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Abstract. Recently, the weak Triebel-Lizorkin space was introduced by Grafakos and He,
which includes the standard Triebel-Lizorkin space as a subset. The latter has a wide appli-
cations in aspects of analysis. In this paper, the authors firstly give equivalent quasi-norms
of weak Triebel-Lizorkin spaces in terms of Peetre’s maximal functions. As an application
of those equivalent quasi-norms, an atomic decomposition of weak Triebel-Lizorkin spaces
is given.
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1. Introduction

It is well known that homogeneous and inhomogeneous Besov and Trieble-Lizorkin

spaces include many classical function spaces, such as Sobolev spaces, Bessel poten-

tial spaces, Hardy spaces, local Hardy spaces, and BMO function spaces. These

spaces have been studied in detail in [6], [7], [8], [18], [19], [20], [21], [24]. They play

an important role in analysis. The theory of these spaces have had a remarkable

development in part due to its usefulness in applications. For instance, they appear

often in the study of partial differential equations. Especially, Triebel applied them

in the study of the Navier-Stokes equations in [22], [23]. In recent decades, there

have been some generalizations of these spaces. Firstly, the Besov-type space Bs,τ
p,q

and the Triebel-Lizorkin type space F s,τ
p,q were studied in [5], [3], [4], [16], [30], [32].
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Foundation of China (Grant No. 11361020) and the Natural Science Foundation of Hainan
Province (No. 20151011).

DOI: 10.21136/CMJ.2017.0037-16 497



Their homogeneous versions were originally studied in [29], [31] in order to clarify

the relation between the classical Besov spaces Ḃs
p,q, Triebel-Lizorkin spaces Ḟ

s
p,q,

and the Qα spaces studied in [26], [27]. Another class of generalisations, variable

exponent Besov and Triebel-Lizorkin spaces were introduced in [1], [2], [11], [12], [28].

Recently, He in [10] considered square function characterization of weak Hardy

spaces. Then in [9] Grafakos and He discussed various maximal characterization of

these spaces and stated an interpolation theorem for Hp,∞ from initial strong Hp0

and Hp1 estimates with p0 < p < p1, and they also introduced weak Triebel-Lizorkin

spaces. From their definition we can immediately see that the usual Triebel-Lizorkin

space is a subset of a weak Triebel-Lizorkin space. In this paper we shall present

the equivalent quasi-norms of weak Triebel-Lizorkin spaces in terms of Peetre’s max-

imal functions in Section 2. In Section 3, we describe an atomic decomposition of

these spaces. Our result is inspired by the atomic decompositions of the previously

mentioned Besov type and Triebel-Lizorkin type spaces.

Throughout this paper |S| denotes the Lebesgue measure and χS the characteristic

function of a measurable set S ⊂ R
n. We also use the notation a . b if there exists

a constant c > 0 such that a 6 cb. If a . b and b . a we will write a ∼ b. C is always

a positive constant but it may change from line to line.

2. The quasi-norm characterizations

Let S(Rn) be the Schwartz space on R
n, S ′(Rn) being its dual space on R

n. For

ϕ ∈ S(Rn), ϕ̂ or Fϕ denotes its Fourier transform, and ϕ∨ or F−1ϕ denotes its

inverse Fourier transform. Take ϕ0 ∈ S(Rn) with ϕ0(x) > 0 and

ϕ0(x) =

{
1, |x| 6 1,

0, |x| > 2.

Now define ϕ(x) = ϕ0(x) − ϕ0(2x) and set ϕj(x) = ϕ(2−jx) for all j ∈ N. Let

N0 = N∪{0}. Then {ϕj}j∈N0 is a resolution of unity, which means
∞∑
j=0

ϕj(x) = 1 for

all x ∈ R
n.

We use Lp,∞ to denote the weak Lebesgue space, which means it is the set of all

Lebesgue measurable functions f on R
n with the quasi-norm

‖f‖Lp,∞ := sup
λ>0

|{x ∈ R
n : |f(x)| > λ}|1/p <∞.

