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Abstract. We give existence theorems for weak and strong solutions with trichotomy of
the nonlinear differential equation

(P) ẋ(t) = L(t)x(t) + f(t, x(t)), t ∈ R

where {L(t) : t ∈ R} is a family of linear operators from a Banach space E into itself
and f : R × E → E. By L(E) we denote the space of linear operators from E into itself.
Furthermore, for a < b and d > 0, we let C([−d, 0], E) be the Banach space of continuous

functions from [−d, 0] into E and fd : [a, b] × C([−d, 0], E) → E. Let L̂ : [a, b] → L(E)
be a strongly measurable and Bochner integrable operator on [a, b] and for t ∈ [a, b] define
τtx(s) = x(t + s) for each s ∈ [−d, 0]. We prove that, under certain conditions, the
differential equation with delay

(Q) ẋ(t) = L̂(t)x(t) + f
d(t, τtx) if t ∈ [a, b],

has at least one weak solution and, under suitable assumptions, the differential equation
(Q) has a solution. Next, under a generalization of the compactness assumptions, we show
that the problem (Q) has a solution too.

Keywords: nonlinear differential equation; trichotomy; existence theorem

MSC 2010 : 35F31, 34D09

1. Introduction

In Section 2, we investigate the weak and strong solutions of the problem having

trichotomy

(P) ẋ(t) = L(t)x(t) + f(t, x(t)), t ∈ R.
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Main results of this section generalize many previous theorems. In fact, in the case

L(t) = 0 we have, as a special case, some improvement to the existence theorem of

Cramer-Lakshmikantham-Mitchell in [9], Boudourides in [2], Ibrahim-Gomaa in [21],

Szep in [36] and Papageorgiou in [30]. Cramer-Lakshmikantham-Mitchell in [9] stud-

ied the special case of Problem (P) in a nonreflexive Banach space, Boudourides in [2]

and Papageorgiou in [30] found weak solutions for the special case of Problem (P)

on a finite interval [0, T ] with 0 < T < ∞. Szep in [36] studied the special case of

Problem (P) in a reflexive Banach space, while we use in this section more general

compactness assumptions. Ibrahim-Gomaa [21] proved the existence of weak solu-

tions for the special case of Problem (P) on a finite interval [0, T ]. Also in [14] we

consider the Cauchy problem by using weak and strong measures of noncompactness

while in [17] we consider some differential inclusions and its topological properties

with delay. In [35] the authors present necessary and sufficient conditions for uniform

exponential trichotomy of evolution families on the real line, but in [27] Megan-Stoica

deal with necessary and sufficient conditions for uniform exponential trichotomy of

nonlinear evolution operators in Banach spaces. Moreover, the nonlinear differen-

tial equations were studied by many authors ([6], [7], [15], [19], [22], [25], [26] for

instance). Further, the paper [3] contains also a suggestion how to apply the results

presented in that paper.

In fact, if L(t) 6= 0 our main results generalize those of Cichoń in [4], [6] because

we are able to reduce the compactness assumptions.

Finally, in Section 4 we examine the equation

(Q) ẋ(t) = L̂(t)x(t) + fd(t, τtx) if t ∈ [a, b],

and obtain results similar to that for problem (P). Recently the difference equations

(even in the context of Banach spaces) have been investigated (cf. [31], [34]).

2. Preliminaries

Let E be a Banach space, E∗ its dual space and Ew the Banach space E endowed

with the weak topology. Let λ be the Lebesgue measure on R+, BE the family of all

nonempty bounded subsets of E and RE the family of all nonempty and relatively

weakly compact subsets of E. Assume that 〈, 〉 is the pairing between E and E∗ and

C(w)(R, E) is the space of all (weakly) continuous functions from R
+ to E endowed

with the topology of almost uniform weak convergence. Further, let C([−d, 0], E)

be the Banach space of continuous functions from the closed interval [−d, 0], d > 0

into E. By L(E) we will denote the space of linear operators from E into itself.

A function u : [a, b] → E, (a, b) ∈ R
2 is called Pettis integrable if for any measurable
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subset D of [a, b] there is an element vD in E such that 〈vD, f〉 =
∫
D
〈u(s), f〉ds

for all f ∈ E∗; in this case we write vD =
∫
D u(s) ds. A function u : [a, b] → E

is called Bochner integrable if there exists a sequence of countable-valued functions

{un} converging almost everywhere on [a, b] such that lim
n→∞

∫ b

a
‖un(s)−u(s)‖ ds = 0.

We note that every Bochner integrable function is Pettis integrable (see [20]).

For any nonempty bounded subset Z of E we recall the definition of De Blasi’s

measure of weak noncompactness:

β(Z) = inf{ε > 0: ∃K = weakly compact subset of E, Z ⊆ K + εB1}.

For the properties of β see [1], [13].

If we put Ra = {x : z 6 x < ∞, z = min{a, 0}}, then by a Kamke function we

mean a function w : [a, b]× R
a → R

+ such that

(i) w satisfies the Carathéodory conditions,

(ii) for all t ∈ [a, b]; w(t, a) = 0,

(iii) for any c ∈ (a, b], u ≡ 0 is the only absolutely continuous function on [a, c] which

satisfies u̇(t) 6 w(t, u(t)) a.e. on [a, c] and such that u(a) = 0.

A nonempty family K ⊂ RE is a kernel if it satisfies the following conditions:

(i) A ∈ K ⇒ convA ∈ K,

(ii) B 6= ∅, B ⊂ A, A ∈ K ⇒ B ∈ K,

(iii) a subfamily of all weakly compact sets inK is closed in the family of all bounded

and closed subsets of E with the topology generated by the Hausdorff dis-

tance.

A function γ : BE → [0,∞) is a measure of noncompactness with the kernel K if it

is subject to the following conditions:

(i) γ(A) = 0 ⇒ A ∈ K,

(ii) γ(A) = γ(A), where A is the weak closure of the set A,

(iii) γ(convA) = γ(A),

(iv) A,B ∈ BE , B ⊂ A⇒ γ(B) 6 γ(A), see [1], [23].

Denote by N a basis of neighbourhoods of zero in a locally convex space composed

of closed convex sets. Let N ′ = {rV : V ∈ N, r > 0}. The following two definitions

can be found in [5], [6].

A function p : N ′ → [0,∞) is a p-function if it satisfies the following conditions:

(i) X,Y ∈ N ′, X ⊂ Y ⇒ p(X) 6 p(Y ),

(ii) for each ε > 0 there exists X ∈ N ′ such that p(X) < ε,

(iii) p(X) > 0 whenever X /∈ K.
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A function γ : BE → [0,∞) is a (K,N, p)-measure of noncompactness if and only if

γ(U) = inf{ε > 0: ∃A ∈ K, X ∈ N ′, U ⊂ A+X, p(X) 6 ε},

for each U ∈ BE .

Each (K,N, p)-measure of noncompactness is a measure of weak noncompactness.

De Blasi’s measure is (K,N, p)-measure of noncompactness [1], [5].

For each t ∈ R and L(t) ∈ L(E), we consider the differential equation

(1) ẋ(t) = L(t)x(t).

