

exp{q(ln(1− αh) + β)(s − τ)}
)1/q

×
( s
∑

τ=0

(E‖γ(τ)g(τ)‖2p)q/(2p)
)1/q]

,

where q = q/(1 − q), and c4 is a positive number. Taking (5.3) into account we

obtainWg ∈ mγ
2p for any g ∈ λγ2p,q and ‖Wg‖mγ

2p
6 c5‖g‖λγ

2p,q
, where c5 is a positive

number.

The lemma is proved. �

Let us consider some examples. First let us consider the Itô scalar ordinary dif-
ference equation

(5.4) x(s + 1) = x(s) + [a1x(s) + f1(s)]h

+

m
∑

i=2

[aix(s) + fi(s)](Bi((s+ 1)h)−Bi(sh)), s ∈ N+,

where fi(s) is the ℑs-measurable n-dimensional random variable and s ∈ N+,
i = 1, . . . ,m, h > 0, ai, i = 1, . . . ,m, are real numbers.
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Theorem 5.1. Suppose the conditions

−1 < a1h < 0, cp

m
∑

i=2

|ai| < −a1
√
h

are satisfied for equation (5.4). Then the trivial solution of homogeneous equa-

tion (5.4) is 2p-stable at 1 6 p <∞.

P r o o f. For proving this theorem we use Theorems 4.1 and 3.1. As a model

equation we take equation (4.3) where (Qx)(s) = ((1 + a1h)x(s), 0, . . . , 0), s ∈ N+,
and as spaces J , S, R we take the spaces kn2p, m2p, λ2p,q , respectively. Then, owing

to Lemma 5.1, the triplet (kn2p,m2p, λ2p,q) is admissible for the model equation and

(Θlx)(s) = λs
s−1
∑

τ=0

λ−τ−1(Kx)(τ), s ∈ N+,

where λ = 1 + a1h, (Kx)(τ) =
m
∑

i=2

aix(τ)
∫ (τ+1)h

τh
dBi(ζ).

Using inequality (5.1) it is easy to verify directly that ‖Θl‖m2p
6 c‖x‖m2p

where

c =
(

cp
m
∑

i=2

|ai|
)

/(1−λ). This implies that the conditions of Theorem 4.1 are satisfied.
Now by virtue of c < 1, according to the conditions of Theorem 4.1 it follows that
for equation (5.4) the triplet (kn2p,m2p, λ2p,q) is admissible. Therefore, owing to

Theorem 3.1 (in this case Φ = 0) the trivial solution of homogeneous equation (5.4)
is 2p-stable for 1 6 p <∞.
The theorem is proved. �

Finally, let us consider the Itô scalar difference equation with bounded delays

(5.5) x(s+ 1) = x(s) + [a1x(s) + f1(s)]h

+

m
∑

i=2

[ d
∑

j=0

aijx(s− j) + fi(s)

]

(Bi((s+ 1)h)−Bi(sh)), s ∈ N+,

x(j) = ϕ(j), j < 0,

where d ∈ N, fi(s) is a ℑs-measurable n-dimensional random variable for s ∈ N+,

i = 1, . . . ,m, h > 0, a1, aij , j = 0, . . . , d, i = 2, . . . ,m, are real numbers, ϕ(j) is an
ℑ0-measurable random variable for all j < 0.

Theorem 5.2. Suppose for equation (5.5) the conditions −1 < a1h < 0,

cp
m
∑

i=2

d
∑

j=0

|aij | < −a1
√
h are satisfied. Then the trivial solution of homogeneous

equation (5.5) is 2p-stable at 1 6 p <∞.
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Theorem 5.2 is proved similarly to Theorem 5.1. Model equation (4.3) and the

spaces J , S, R are the same as in the proof of Theorem 5.1. In the case of equa-
tion (5.5) it is easy to show that for any ϕ such that sup

j<0
E|ϕ(j)|p < ∞, Φ belongs

to the space R and ‖Φ‖R 6 K sup
j<0

(E|ϕ(j)|p)1/p, where K is a positive number.

References

[1] D.L.Andrianov: Boundary value problems and control problems for linear difference
systems with aftereffect. Russ. Math. 37 (1993), 1–12; translation from Izv. Vyssh.
Uchebn. Zaved. Mat. 5 (1993), 3–16.

[2] N.V.Azbelev, P.M. Simonov: Stability of Differential Equations with Aftereffect. Sta-
bility and Control: Theory, Methods and Applications 20. Taylor and Francis, London,
2003.

[3] S.Elaydi: Periodicity and stability of linear Volterra difference systems. J. Math. Anal.
Appl. 181 (1994), 483–492.

[4] S.Elaydi, S. Zhang: Stability and periodicity of difference equations with finite delay.
Funkc. Ekvacioj, Ser. Int. 37 (1994), 401–413.

[5] N. Ikeda, S.Watanabe: Stochastic Differential Equations and Diffusion Processes.
North-Holland Mathematical Library 24. North-Holland Publishing, Amsterdam; Ko-
dansha Ltd., Tokyo, 1981.

[6] R.Kadiev: Sufficient stability conditions for stochastic systems with aftereffect. Differ.
Equations 30 (1994), 509–517; translation from Differ. Uravn. 30 (1994), 555–564.

[7] R.Kadiev: Stability of solutions of stochastic functional differential equations. Doctoral
dissertation, DSc Habilitation thesis, Makhachkala, 2000 (in Russian).

[8] R.Kadiev, A.V. Ponosov: Stability of linear stochastic functional-differential equations
under constantly acting perturbations. Differ. Equations 28 (1992), 173–179; translation
from Differ. Uravn. 28 (1992), 198–207.

[9] R.Kadiev, A.V. Ponosov: Relations between stability and admissibility for stochastic
linear functional differential equations. Func. Diff. Equ. 12 (2005), 209–244.

[10] R.Kadiev, A.V. Ponosov: The W -transform in stability analysis for stochastic linear
functional difference equations. J. Math. Anal. Appl. 389 (2012), 1239–1250.

Authors’ addresses: Ramazan Kadiev, Dagestan Research Center of the Russian
Academy of Sciences and Department of Mathematics, Dagestan State University, M.Gad-
giev st. 43 a, 367025, Makhachkala, Russia, e-mail: kadiev r@mail.ru; Pyotr Simonov, Perm
State National Research University, P.O.Box 7345, 614083, Perm, Russia, e-mail: simpm@
mail.ru.

196


		webmaster@dml.cz
	2020-07-01T19:33:03+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