Lp,∞(lq) is the space of all sequences {gj} of measurable functions on R
n with finite

quasi-norms

‖{gj}
∞
j=0‖Lp,∞(lq) :=

∥∥∥∥
( ∞∑

j=0

|gj|
q

)1/q∥∥∥∥
Lp,∞

.
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Now, the weak Triebel-Lizorkin spaces is introduced as follows.

Definition 1. Let {ϕj}j∈N0 be a resolution of unity as above, s ∈ R, 0 < q 6 ∞,

0 < p <∞. The set

{f ∈ S ′(Rn) : ‖{2sjϕ∨
j ∗ f}∞j=0‖Lp,∞(lq) <∞}

is called the weak Triebel-Lizorkin space and denoted by F s,q
p,∞(Rn). The quasi-norm

of f ∈ F s,q
p,∞(Rn) in this space is denoted by

‖f‖F s,q
p,∞

:= ‖{2sjϕ∨
j ∗ f}∞j=0‖Lp,∞(lq).

In [9] Grafakos and He pointed out that the weak Triebel-Lizorkin spaces are

independent of the choice of the resolution of unity {ϕj}j∈N0 . In this paper we shall

prove this by using Peetre maximal operators for the first time. In fact, we shall give

five equivalent quasi-norms for the weak Triebel-Lizorkin spaces.

Let Ψ0,Ψ ∈ S(Rn), ε > 0, an integer S > −1 be such that

|Ψ̂0(ξ)| > 0 on {|ξ| < 2ε},(1)

|Ψ̂(ξ)| > 0 on
{ ε
2
< |ξ| < 2ε

}
,(2)

and

(3) Dτ Ψ̂(0) = 0 for all |τ | 6 S.

Here (1) and (2) are Tauberian conditions, while (3) expresses a moment conditions

on Ψ.

Given a sequence of functions {Ψk}k∈Z ⊂ S(Rn), a tempered distribution f ∈

S ′(Rn) and a positive number a > 0, the classical Peetre maximal operator associated

with {Ψk}k∈Z is defined by

(Ψ∗
k)af(x) := sup

y∈Rn

|Ψk ∗ f(x+ y)|

(1 + 2k|y|)a
, x ∈ R

n, k ∈ Z.

Since Ψk ∗ f(y) makes sense pointwise everything is well-defined. We will often use

dilates Ψk(x) = 2knΨ(2kx) of a fixed function Ψ ∈ S(Rn), where Ψ0(x) may be given

by a separate function. Also continuous dilates are needed. Let Ψt := t−nΨ(t−1·).

Let us recall the classical Peetre maximal operator introduced in [14]. We define

(Ψ∗
k)af(x) by

(Ψ∗
t )af(x) := sup

y∈Rn

|Ψt ∗ f(x+ y)|

(1 + |y|/t)a
, x ∈ R

n, t > 0.
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Now we have equivalent quasi-norms on the weak Triebel-Lizorkin spaces.

Theorem 1. Let s < S + 1, 0 < p < ∞, 0 < q 6 ∞ and a > d/min{p, q}.

Further, let Φ0, Φ belong to S(R
n) and (1), (2) and (3). Then the space F s,q

p,∞(Rn)

can be characterized by

F s,q
p,∞(Rn) = {f ∈ S ′(Rn) : ‖f‖

(i)

F s,q
p,∞

<∞}, i = 1, . . . , 5,

where

‖f‖
(1)

F s,q
p,∞

:= ‖Φ0 ∗ f‖Lp,∞ +

∥∥∥∥
(∫ 1

0

t−sq|Φt ∗ f(·)|
q dt

t

)1/q∥∥∥∥
Lp,∞

,(4)

‖f‖
(2)

F s,q
p,∞

:= ‖(Φ∗
0)af‖Lp,∞(Rn) +

∥∥∥∥
(∫ 1

0

[t−s(Φ∗
t )af ]

q dt

t

)1/q∥∥∥∥
Lp,∞

,(5)

‖f‖
(3)

F s,q
p,∞

:= ‖Φ0 ∗ f‖Lp,∞ +

∥∥∥∥
(∫ 1

0

t−sq

∫

|z|<t

|(Φt ∗ f)(·+ z)|q dz
dt

tn+1

)1/q∥∥∥∥
Lp,∞

,(6)