Following Elaydi and Hájek in [11] we introduce:

Let X(t) be the fundamental solution of the differential equation Ẋ(t) = L(t)X(t)

with the condition X(0) = Id. A linear equation (1) is said to have a trichotomy on

R if there exist linear projections P , Q such that

PQ = QP, P +Q = PQ

and constants α > 1, σ > 0 with

|X(t)PX−1(s)| 6 αe−σ(t−s) if 0 6 s 6 t,

|X(t)(Id− P )X−1(s)| 6 αe−σ(s−t) if t 6 s, s > 0,

|X(t)QX−1(s)| 6 αe−σ(s−t) if 0 6 s 6 0,

|X(t)(Id−Q)X−1(s)| 6 αe−σ(t−s) if s 6 t, s 6 0.

Define the integral kernel K(t, s) = X(t)L(t, s)X−1(s), where

L(t, s) =





Id−Q if 0 6 s 6 max(t, 0),

−Q if max(t, 0) < s,

P if s 6 min(t, 0),

P − Id if min(t, 0) < s 6 0.

Moreover, in [24] the authors consider two trichotomy concepts in the sense of Elaydi-

Hájek in the general case of abstract evolution operators. Now for each t, s ∈ R we

have |K(t, s)| 6 αe−σ(t−s) ([11], Lemma 7).

We will need the following lemmas in the proof of the main results.

Lemma 2.1 ([5]). If γ is an (RE , N, p)-measure of noncompactness such that

p(αX) = αp(X) with X ∈ N ′, α ∈ R
+ and for each X,Y ∈ N ′ we have X+Y ∈ N ′,

then
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(M1) γ(U + V ) 6 γ(U) + γ(V ),

(M2) γ(αU) = αγ(U),

(M3) γ(U ∪ {x}) = γ(U), x ∈ E,

(M4) U ⊆ V ⇒ γ(U) 6 γ(V ),

(M5) γ(convU) = γ(U),

(M6) γ(U) = 0 ⇒ U is relatively compact in E.

Under the assumptions in Lemma 2.1 on the measure γ we state the following

lemma.

Lemma 2.2 ([16]). Let V ⊆ C(I, E) be bounded equicontinuous in the strong

topology and V (J) = {x(t) : x ∈ V, t ∈ J}, where J is a subinterval of I. Then,

under the assumptions in Lemma 2.1, γ(V (J)) = sup
t∈J

γ(V ({t})) = γ((J(s)) for some

s ∈ J .

Lemma 2.3 ([6]). Let γ be an (RE , N, p)-measure of noncompactness such that

p(αX) = αp(X) with X ∈ N ′, α ∈ R and N is composed of balanced sets. Then for

each bounded subset U of E and for each A ∈ L(E), we have γ(AU) 6 |A|γ(U).

Lemma 2.4 ([11]). Let ξ(t) be a nonnegative locally integrable function such that

∫ t+1

t

ξ(s) ds 6 b, t ∈ R.

If α > 0, then for all t ∈ R

∫ ∞

−∞

e−α|t−s|ξ(s) ds 6
2b

1− e−α
.

Lemma 2.5 ([4]). If D : [a, b] → L(E) is a continuous mapping and U is

a bounded subset of E, then

γ

( ⋃

t∈[a,b]

D(t)U

)
6 sup

t∈[a,b]

|D(t)|γ(U).

Lemma 2.6 ([10]). Let W be a bounded, almost equicontinuous subset of

C(R, E). For any subset X of W set ℵ(X) = sup
t∈R

γ(X(t)). Then ℵ has the

properties (M1)–(M5) in Lemma 2.1 and if ℵ(x) = 0, then x is relatively compact

in C(R, E).
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Lemma 2.7 ([8]). Let Y and E be two Banach spaces, Pfc(Y ) the set of all closed

and convex subsets of Y and let F : E → Pfc(Y ) be weakly sequentially upper

hemicontinuous. Further let (xn)n∈N ⊂ C(I, E), xn(t) → x0(t) weakly a.e. on I and

(yn)n∈N∪{0} ⊂ L1(I, E), yn → y0 weakly. Suppose that there exists a ∈ L1(I,R)

such that ‖F (x)‖ 6 a(t) for all x ∈ C(I, E) and yn(t) ∈ F (xn(t)) a.e. on I. Then

y0(t) ∈ F (x0(t)) a.e. on I.

Lemma 2.8 ([28]). Let V ⊆ C(I, E) be a family of strongly equicontinuous func-

tions. Then

βc(V ) = sup
t∈I

β(V (t)),

where βc(V ) is the measure of weak noncompactness in C(I, E) and t 7→ β(V (t)) is

a continuous function.

We need to state the well-known Darbo-Sadovskii’s theorem [33].

Theorem 2.9. Let µ be a measure of noncompactness defined on a normed space

M such that µ(convU) = µ(U) for any nonempty and bounded subset U of M .

Let D be a nonempty bounded closed and convex subset of M . If T : D → M is

continuous and for each bounded A ⊆ D with µ(A) > 0, µ(T (A)) < µ(A), then T

has a fixed point.

Now we consider the Cauchy problem

(C)

{
ẋ(t) = h(t, τtx),

x(t) = ψ ∈ C([−d, 0], E),

where h : [0,∞) × C([−d, 0], E) → E, x ∈ C([−d,∞), E) and τtx ∈ C([−d, 0], E),

t > 0 is defined by τtx(s) = x(t + s), s ∈ [−d, 0]. Let Br = {x ∈ C([−d, 0), E) :

‖x‖ 6 r}.

Theorem 2.10 ([3], Theorem 5). Suppose that E is a separable Banach space.

Let h : [0,∞) × C([−d, 0], E) → E be sequentially weakly continuous in bounded

sets. Further, let h([0, T ]×Br) be relatively compact in Ew for any T, r > 0. Then

for each r > 0 there exists δ(r) > 0 such that if ψ ∈ C([−d, 0], E) and ‖ψ‖ 6 r,

problem (C) has a solution defined on [0, δ]. Moreover, if h is continuous, then

problem (C) has a solution in C1([0, δ];E) and the separability of E is not needed.
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3. Existence results for problem (P)

In the following we study the problem (P) on R and use the (K,N, p)-measure of

noncompactness so that we will generalize Theorem 8 with respect to the Cauchy

problem in [14] and the references herein.

Theorem 3.1. We introduce the following assumptions:

(M1) f is a continuous function from R× Ew to Ew.

(M2) L : R → L(E) is strongly measurable and Bochner integrable on every finite

subinterval of R and the linear equation

ẋ(t) = L(t)x(t)

has a trichotomy with constants α > 1 and σ > 0.

(M3) There exist two real nonnegative functions c1, c2 which are locally integrable

on R and, for each t ∈ R, there exist two constants C1 and C2 such that

sup
t∈R

∫ t+1

t

c1(s) ds 6 C1, sup
t∈R

∫ t+1

t

c2(s) ds 6 C2,

where 0 < C2 <
1
2 (1− e−σ)/α and ‖f(t, x)‖ 6 c1(t) + c2(t)‖x‖ for each t ∈ R

and x ∈ E.

(M4) For each compact subset I of R and for each ε > 0 there exists a closed subset

Iε of I with λ(I − Iε) < ε such that for any nonempty bounded subset U of E

one has

γ(f(J × U)) 6 sup
t∈J

w(t, γ(U))

for any compact subset J of Iε.

Then there exists a bounded weak solution of (P) on R.

P r o o f. By virtue of assumption (M2) there exist two constants α and σ such

that for each t, s ∈ R,

(2) |K(t, s)| 6 αe−σ(t−s).