‖f‖
(4)

F s,q
p,∞

:=

∥∥∥∥
( ∞∑

k=0

[2ksq(Φ∗
k)af ]

q

)1/q∥∥∥∥
Lp,∞

,(7)

‖f‖
(5)

F s,q
p,∞

:=

∥∥∥∥
( ∞∑

k=0

2ksq|Φk ∗ f |
q

)1/q∥∥∥∥
Lp,∞

.(8)

Furthermore, ‖·‖
(i)

F s,q
p,∞
, i = 1, 2, . . . , 5 are equivalent.

We shall use the method from [25] to prove Theorem 1, which goes back to [15].

To do so, we need some lemmas.

Lemma 1 ([15], Lemma 1). Let µ, ν ∈ S(Rn), −1 6M ∈ Z,

Dτ µ̂(0) = 0 for all |τ | 6M.

Then for any N > 0 there is a constant CN such that

sup
z∈Rn

|µt ∗ ν(z)|(1 + |z|)N 6 CN t
M+1,

where µt(x) = t−nµ(x/t) for all 0 < t 6 2.

Lemma 2 ([15], Lemma 2). Let 0 < q 6 ∞, δ > 0. For any sequence {gj}
∞
0 of

nonnegative numbers denote

Gj =
∞∑

k=0

2−|k−j|δgk.
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Then

(9) ‖{Gj}
∞
0 ‖lq 6 C‖{gj}

∞
0 ‖lq

holds, where C is a constant only depending on q, δ.

Lemma 3. Let 0 < p < ∞, δ > 0, 0 < q 6 ∞. For any sequence {gj}
∞
0 of

nonnegative measurable functions on R
n denote

Gj(x) =
∞∑

k=0

2−|k−j|δgk(x), x ∈ R
n.

Then

(10) ‖{Gj}
∞
0 ‖Lp,∞(lq) 6 C1‖{gj}

∞
0 ‖Lp,∞(lq)

holds with some constant C1 = C1(q, δ).

P r o o f. By Lemma 2, (10) follows immediately from (9). �

Lemma 4 ([6], Theorem 2.6). Let {ϕj}j∈N0 be a resolution of unity and let R ∈ N.

Then there exist functions θ0, θ ∈ S(Rn) satisfying

supp θ0, supp θ ⊆ {x ∈ R
n : |x| 6 1},

|θ̂0(ξ)| > 0 on {|ξ| < 2ε},

|θ̂(ξ)| > 0 on
{ε
2
< |ξ| < 2ε

}
,

∫

Rn

xγθ(x) dx = 0 for 0 < |γ| 6 R

such that

θ̂0(ξ)ψ̂0(ξ) +

∞∑

j=1

θ̂(2−jξ)ψ̂(2−jξ) = 1 for all ξ ∈ R
n,

where the functions ψ0, ψ ∈ S(Rn) are defined via ψ̂0(ξ) = ϕ0(ξ)/θ̂0(ξ) and ψ̂(ξ) =

ϕ1(2ξ)/θ̂(ξ).

Let L1
loc(R

n) be the collection of all locally integrable functions on R
n. Given

a function f ∈ L1
loc(R

n), the Hardy-Littlewood maximal operatorM is defined by

Mf(x) := sup
r>0

r−n

∫

B(x,r)

|f(y)| dy, x ∈ R
n,

andMtf = (M|f |t)1/t for any 0 < t 6 1, where B(x, r) := {y ∈ R
n : |x− y| < r}.
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Lemma 5 ([10], Proposition 4). Let 1 < p < ∞ and 1 < r 6 ∞. Then there

exists a positive constant C such that for all sequences {fj}
∞
j=1 of locally integrable

functions on R
n,

∥∥∥∥
( ∞∑

j=1

|Mfj|
r

)1/r∥∥∥∥
Lp,∞

6 C

∥∥∥∥
( ∞∑

j=1

|fj |
r

)1/r∥∥∥∥
Lp,∞

.

This immediately yields

∥∥∥∥
( ∞∑

j=1

|Mtfj |
r

)1/r∥∥∥∥
Lp,∞

6 C

∥∥∥∥
( ∞∑

j=1

|fj |
r

)1/r∥∥∥∥
Lp,∞

,

for 0 < t < min{1, p, q}.

Remark. Although Proposition 4 in [10] applies only for 1 < r < ∞, the result

also holds for the case r = ∞. Indeed, since |fj| 6 sup
j>1

|fj|, we have M|fj| 6

M
(
sup
j>1

|fj |
)
. Thus we obtain sup

j>1
M|fj| 6 M

(
sup
j>1

|fj |
)
.

P r o o f of Theorem 1. We divide the total proof into four steps. First, we prove

the equivalence of (4) and (5). The next step is to build the bridge between (5)

and (7) and to change from the system (Φ0,Φ) to a system (Ψ0,Ψ). The equivalence

of (7) and (8) goes parallel to (4) and (5). Indeed, Definition 1 can be seen as a special

case of (8). Finally, we prove that (5) is equivalent to the rest. In the following, we

consider the case q ∈ (0,∞). For q = ∞, we only use the usual modification.

Step 1. We are going to prove that for every f ∈ S ′(Rn)

‖f‖
(2)

F s,q
p,∞

. ‖f‖
(1)

F s,q
p,∞

. ‖f‖
(2)

F s,q
p,∞

.

From Lemmas 1 and 4, we have that, see [25], for r < min{p, q}, N ∈ N, there

exists a positive constant C such that for f ∈ S ′(Rn),

(∫ 2

1

|2ls(Φ∗
2−ltf)a(x)|

q dt

t

)r/q
6 C

∑

k∈l+N0

2(l−k)(Nr−n+rs)2krsM

×

[(∫ 2

1

|((Φk)t ∗ f)(·)|
q dt

t

)r/q]
(x).

Now taking n/a < r = p0 < min{p, q}, N > max{0,−s} + a and putting δ =

N + s− n/r > 0, we obtain for l ∈ N

(∫ 2

1

|2ls(Φ∗
2−ltf)a(x)|

q dt

t

)r/q
.

∑

k∈l+N0

2−δr|l−k|2krsM

×

[(∫ 2

1

|((Φk)t ∗ f)(·)|
q dt

t

)r/q]
(x).
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Then we apply Lemma 3 in Lp/r,∞(lq/r), which yields

∥∥∥∥
{(∫ 2

1

|2ls(Φ∗
2−ltf)a(x)|

q dt

t

)r/q}

l∈N

∥∥∥∥
Lp/r,∞(lq/r)

.

∥∥∥∥
{
M

[(∫ 2

1

|2ks((Φk)t ∗ f)(·)|
q dt

t

)r/q]}

l∈N

∥∥∥∥
Lp/r,∞(lq/r)

.

Next, using Lemma 5, we obtain

∥∥∥∥
{(∫ 2

1

|2ls(Φ∗
2−ltf)a(x)|

q dt

t

)r/q}

l∈N

∥∥∥∥
Lp/r,∞(lq/r)

.

∥∥∥∥
{
M

[(∫ 2

1

|2ks((Φk)t ∗ f)(·)|
q dt

t

)r/q]}

l∈N

∥∥∥∥
Lp/r,∞(lq/r)

.

∥∥∥∥
{(∫ 2

1

|2ks((Φk)t ∗ f)(·)|
q dt

t

)r/q}

k∈N

∥∥∥∥
Lp/r,∞(lq/r)

=

∥∥∥∥
{(∫ 2

1

|2ks((Φk)t ∗ f)(·)|
q dt

t

)1/q}

k∈N

∥∥∥∥
r

Lp,∞(lq)

.

Hence, we obtain

∥∥∥∥
(∫ 1

0

|λ−s(Φ∗
λf)a(·)|

q dλ

λ

)1/q∥∥∥∥
Lp,∞

≈

∥∥∥∥
( ∞∑

l=1

∫ 2

1

|2ls(Φ∗
2−ltf)a(·)|

q dt

t

)1/q∥∥∥∥
Lp,∞

.