If M = 2αC1/(1− e−σ − 2αC2), then M > 0. Put

H =

{
x ∈ Cw(R, E) : ‖x(t)‖ 6M, ‖x(t)− x(τ)‖ 6M

∫ t

τ

|L(s)| ds

+

∫ t

τ

c1(s) ds+M

∫ t

τ

c2(s) ds, τ 6 t

}
.
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H is a nonempty, almost equicontinuous, bounded, closed and convex subset of

Cw(R, E). For each x ∈ H we can define a mapping Γ by

Γ(x)(t) =

∫

R

K(t, s)f(s, x(s)) ds for each t ∈ R.

By Lemma (2.4) and (2) we have ‖Γ(x)‖ 6 2α(C1 +MC2)/(1− e−σ) = M , and so

Γ is bounded on R. Moreover, since y = Γ(x) is a weak solution of the equation

ẏ(t) = L(t)y(t) + f(t, x(t)), we have

‖Γ(x)(t) − Γ(x)(τ)‖ 6

∫ τ

t

‖L(s)Γ(x)(s) + f(t, x(s))‖ ds

6M

∫ t

τ

|L(s)| ds+

∫ t

τ

c1(s) ds+M

∫ t

τ

c2(s) ds.

Therefore Γ(x) ∈ H and Γ: H → H . Moreover, it can be shown as in [7] that Γ is

continuous on H . Now we note that each nonempty subset X of H is equicontinuous.

According to the definition of γ for each ε > 0 there exists V ∈ N ′ with p(V ) < ε.

We can find two positive constants δ, q such that Me−δq < 2δ and Bδ ⊂ V . In the

sequel without loss of generality we will assume that A = (t − q, t + q) and 0 /∈ A.

Set X1 =
∫ t−q

−∞ K(t, s)f(s,X(s)) ds, thus

‖X1‖ 6

∫ t−q

−∞

αe−δ(t−s)(c1(s) +Mc2(s)) ds 6
Me−δq

2
< δ

and γ(X1) 6 p(V ) 6 ε, so X1 ⊂ Bδ ⊂ V . Moreover, from [32] we have

γ

(∫ ∞

t+q

K(t, s)f(s,X(s)) ds

)
6 ε.

By condition (M4) there exists a closed subset Jε of [t− q, t+ q] such that λ([t − q,

t+ q]−Jε) < ε and for any compact subset K of Jε and any bounded subset Z of E,

(3) γ(f(K × Z)) 6 sup
s∈K

w(s, γ(Z)).

By Scorza-Dragoni theorem there exists a closed subset Iε of the interval [t − q, v]

such that λ(I − Iε) < δ and there exist δ(ε), η > 0 (η < δ) such that

s1, s2 ∈ Iε; r1, r2 ∈ [a, b] with |s1−s2| < δ, |r1−r2| < δ ⇒ |w(s1, r1)−w(s2, r2)| < ε.

Put D = {x ∈ C([t− q, v], E) : x ∈ X}, so

γ(D) = sup{γ(X(s)) : t− q 6 s 6 v} 6 γ(X)
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and

|s1 − s2| < η ⇒ |γ(D(s1))− γ(D(s2))| < δ.

Let us fix u, v, t − q 6 u < v < t + q and let u = t0 < t1 < . . . < tm = v be

a partition of [u, v] with ti − ti−1 < η for i = 1, . . . ,m. Let Ti = Jε ∩ [ti−1, ti] ∩ Iε,

P =
m⋃
i=1

Ti = [u, v] ∩ Jε ∩ Iε and Q = [u, v] − P . We can find η′ > 0, η′ < δ, such

that if r1, r2 ∈ P and |r1 − r2| < η′, then

|K(t, r1)−K(t, r2)| < ε

and we can find si in Ti with

(4) sup
s∈Ti

|K(t, s)| = |K(t, si)|.

Further, we have

(5)

∫ v

s

K(t, s)f(s,D(s)) ds ⊂

∫

P

K(t, s)f(s,D(s)) ds+

∫

Q

K(t, s)f(s,D(s)) ds.

By the mean value theorem for the Pettis-integral we obtain

∫

P

K(t, s)f(s,D(s)) ds ⊂
n∑

i=1

λ(Ti)conv {K(t, s)f(s, w) : s ∈ Ti, w ∈ D(s)}.

Let Di = {x(t) : x ∈ D, t ∈ Ti}. Hence, by Lemma 2.8,

(6) γ(Di) = sup{γ(D(t)) : t ∈ Ti} = γ(D(s′i)) for some s′i ∈ Ti.

In view of (4), (6) and (3) we have

γ

(∫

P

K(t, s)f(s,D(s)) ds

)
6

m∑

i=1

λ(Ti)|K(t, si)|w(qi, γ(D(s)), qi ∈ Ti.

Moreover, |w(s, γ(D(s))) − w(qi, γ(D(s∗i )))| 6 ε′/λ(P ) for all s∗ ∈ Ti. So

λ(Ti)|K(t, si)|w(qi, γ(D(s∗i ))) 6

∫

Ti

|K(t, s)|w(s, γ(D(s))) ds+
ε′λ(Ti)

λ(P )

and

γ

(∫

P

K(t, s)f(s,D(s)) ds

)
6

m∑

i=1

(∫

Ti

|K(t, s)|w(s, γ(D(s))) ds+
ε′λ(Ti)

λ(P )

)
(7)

=

∫

P

|K(t, s)|w(s, γ(D(s))) ds+ ε′.
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Furthermore, we have

(8) γ

(∫

Q

K(t, s)f(s,D(s)) ds

)
6

∫

Q

|K(t, s)|(c1(s) +Mc2(s)) ds.

From (5) we have

γ

(∫ v

u

K(t, s)f(s,D(s)) ds

)
6 γ

(∫

P

K(t, s)f(s,D(s)) ds

)

+ γ

(∫

Q

K(t, s)f(s,D(s)) ds

)
.

If λ(Q) < ε, then from (7) and (8) we deduce that

γ

(∫ v

u

K(t, s)f(s,D(s)) ds

)
6

∫

P

‖K(t, s)‖w(s, γ(D(s))) ds

6

∫ v

u

|K(t, s)|w(s, γ(D(s))) ds.

Moreover,

γ(ϕ(D)(v)) 6 γ(ϕ(D)(u)) + γ

(∫ v

u

K(t, s)f(s,D(s)) ds

)
.

Defining ̺(t) := γ(D(t)) we get

̺(v)− ̺(u) 6 γ

(∫ v

u

K(t, s)f(s,D(s)) ds

)
6 γ(B1)

∫ v

u

|K(t, s)|w(s, ̺(s)) ds.

Therefore ˙̺(t) 6 αγ(B1)e
−σ(t−s)w(t, ̺(t)) a.e. on [u, v] and since ̺(u) = 0, hence

̺ ≡ 0 and so D
w
is weakly compact in Cw(R, E). But D is closed, hence it is

a convex and compact subset in Cw(R, E). By the Schauder-Tichonov theorem,

since ϕ is a continuous mapping from D to D, there is a fixed point y of ϕ such that

y is the desired weak solution of (P). �

Theorem 3.2. Let the following assumptions be fulfilled:

(A1) L : R → L(E) is strongly measurable and Bochner integrable on every finite

subinterval of R and the linear equation

ẋ(t) = L(t)x(t)

has a trichotomy with constants α > 1 and σ > 0.
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(A2) f : R× E → E is a function such that

(i) for each t ∈ R the function f(t, .) is continuous,

(ii) for each x ∈ E the function f(·, x) is measurable,

(iii) there exist two real nonnegative functions c1, c2 locally integrable on R

and, for each t ∈ R, two constants C1 and C2 with

sup
t∈R

∫ t+1

t

c1(s) ds 6 C1, sup
t∈R

∫ t+1

t

c2(s) ds 6 C2,

where 0 < C2 < (1 − e−σ)/2α and ‖f(t, x)‖ 6 c1(t) + c2(t)‖x‖ for each

t ∈ R and x ∈ E.