∥∥∥∥
{(∫ 2

1

|2lsΦ2−lt ∗ f(·)|
q dt

t

)1/q}

l∈N

∥∥∥∥
Lp,∞(lq)

≈

∥∥∥∥
(∫ 1

0

|λ−sΦλ ∗ f(·)|q
dλ

λ

)1/q∥∥∥∥
Lp,∞

.

This proves ‖f‖
(2)

F s,q
p,∞

. ‖f‖
(1)

F s,q
p,∞
. Since the reverse inequality is trivial, this finishes

Step 1.

Step 2. Let Ψ0,Ψ ∈ S(Rn) be functions satisfying (1), (2) and (3).

First, we are going to prove for all f ∈ S ′(Rn)

(11) ‖f‖
(4)

F s,q
p,∞(Rn,Ψ)

. ‖f‖
(2)

F s,q
p,∞(Rn,Φ)

.
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Again from Lemmas 4 and 1, we have that, see [25], if we let δ = min{1, S+1−s},

there exists a positive constant C such that for any f ∈ S ′(Rn),

(12) 2ls(Ψ∗
l f)a(x) 6 C

∑

k∈N0

2−|k−l|δ2ks(Φ∗
2−ktf)a(x)

for all x ∈ R
n and all t ∈ [1, 2].

Suppose first that q > 1. Then we take on both sides (
∫ 2

1
|·|q dt/t)1/q, which gives

2ls(Ψ∗
l f)a(x) .

∑

k∈N0

2−|k−l|q2ks
(∫ 2

1

|(Φ∗
2−ktf)a(x)|

q dt

t

)1/q
.

Applying Lemma 3 we obtain that

‖{2ls(Ψ∗
l f)a}l∈N‖Lp,∞(lq) .

∥∥∥∥
( ∞∑

k=1

2ksq|(Φ∗
2−ktf)a(x)|

q dt

t

)1/q∥∥∥∥
Lp,∞

,

which gives the desired result.

In case q < 1 we argue as follows. The quantity
(∫ 2

1
|·|q dt/t

)1/q
is not longer

a norm. This gives

(2ls(Ψ∗
l f)a(x))

q .
∑

k∈N0

2−q|k−l|q2ksq
∫ 2

1

|(Φ∗
2−ktf)a(x)|

q dt

t
.

Notice that the right-hand side is nothing else than a convolution (γ ∗ α(·))l of the

sequences

γk = 2−|k|δq and α(·)k = 2ksq
∫ 2

1

|(Φ∗
2−ktf)a(x)|

q dt

t
.

Now we apply the l1-norm to both sides and get for all x ∈ R
n

‖2ls(Ψ∗
l f)a(x)‖

q
lq
6 ‖γ‖l1|α(·)‖l1 .

∞∑

k=1

2ksq
∫ 2

1

|(Φ∗
2−ktf)a(x)|

q dt

t
.

We take the power of both sides and apply the Lp,∞(Rn)-norm. This gives (11).

Similarly, we obtain for all f ∈ S ′(Rn)

‖f‖
(2)

F s,q
p,∞(Rn,Φ)

. ‖f‖
(4)

F s,q
p,∞(Rn,Ψ)

.

Step 3. Choosing t = 1 in Step 1 and omitting the integration over t we see

immediately

‖f‖
(5)

F s,q
p,∞

. ‖f‖
(4)

F s,q
p,∞

. ‖f‖
(5)

F s,q
p,∞

.
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Step 4. We show that (5) is equivalent to (6).

First, let us prove that for any f ∈ S ′(Rn)

(13) ‖f‖
(2)

F s,q
p,∞

. ‖f‖
(3)

F s,q
p,∞

.

From [25], for 0 < r < min{p, q} there exists a positive constant C such that for

any f ∈ S(Rn)

(∫ 2

1

|(Ψ∗
2−ltf)a(x)|

q dt

t

)r/q
6 C

∑

k∈N0

2−kNs2(k+l)n

×

∫

Rn

( ∫ 2

1

∫
|z|<2−(k+l)t |((Φk+l)t ∗ f)(z + y)|q dz dt

tn+1

)r/q

(1 + 2l|x− y|)ar
dy.