(A3) h : R× [0,∞) → R
+ satisfies the Carathéodory conditions.

(A4) L = sup{
∫
A
‖K(t, s)‖h(t, γ(B(s)) ds : t ∈ R} 6 sup{γ(B(s)) : s ∈ A}, where

B is a bounded subset of C(R, E), for each compact subset A of R.

(A5) For each compact subset I of R and for each ε > 0, there exists a closed subset

Iε of I with λ(I − Iε) < ε such that for any nonempty bounded subset U of

E one has

γ(f(J × U)) 6 sup
t∈J

h(t, γ(U))

for any compact subset J of Iε.

Then there is at least one bounded solution of (P) on R.

P r o o f. By the assumption (A1) there exist two constants α and σ such that

for each t, s ∈ R, [11] Lemma 7 yields

(9) |K(t, s)| 6 αe−σ(t−s).

Now if M = 2αC1/(1− e−σ − 2αC2), then M > 0. Put

H =

{
x ∈ C(R, E) : ‖x(t)‖ 6M, ‖x(t)− x(τ)‖ 6M

∫ t

τ

|A(s)| ds

+

∫ t

τ

c1(s) ds+M

∫ t

τ

c2(s) ds, τ 6 t

}
.

H is a nonempty, almost equicontinuous, bounded, closed and convex subset of

C(R, E). For each x ∈ H we can define a mapping ψ by

ψ(x)(t) =

∫

R

K(t, s)f(s, x(s)) ds for each t ∈ R,
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and this mapping is bounded on R. Since y = ψ(x) is a solution of the equation

ẏ = A(t)y + f(t, x(t)), we have

‖ψ(x)(t) − ψ(x)(τ)‖ 6

∫ τ

t

‖A(s)ψ(x)(s) + f(t, x(s))‖ ds

6M

∫ t

τ

|A(s)| ds+

∫ t

τ

c1(s) ds+M

∫ t

τ

c2(s) ds.

By Lemma (2.4) and (9)

‖ψ(x)‖ 6
2α(C1 +MC2)

1− e−σ
=M.

Therefore ψ(x) ∈ H and ψ : H → H . Moreover, it can be shown as in [7] that ψ is

a continuous function onH . Now we note that each subset X ofH is equicontinuous.

By the definition of γ for each ε > 0 there exists V ∈ N ′ with p(V ) < ε. We can

find two positive constants δ, q such that Me−δq < 2δ and Bδ ⊂ V . In the sequel

without loss of generality we will assume that A = (t− q, t+ q) and 0 /∈ A. Set X1 =∫ t−q

−∞
K(t, s)f(s,X(s)) ds, ‖X1‖ 6

∫ t−q

−∞
αe−δ(t−s)(c1(s)+Mc2(s)) ds 6Me−δq/2 < δ

and

γ(X1) 6 p(V ) 6 ε.

Thus X1 ⊂ Bδ ⊂ V . Moreover [32],

γ

(∫ ∞

t+q

K(t, s)f(s,X(s)) ds

)
6 ε.

Condition (M5) yields that there exists a closed subset Jε of [t− q, t+ q] such that

λ([t− q, t+ q]−Jε) < ε and for any compact subset K of Jε and any bounded subset

Z of E,

(10) γ(f(K × Z)) 6 sup
s∈K

h(s, γ(Z)).

From the Scorza-Dragoni theorem there exists a closed subset Iε of the interval

[t− q, t+ q] such that λ(I − Iε) < δ and there exist δ(ε), η > 0, η < δ, such that

s1, s2 ∈ Iε; r1, r2 ∈ [a, b] with |s1−s2| < δ, |r1−r2| < δ ⇒ |h(s1, r1)−h(s2, r2)| < ε.

Put D = {X(s) : t− q 6 s 6 t+ q}, so

γ(D) = sup{γ(X(s)) : t− q 6 s 6 t+ s} 6 γ(X)
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and

|s1 − s2| < η ⇒ |γ(D(s1))− γ(D(s2))| < δ.

Let t− q = t0 < t1 < . . . < tm = t+ q be a partition of [t− q, t+ q] with ti− ti−1 < η

for i = 1, . . . ,m. Let Ti = Jε ∩ [ti−1, ti] ∩ Iε, P =
m⋃
i=1

Ti = [t − q, t + q] ∩ Jε ∩ Iε

and Q = [t − q, t + q] − P . We can find η′ > 0 (η′ < δ) such that if r1, r2 ∈ P and

|r1 − r2| < η′, then

|K(t, r1)−K(t, r2)| < ε,

and we can find si in Ti with

(11) sup
s∈Ti

|K(t, s)| = |K(t, si)|.

Further, we have

∫ t+q

t−q

K(t, s)f(s,D(s)) ds ⊂

∫

P

K(t, s)f(s,D(s)) ds(12)

+

∫

Q

K(t, s)f(s,D(s)) ds.

By the mean value theorem for the Pettis-integral we obtain

∫

P

K(t, s)f(s,D(s)) ds ⊂
n∑

i=1

λ(Ti) conv {K(t, s)f(s, w) : s ∈ Ti, w ∈ D(s)}.

Let Di = {x(t) : x ∈ D, t ∈ Ti}. Hence, by Lemma 2.8,

(13) γ(Di) = sup{γ(D(t)) : t ∈ Ti} = γ(D(s′i)) for some s′i ∈ Ti.

In view of (11), (13) and (10) we have

γ

(∫

P

K(t, s)f(s,D(s)) ds

)
6

m∑

i=1

λ(Ti)|K(t, si)|h(qi, γ(D(s)), qi ∈ Ti.

Moreover, |h(s, γ(D(s)))− h(qi, γ(D(s∗i )))| 6 ε′/λ(P ) for all s∗ ∈ Ti. So

λ(Ti)|K(t, si)|h(qi, γ(D(s∗i ))) 6

∫

Ti

|K(t, s)|h(s, γ(D(s))) ds+
ε′λ(Ti)

λ(P )

and

γ

(∫

P

K(t, s)f(s,D(s)) ds

)
6

m∑

i=1

(∫

Ti

|K(t, s)|h(s, γ(D(s))) ds+
ε′λ(Ti)

λ(P )

)
(14)

=

∫

P

|K(t, s)|h(s, γ(D(s))) ds+ ε′.
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Furthermore, we have

(15) γ

(∫

Q

K(t, s)f(s,D(s)) ds

)
6

∫

Q

|K(t, s)|(c1(s) +Mc2(s)) ds.

From (12) we have

γ

(∫ t+q

t−q

K(t, s)f(s,D(s)) ds

)
6 γ

(∫

P

K(t, s)f(s,D(s)) ds

)

+ γ

(∫

Q

K(t, s)f(s,D(s)) ds

)
.