If ar > n then we have

gl(·) =
2nl

(1 + 2l|·|)ar
∈ L1(R

n).

Thus we have
(∫ 2

1

|2ls(Φ∗
2−ltf)a(x)|

q dt

t

)r/q
.

∑

k∈N0

2−kNr2kn2lsr

×

[
gl ∗

(∫ 2

1

∫

|z|<2−(k+l)t

|((Φk+l)t ∗ f)(z + ·)|q dz
dt

tn+1

)r/q]
(x).

Now we use the majorant property of the Hardy-Littlewood maximal operator in

[17] and continue estimating

(∫ 2

1

|2ls(Φ∗
2−ltf)a(x)|

q dt

t

)r/q
.

∑

k∈N0

2lsr2k(−Nr+n)M

×

[(∫ 2

1

∫

|z|<2−(k+l)t

|((Φk+l)t ∗ f)(z + ·)|q dz
dt

tn+1

)r/q]
(x).

An index shift on the right-hand side gives

(∫ 2

1

|2ls(Φ∗
2−ltf)a(x)|

q dt

t

)r/q
.

∑

k∈l+N0

2lsr2(k−l)(−Nr+n)M

×

[(∫ 2

1

∫

|z|<2−kt

|((Φk)t ∗ f)(z + ·)|q dz
dt

tn+1

)r/q]
(x)

= C
∑

k∈l+N0

2(l−k)(Nr−n+rs)2krsM

×

[(∫ 2

1

∫

|z|<2−kt

|((Φk)t ∗ f)(z + ·)|q dz
dt

tn+1

)r/q]
(x).
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Using similar arguments as after (12), we obtain (13).

Second, we prove ‖f‖
(3)

F s,q
p,∞

. ‖f‖
(2)

F s,q
p,∞

. Since for all t > 0

1

tn

∫

|z|<t

|(Φt ∗ f)(x + z)| dz . sup
|z|<t

|(Φt ∗ f)(x+ z)|

(1 + 1/t|z|)a
. (Φ∗

t f)a(x),

we conclude what we want. The proof is complete. �

3. Atomic decomposition

Let Zn be the lattice of all points in R
n with integer-valued components. For

υ ∈ N0 and m = (m1, . . . ,mn) ∈ Z
n, let Qvm be the dyadic cube in R

n

Qvm = (x1, . . . , xn) : mi 6 2vxi < mi + 1, i = 1, 2, . . . , n.

If Qvm is such cube in R
n and c > 0, then cQvm is the cube in R

n concentric with

Qvm with sides also parallel to coordinate axes and of length c2
−v. By χvm we

denote the characteristic function of the cube cQvm. The main goal of this section

is to prove an atomic decomposition result for the space F s,q
p,∞. First, we introduce

the basic notation.

Definition 2. Let s ∈ R, τ ∈ [0,∞) and 0 < q, p 6 ∞. Then for all complex

valued sequences λ = {λvm ∈ C : v ∈ N0, m ∈ Z
n} we define

f s,q
p,∞ := {λ : ‖λ|f s,q

p,∞‖ <∞}

where

‖λ|f s,q
p,∞‖ :=

∥∥∥∥
( ∞∑

v=0

( ∑

m∈Zn

2vs|λvm|χvm

)q)1/q∥∥∥∥
Lp,∞

.

We define atoms which are the building blocks for atomic decompositions.

Definition 3. Let K,L ∈ N0 and let γ > 1. A K-times continuously differen-

tiable function a ∈ CK(Rn) is called a [K,L]-atom centered at Qvm, v ∈ N0 and

m ∈ Z
n if

supp a ⊆ γQvm,(14)

|Dαa(x)| 6 2v|α| for 0 6 |α| 6 K, x ∈ R
n,(15)

and if

(16)

∫

Rn

xαa(x) dx = 0 for 0 6 |α| < L and v > 1.
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If an atom a is located at Qvm, that means if it fulfils (14), then we will denote it

by avm. For v = 0 or L = 0 there are no moment conditions (16) required.