If λ(Q) < ε, then from (14) and (15) we deduce that

γ

(∫ t+q

t−q

K(t, s)f(s,D(s)) ds

)
6

∫

P

|K(t, s)|h(s, γ(D(s))) ds

6

∫ t+q

t−q

|K(t, s)|h(s, γ(D(s))) ds

6 sup{γ(D(s)) : t− q < s < t+ q} = γ(D).

Thus

γ(ψ(X(t))) 6 2ε+ γ(D) 6 2ε+ γ(X).

If we put ℵ(X) = sup{γ(X(t)) : t ∈ R} then, by Lemma 2.6, ℵ satisfies the condi-

tion (M5) in Lemma 2.1 and moreover ℵ(ψ(X)) 6 ℵ(X). By Theorem 2.9 ψ has

a fixed point in H which, due to Lemma 7 of [12], is a bounded solution of (P). �

In the next theorem we will deal with the differential equation

(P′) ẋ(t) = L(t)x(t) + f ′(t, x(t)), t ∈ R

where f ′ : R × E → E is a Carathéodory function, L : R → L(E) is a strongly

measurable and Bochner integrable operator on every closed finite interval I of R

and γ is a (K,N, p)-measure of weak noncompactness. The Kuratowski measure

of noncompactness is a (K,N, p)-measure of noncompactness [5], [1], hence we get

generalizations of results such as Theorem 2 in [37] and Theorem 9 in [14].

Theorem 3.3. Assume that f ′ : R × E → E satisfies (M3) and (M4) of Theo-

rem 3.1 while L : R → L(E) is a strongly measurable and Bochner integrable oper-

ator on every closed finite interval I of R. Moreover, assume

(i) for each t ∈ R, f ′(t, ·) is continuous,

(ii) for each x ∈ E, f ′(·, x) is measurable,

(iii) for each x ∈ E and each closed finite interval I of R, f ′(I × {x}) is separable.

Then problem (P′) has at least one bounded solution.
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P r o o f. Let

W =

{
x ∈ C(R, E) : ‖x(t)‖ 6M, ‖x(t)− x(τ)‖ 6M

∫ t

τ

|L(s)| ds

+

∫ t

τ

c1(s) ds+M

∫ t

τ

c2(s) ds, τ 6 t

}
.

We can define a mapping ψ : W →W by

ψ(x)(t) =

∫

R

K(t, s)f(s, x(s)) ds for each t ∈ R.

Let x0 be an arbitrary element inW , ψ(xn) = xn+1 and Y = {xn : n = 0, 1, 2, 3, . . .}.

As in the proof of Theorem 3.1, there exist two constant u, v such that if V = {xn ∈

C([t− q, v], E) : xn ∈ Y } and we define ̺(t) := γ(V (t)), then

̺(v)− ̺(u) 6 γ

(∫ v

u

K(t, s)f(s,D(s)) ds

)
6 γ(B1)

∫ v

u

|K(t, s)|w(s, ̺(s)) ds.

Therefore ˙̺(t) 6 αγ(B1)e
−σ(t−s)w(t, ̺(t)) a.e. on [u, v] and since ̺(u) = 0, we

have ̺ ≡ 0. Thus the closure of V is compact and so we can find a subsequence

(xnk
) of (xn) which converges to a limit x. Since ‖xn − ϕ(xn)‖ → 0 as n → ∞ and

ϕ is continuous, hence x = ϕ(x) so that x is the desired solution of (P′). �

We are in a position to prove the following result.

Theorem 3.4. Let h : [a, b]×R
a → R

+ be a Carathéodry function and, for each

bounded subset Z of [a, b] × R
a, let there exist a measurable function mZ such

that h(t, s) 6 mZ(t) for each (t, s) ∈ Z and m is integrable on [c, T ] for each c;

a < c 6 b. Moreover, let for each c; a < c 6 b, the identically zero function be

the only absolutely continuous function on [a, c] which satisfies u̇(t) = h(t, u(t)) a.e.

on [a, c], such that the right hand derivative of u(t) at t = a, D+u(a), exists and

D+u(a) = u(a) = 0. If we replace in the setting of Theorem 3.3 a Kamke function w

by a function h and suppose that f ′ is bounded and continuous, then the problem (P)

has at least one solution.

P r o o f. Due to the assumption that f ′ is bounded we can find a constant C

such that ‖f ′(t, x)‖ 6 C. Let L : [a, b] → R be defined by

L(t) = sup
‖x‖,‖y‖6Ct

‖f ′(t, x)− f ′(t, y)‖.

It can be shown as in [14], [29], that L is continuous at a and lower semicontinuous on

]a, b]. Consequently, we can say that
∥∥∫ τ

t
f ′(s, x(s))−

∫ τ

t
f ′(s, y(s)) ds

∥∥ 6
∫ τ

t
L(s) ds
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for each x, y ∈ Y . Now by the same argument as in the proof of Theorem 3.3 if we

put Y = {xn : n = 0, 1, 2, 3, . . .} and V = {xn ∈ C([t − q, v], E) : xn ∈ Y } while

̺(t) = γ(V (t)) we get

̺(v)− ̺(u) 6 γ

(∫ v

u

K(t, s)f(s,D(s)) ds

)
6 γ(B1)

∫ v

u

|K(t, s)|w(s, ̺(s)) ds.

Now we can conclude that

̺(τ) − ̺(t) 6 min

(∫ τ

t

L(s) ds, γ(B1)

∫ τ

t

K(t, s)f(s,D(s)) ds

)
, t− q < t 6 τ 6 v.

Since ̺ is an absolutely continuous function on [t− q, v] so

(16) ˙̺(t) 6 min(L(t), γ(B1)αf(t,D(t)), a.e. on [t− q, v].

By Lemma 1 in [29] ̺ ≡ 0 on [t− q, v] and thus we obtain the result. �

4. Existence results for problem (Q)

For t ∈ [a, b] we let L̂(t) ∈ L(E) and τtx(s) = x(t+ s) for all s ∈ [−d, 0]. Assume

that C([−d, 0], E) is the Banach space of continuous functions from [−d, 0] into E

and fd : [a, b]× C([−d, 0], E) → E. In the next theorem we deal with the problem

(Q) ẋ(t) = L̂(t)x(t) + fd(t, τtx), t ∈ [a, b]

and obtain a generalization of Theorem 3.1.

Theorem 4.1. We assume:

(H1) f
d : [a, b] × C(w)([−d, 0], E) → E is continuous, where C(w)([−d, 0], E) is the

space of all weakly continuous functions from [−d, 0] to E.

(H2) L̂ : [a, b] → L(E) is a strongly measurable and Bochner integrable operator on

[a, b] and the linear equation

ẋ(t) = L̂(t)x(t)

has a trichotomy with constants α > 1 and σ > 0.

(H3) There exist two real nonnegative functions c1, c2 integrable on [a, b] and two

constants C1 and C2 such that

∫ b

a

c1(s) ds 6 C1,

∫ b

a

c2(s) ds 6 C2,
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where 0 < C2 <
1
2 (1 − e−σ)/α and ‖f(t, ϕ)‖ 6 c1(t) + c2(t)‖ϕ(0)‖ for each

t ∈ [a, b] and ϕ ∈ C([−d, 0], E).

(H4) For each ε > 0 there exists a closed subset Iε of [a, b] with λ([a, b] − Iε) < ε

such that for any nonempty bounded subset A of C([−d, 0], E) and for each

closed subset J ⊆ Iε, one has

γ(F (J ×A)) 6 sup
t∈J

h(t, γ(A(0))).

Then, for each ψ ∈ CE([a − d, a]) such that ψ(a) = 0, the problem (Q) has a weak

solution on the interval [a− d, b].

P r o o f. Along the same lines as in [17], [18], [16] we use some methods for

functional equations. We partition the closed interval [a, b] by the points tni =

(ib+ (n− i)a)/n where i = 0, 1, 2, . . . , n. Let ξn1 : [a− d, tn1 ]× E → E be a function

defined by

ξn1 (t, x) =

{
ψ(t) if t ∈ [a− d, a],

n(t− a)x if t ∈ [a, tn1 ],

where n is a positive integer. Let fn
1 : [a, tn1 ] × E → E be a function defined by

fn
1 (t, x) = fd(t, τtn

1
(ξn1 (·, x))). Due to Theorem 3.1 there is a function vn such that

vn = ψ on [a− d, a] and for each t ∈ [a, tn1 ]

vn(t) =

∫ t

a

K(t, s)fn
1 (s, vn(s)) ds.

Moreover, there exists a function un : [−d, tnk ] → E defined by un = ψ on [a − d, a]

and

un(t) =

∫ t

a

K(t, s)fn
k (s, un(s)) ds, t ∈ [a, tnk ]

where fn
k (t, x) = fd(t, τtn

k
ξkn(·, x)) and ξ

n
k : [a− d, tnk ]× E → E is defined by

ξnk (t, x) =

{
un(t) if t ∈ [a− d, tnk−1],

un(t
n
k−1) + n(t− tnk−1)(x− un(t

n
k−1)) if t ∈ [tnk−1, t

n
k ].

Assume that ξnk+1 : [a− d, tnk+1]× E → E is a function defined by

ξnk+1(t, x) =

{
un(t) if t ∈ [a− d, tnk ],

un(t
n
k ) + n(t− tnk )(x− un(t

n
k )) if t ∈ [tnk , t

n
k+1].
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Let fn
k+1 : [a, tnk+1] × E → E be defined by fn

k+1(t, x) = fd(t, τtn
k+1

(ξnk+1(·, x))). Ac-

cording to Theorem 3.1 there exists a function uk+1
n : [a, tnk+1] → E such that for

each t ∈ [a, tnk+1]

uk+1
n (t) =

∫ t

a

K(t, s)fn
k+1(s, u

k+1
n (s)) ds.

Put un = uk+1
n on [tnk , t

n
k+1]. Then we can consider un is defined on [a− d, tnk+1] so

that un = ψ on [a− d, a] and for each t ∈ [a, tnk+1]

un(t) =

∫ t

a

K(t, s)fn
k+1(s, un(s)) ds.

Therefore for each n ∈ N, there exists a continuous function un such that un = ψ on

[a− d, a] and for each t ∈ [a, b]

un(t) =

∫ t

a

K(t, s)fd(s, τtn
k
ξnk (·, un(s))) ds,

where k ∈ {1, 2, 3, . . . , n} and tnk−1 6 t 6 tnk . Set H = {un : n ∈ N}. If t1, t2 ∈ [a, b]

and t1 < t2, then

‖un(t1)− un(t2)‖ 6

∫ t1

a

|K(t1, s)−K(t2, s)| ‖f
d(s, τtn

k
ξnk (·, un(s)))‖ ds

+

∫ t2

t1

|K(t2, s)| ‖f
d(s, τtn

k
ξnk (·, un(s)))‖ ds

6

∫ t1

a

|K(t1, s)−K(t2, s)|(c1(s) + c2(s)‖un(s)‖) ds

+ α

∫ t2

t1

e−σ|t2−s|(c1(s) + c2(s)‖un(s)‖) ds.

Furthermore, |K(t, s)| 6 αe−σ|t−s| and un = ψ on [a− d, a]; hence, H is equicontin-

uous in C([a− d, b], E). Moreover, we can define a mapping ψ′ by

ψ′(x)(t) =

∫ t

a

K(t, s)fd(s, τtn
k
ξnk (·, x(s))) ds for each t ∈ [a, b],

so ψ′(H(t)) = ψ′({un(t) : n ∈ N}) and ψ(H(a)) = 0.

We can show that γ(ψ′(H(t))) = 0 for all t ∈ [a, b]. Let a 6 t < x 6 b. In the

same way as in the proof of Theorem 3.1 if we replace the interval [t − q, t + q] by

[t, x] and the set D by H , then

γ(ψ′(H(t))) 6

∫ x

t

|K(t, s)|w(s, γ(H(s))) ds.
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Define ̺(t) := γ(H(t)); since γ(H(t)) = γ(ψ′(H(t))), so ̺(a) = 0 and

̺(x)− ̺(t) 6

∫ x

t

|K(t, s)|w(s, ̺(s)) ds.

Therefore ˙̺(t) 6 αe−σ|t−s|w(t, ̺(t)) a.e., thus ̺ ≡ 0. By Ascoli’s theorem the

sequence (un)n∈N converges weakly uniformly to a function u ∈ CE([a − d, b], E)

such that u = ψ on [a − d, a]. For simplicity we will denote the function fd(s,

τtn
k
ξnk (·, un(s))) by h

k
n(s) and we have ξ({h

k
n(t) : n ∈ N}) = 0, so {hkn(t) : n ∈ N} is

relatively weakly compact. If we create a multivalued function F (t) = conv {hkn(t) :

n ∈ N}, then F (t) is nonempty convex and weakly compact. The set

δ1F := {l ∈ L1(I, E) : l(t) ∈ F (t)}

is nonempty convex and weakly compact, thus by the Eberlein-Śmulian theorem there

exists a subsequence (hknj
) of (hkn) such that h

k
nj

→ l weakly, l ∈ δ1F . Thus un tends

weakly to
∫ t

a K(t, s)l(s) ds. Moreover, un ∈ CE([a − d, b]) and (un)n∈N converges

uniformly to u on each compact subset of [a − d, b] and u is uniformly continuous

on [a − d, a]. But for each t ∈ [a, b] we can find n ∈ N such that d > (b− a)/n and

t ∈ [tnk−1, t
n
k ] for some k in the set {1, 2, . . . , n}. Moreover,

‖τtn
k
ξnk (·, un(t)) − τtu‖ 6 sup

s∈[−d,(a−b)/n]

[‖ξnk (t
n
k + s, un(t))− u(tnk + s)‖

+ ‖u(tnk + s)− u(t+ s)‖]

+ sup
s∈[(a−b)/n,0]

[(‖un(t
n
k−1) + n(tnk + s− tnk−1)

× (un(t)− un(t
n
k−1))− u(tnk + s)‖)

+ ‖u(tnk + s)− u(t+ s)‖]

6 sup
s∈[−d,(a−b)/n]

[‖un(t
n
k + s)− u(tnk + s)‖

+ ‖u(tnk + s)− u(t+ s)‖]

+ sup
s∈[(a−b)/n,0]

[((b − a)‖(un(t)− un(t
n
k−1))‖

+ ‖un(t
n
k−1)− u(tnk + s)‖

+ ‖u(tnk + s)− u(t+ s)‖)] → 0 as n→ ∞.

Thus by Lemma 2.7 we conclude that u(·) is the desired solution of (Q). �

There are really only a few results dealing with weak solutions for delayed prob-

lems and the proposed one seems to be interesting in this subject. The results

presented here are of a more general form (quasi-linear problem and much better
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compactness-type assumption). In the important case L̂(t) ≡ 0 Theorem 4.1 gener-

alizes Theorem 2.10. In [3] the authors formulated a suggestion how to apply the

results presented in this paper to retarded lattice dynamical systems.

In the next theorem we use a (K,N, p)-measure of weak noncompactness. The

Kuratowski measure of noncompactness is (K,N, p)-measure of weak noncompact-

ness, see [5], [1]; hence, we get generalizations of results so we have a generalization

for Theorem 3.3 and improvement for Theorem 2 in [37] and Theorem 9 in [14]. In

the following theorem we have a finite delay and we obtain similar result to that for

problem (P).

Theorem 4.2. We assume:

(H1) f
d : [a, b]× CE([−d, 0]) → E is a function such that

(i) t 7→ fd(t, ϕ) is measurable,

(ii) ϕ 7→ fd(t, ϕ) is continuous,

(iii) there exist two real nonnegative functions c1, c2 integrable on [a, b] and

two constants C1 and C2 with

∫ b

a

c1(s) ds 6 C1,

∫ b

a

c2(s) ds 6 C2,

where 0 < C2 <
1
2 (1− e−σ)/α and ‖f(t, ϕ)‖ 6 c1(t)+c2(t)‖ϕ(0)‖ for each

t ∈ [a, b] and ϕ ∈ CE([−d, 0]).

(H2) L̂ : [a, b] → L(E) is a strongly measurable and Bochner integrable operator

on [a, b].

(H3) For each ε > 0 there exists a closed subset Iε of [a, b] with λ([a, b]−Iε) < ε such

that for any nonempty bounded subset A of CE([−d, 0]) and for each closed

subset J ⊆ Iε, one has

γ(F (J ×A)) 6 sup
t∈J

h(t, β(A(0))).

(H4) Let

L = sup

{∫ b

a

|K(t, s)|h(t, γ(B(s)) ds : t ∈ [a, b]

}

6 sup{γ(B(s)) : s ∈ [a, b]},

where B is a bounded subset of C([a, b], E).

Then, for each ψ ∈ CE([a− d, a]) such that ψ(a) = 0, problem (Q) has at least one

bounded solution on the interval [a− d, b].
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P r o o f. We partition the closed interval [a, b] by the points: tni = (ib+(n−i)a)/n

where i = 0, 1, 2, . . . , n and un will be defined by mathematical induction. Along the

same lines as in [17], [16] we use some methods for functional equations. For each

(t, x) ∈ [a− d, tn1 ]× E put

Φn
1 (t, x) =

{
ψ(t) if t ∈ [a− d, a],

n(t− a)x if t ∈ [a, tn1 ],

where n is a positive integer. Let fn
1 : [a, tn1 ] × E → E be a function defined by

fn
1 (t, x) = fd(t, τtn

1
(Φn

1 (·, x))). By Theorem 3.2 there is a bounded function un :

[a− d, tn1 ] → E with un = ψ on [a− d, a] and for each t ∈ [a, tn1 ]

un(t) =

∫ t

a

K(t, s)fn
1 (s, un(s)) ds.

Now we can assume that the function un such that un = ψ on [a− d, a] and

un(t) =

∫ t

a

K(t, s)fn
k (s, un(s)) ds, t ∈ [a, tnk ]

with fn
k (t, x) = fd(t, τtn

k
Φk

n(·, x)) where Φ
n
k : [a− d, tnk ]× E → E is defined by

Φn
k (t, x) =

{
un(t) if t ∈ [a− d, tnk−1],

unk (t
n
k−1) + n(t− tnk−1)(x− unk (t

n
k−1)) if t ∈ [tnk−1, t

n
k ].

We define Φn
k+1 : [a− d, tnk+1]× E → E by

Φn
k+1(t, x) =

{
un(t) if t ∈ [a− d, tnk ],

un(t
n
k ) + n(t− tnk )(x− un(t

n
k )) if t ∈ [tnk , t

n
k+1].

Now if fn
k+1 : [a, tnk+1] × E → E is defined by fn

k+1(t, x) = fd(t, τtn
k+1

(Φn
k+1(·, x))),

then fn
k+1 satisfies the conditions of Theorem 3.1. Hence there is a bounded function

uk+1
n : [a, tnk+1] → E such that for each t ∈ [a, tnk+1]

uk+1
n (t) =

∫ t

a

K(t, s)fn
k+1(s, u

k+1
n (s)) ds.

Put un = uk+1
n on [tnk , t

n
k+1]. Then we can consider un is defined on [a−d, t

n
k+1] with

un = ψ on [a− d, a] and for each t ∈ [a, tnk+1], un is defined by

un(t) =

∫ t

a

K(t, s)fn
k+1(s, un(s)) ds.
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Consequently, for all n ∈ N we have a continuous bounded function un such that

un = ψ on [a− d, a] and for each t ∈ [a, b], un is defined by

un(t) =

∫ t

a

K(t, s)fd(s, τtn
k
Φn

k (·, un(s))) ds,

where k ∈ {1, 2, 3, . . . , n} is such that tnk−1 6 t 6 tnk . Set W = {un : n ∈ N}. Now if

t1, t2 ∈ [a, b] and t1 < t2, then

‖un(t1)− un(t2)‖ 6

∫ t1

a

|K(t1, s)−K(t2, s)| ‖f
d(s, τtn

k
Φn

k (·, un(s)))‖ ds

+

∫ t2

t1

|K(t2, s)| ‖f
d(s, τtn

k
Φn

k (·, un(s)))‖ ds

6

∫ t1

a

|K(t1, s)−K(t2, s)|(c1(s) + c2(s)‖un(s)‖) ds

+ α

∫ t2

t1

e−σ|t2−s|(c1(s) + c2(s)‖un(s)‖) ds.

Since un is bounded, |K(t, s)| 6 αe−σ|t−s| and un = ψ on [a − d, a] hence W is

equicontinuous in CE [a− d, b]. Moreover, we can define a mapping ψ′ by

ψ′(x)(t) =

∫ t

a

K(t, s)f(s, x(s)) ds for each t ∈ [a, b],

so ψ′(H(t)) = ψ′({un(t) : n ∈ N}) and ψ(H(a)) = 0. We can show that ψ′(H(t)) = 0

for all t ∈ [a, b].

Consider a 6 t < x 6 b. Along the same lines as in the proof Theorem 3.1 if we

replace the interval [t− q, t+ q] by [t, x] and the set D by W, then we have

γ(ψ′(H(t))) 6

∫

P

|K(t, s)|h(s, γ(H(s))) ds 6

∫ x

t

|K(t, s)|h(s, γ(H(s))) ds

and

γ(ψ′(H(x)) 6 γ(ψ′(W )(t)) + γ

(∫ x

t

K(t, s)f(s,H(s)) ds

)
.

Define ̺(t) := γ(H(t)); since γ(H(t)) = γ(ψ′(H(t))), so ̺(a) = 0 and we get

̺(x)− ̺(t) 6 γ

(∫ x

t

K(t, s)f(s,H(s)) ds

)
6

∫ x

t

|K(t, s)|h(s, ̺(s)) ds.

Therefore ˙̺(t) 6 αe−σ|t−s|h(t, ̺(t)) a.e., thus ̺ ≡ 0.
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By Ascoli’s theorem the sequence (un)n∈N converges weakly uniformly to a func-

tion u ∈ CE([a− d, b]) with u = ψ on [a− d, a].

For simplicity we will denote the function fd(s, τtn
k
Φn

k (·, un(s))) by h
k
n(s) and we

have Φ({hkn(t) : n ∈ N}) = 0, so {hkn(t) : n ∈ N} is relatively weakly compact.

Now if we create a multivalued function

F (t) = conv {hkn(t) : n ∈ N},

then F (t) is nonempty convex and weakly compact. The set

δ1F := {l ∈ L1(I, E) : l(t) ∈ F (t)}

is nonempty convex and weakly compact, thus by the Eberlein-Śmulian theorem

there exists a subsequence (hknj
) of (hkn) such that h

k
nj

→ l weakly, l ∈ δ1F . Thus

un tends weakly to
∫ t

a K(t, s)l(s) ds. Moreover, for each n ∈ N, un ∈ CE([a− d, b]),

un converges uniformly to u on each compact subset of [a− d, b] and u is uniformly

continuous on [a − d, a]. But for each t ∈ [a, b] we can find n ∈ N such that d >

(b− a)/n and t ∈ [tnk−1, t
n
k ] for some k in the set {1, 2, . . . , n}. Now

‖τtn
k
Φn

k (·, un(t))− τtu‖ 6 sup
s∈[−d,(a−b)/n]

[‖Φn
k (t

n
k + s, un(t))− u(tnk + s)‖

+ ‖u(tnk + s)− u(t+ s)‖]

+ sup
s∈[(a−b)/n,0]

[(‖un(t
n
k−1) + n(tnk + s− tnk−1)

× (un(t)− un(t
n
k−1))− u(tnk + s)‖)

+ ‖u(tnk + s)− u(t+ s)‖]

6 sup
s∈[−d,(a−b)/n]

[‖un(t
n
k + s)− u(tnk + s)‖

+ ‖u(tnk + s)− u(t+ s)‖]

+ sup
s∈[(a−b)/n,0]

[((b− a)‖un(t)− un(t
n
k−1)‖

+ ‖un(t
n
k−1)− u(tnk + s)‖

+ ‖u(tnk + s)− u(t+ s)‖)] → 0 as n→ ∞.

Thus by Lemma 2.7 we conclude that u(·) is the desired solution of (Q). �

Theorem 4.3. We assume:

(H′
1) f

′d : [a, b]× C([−d, 0], E) → E is a function such that

(i) t 7→ f ′d(t, ϕ) is measurable,
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(ii) ϕ 7→ f ′d(t, ϕ) is continuous,

(iii) for all ϕ ∈ C([−d, 0], E), f ′d([a, b]× {ϕ}) is separable.

(H2) L̂ : [a, b] → L(E) is a strongly measurable and Bochner integrable operator on

[a, b] and the linear equation

ẋ(t) = L̂(t)x(t)

has a trichotomy with constants α > 1 and σ > 0.

(H3) There exist two real nonnegative functions c1, c2 integrable on [a, b] and two

constants C1 and C2 with

∫ b

a

c1(s) ds 6 C1,

∫ b

a

c2(s) ds 6 C2,

where 0 < C2 < (1− e−σ)/(2α) and ‖f ′d(t, ϕ)‖ 6 c1(t) + c2(t)‖ϕ(0)‖ for each

t ∈ [a, b] and ϕ ∈ C([−d, 0], E).

(H4) For each ε > 0 there exists a closed subset Iε of [a, b] with λ([a, b] − Iε) < ε

such that for any nonempty bounded subset A of C([−d, 0], E) and for each

closed subset J ⊆ Iε, one has

γ(f ′d(J ×A)) 6 sup
t∈J

h(t, γ(A(0))).

Then, for each ψ ∈ C([a − d, a], E) such that ψ(a) = 0, problem (Q) has a weak

solution on the interval [a− d, b].

P r o o f. We partition the closed interval [a, b] by the points: tni = (ib+(n−i)a)/n

where i = 0, 1, 2, . . . , n. For each n ∈ N, let ξn1 : [a − d, tn1 ] × E → E be a function

defined by

ξn1 (t, x) =

{
ψ(t) if t ∈ [a− d, a],

n(t− a)x if t ∈ [a, tn1 ].

Assume that f ′n
1 : [a, tn1 ] × E → E is defined by f ′n

1 (t, x) = f ′d(t, τtn
1
(ξn1 (·, x))). By

Theorem 3.3 there is a function v′n : [a − d, tn1 ] → E such that v′n = ψ on [a − d, a]

and for each t ∈ [a, tn1 ]

v′n(t) =

∫ t

a

K(t, s)f ′n
1 (s, v′n(s)) ds.

As in Theorem 4.1 there exists a function un : [−d, tnk ] → E defined by un = ψ on

[a− d, a] and

un(t) =

∫ t

a

K(t, s)f ′n
k (s, un(s)) ds, t ∈ [a, tnk ]
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where f ′n
k (t, x) = f ′d(t, τtn

k
ξkn(·, x)) and ξ

n
k : [a− d, tnk ]× E → E is defined by

ξnk (t, x) =

{
un(t) if t ∈ [a− d, tnk−1],

un(t
n
k−1) + n(t− tnk−1)(x− un(t

n
k−1)) if t ∈ [tnk−1, t

n
k ].

At this point we can complete the proof as that of Theorem 4.1. �

In the next theorem we let h : [a, b]× R
a → R

+ be a Carathéodory function and,

for each bounded subset Z of [a, b] × R
a, let there exist a measurable function mZ

such that h(t, s) 6 mZ(t) for each (t, s) ∈ Z and m is integrable on [c, T ] for each c;

a < c 6 b. Moreover, let for each c; a < c 6 b, the identically zero function be

the only absolutely continuous function on [a, c] which satisfies u̇(t) = h(t, u(t)) a.e.

on [a, c] such that the right hand derivative of u(t) at t = a, D+u(a), exists and

D+u(a) = u(a) = 0.

We note that the assumptions on h are weaker than those on a Kamke function w.

Theorem 4.4. In the setting of Theorem 4.3 we replace a Kamke function w by

a function h and suppose that f ′d is bounded and continuous instead of (i) and (ii) in

condition (H′
1). Then, for each ψ ∈ C([a− d, a], E) such that ψ(a) = 0, problem (Q)

has a weak solution on the interval [a− d, b].

We omit the proof since it runs as the proof of Theorem 4.3 except that we replace

the use of Theorem 3.3 by that of Theorem 3.4 to find a continuous function vn such

that vn = ψ on [a− d, a] and for each t ∈ [a, tn1 ]

vn(t) =

∫ t

a

K(t, s)fn
1 (s, vn(s)) ds.
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[1] J.Banaś, K.Goebel: Measure of Noncompactness in Banach Spaces. Lecture Notes in
Pure Mathematics 60. Marcel Dekker, New York, 1980.

[2] M.A.Boudourides: An existence theorem for ordinary differential equations in Banach
spaces. Bull. Aust. Math. Soc. 22 (1980), 457–463.

[3] T.Caraballo, F.Morillas, J. Valero: On differential equations with delay in Banach
spaces and attractors for retarded lattice dynamical systems. Discrete Contin. Dyn.
Syst. 34 (2014), 51–77.

363
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