To prove the decomposition by atoms we need three basic lemmas. The first is

Lemma 3.3 in [6], the second lemma is a Hardy-type inequality which is easy to prove

and the last lemma first appeared in [13], Lemma 7.1, and in the following notation

in [12], Lemma 3.7.

Lemma 6. Let {ϕj}j∈N0 be a resolution of unity and let {̺vm}v∈N0,m∈Zn be

[K,L]-atoms. Then

|F−1ϕj ∗ ̺vm(x)| 6 C2(v−j)K(1 + 2v|x− 2−vm|)−M

if v 6 j, and

|F−1ϕj ∗ ̺vm(x)| 6 C2(j−v)(L+n+1)(1 + 2v|x− 2−vm|)−M

if v > j, where M is sufficiently large.

Lemma 7. Let 0 < a < 1, j ∈ Z and 0 < q 6 ∞. Let {εk} be a sequences of

positive real numbers and denote

δk =

k∑

j=0

aj−kεj, ηk =

∞∑

j=k

aj−kεj , k > 0.

Then there exist a constant C > 0 depending only on a and q such that

( ∞∑

k=0

δqk

)1/q
+

( ∞∑

k=0

ηqk

)1/q
6 C

( ∞∑

k=0

εqk

)1/q
.

Lemma 8. Let λ = {λvm ∈ C : v ∈ N0, m ∈ Z
n}. Then

∑

m∈Zn

2vs|λvm|(1 + 2v|x− 2−vm|)−M 6 C
∞∑

k=0

2(n/t−M)kMt

( ∑

m∈Zn

2vs|λvm|χvm

)
(x)

if v 6 j, and

∑

m∈Zn

2vs|λvm|(1 + 2j |x− 2−vm|)−M

6 C2(v−j)n/t
∞∑

k=0

2(n/t−M)kMt

( ∑

m∈Zn

2vs|λvm|χvm

)
(x)

if v > j, where 0 < t < min(1, p, q) and M is sufficiently large.
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Now, we come to the atomic decomposition.

Theorem 2. Let s ∈ R, 0 < p < ∞, 0 < q 6 ∞, K, L ∈ N0 be such that K > s,

L+ s+ 1 > 0. Then every f ∈ F s,q
p,∞ can be represented as

(17) f =

∞∑

v=0

∑

m∈Zn

λvm̺vm converging in S ′(Rn)

where ̺vm are [K,L]-atoms and λ = {λvm ∈ C : v ∈ N0, m ∈ Z
n} ∈ f s,q

p,∞. On the

other hand, if λ ∈ f s,q
p,∞, ̺vm are [K,L]-atoms and f =

∞∑
v=0

∑
m∈Zn

λvm̺vm converges

in S ′(Rn), then f ∈ F s,q
p,∞.

P r o o f. Our method is essentially based on [5], Theorem 3.17, [6], Theorem 6,

and [8]. We consider only 0 < q < ∞. The case q = ∞ can be proved analogously

with the necessary modifications. For clarity, we divide the proof into three steps.

Step 1. Let θ0, θ, ψ0 and ψ be the functions introduced in Lemma 6. We have

f = θ0 ∗ ψ0 ∗ f +

∞∑

v=1

θv ∗ ψv ∗ f

and using the definition of the cubes Qvm we obtain

f(x) =
∑

m∈Zn

∫

Q0m

ψ0 ∗ f(y) dy +

∞∑

v=1

2vn
∑

m∈Zn

∫

Qvm

θ(2v(x− y))ψv ∗ f(y) dy,

with convergence in S ′(Rn). We define for every v ∈ N and all m ∈ Z
n

(18) λvm = Cθ sup
y∈Qvm

|ψv ∗ f(y)|,

with

Cθ = max
{

sup
|y|61

|Dαθ(y)| : |α| 6 K
}
.

Define also

(19) ̺vm(x) =





1

λvm
2vn

∫

Qvm

θ(2v(x− y))ψv ∗ f(y) dy if λvm 6= 0,

0 if λvm = 0.

Similarly, we define for every m ∈ Z
n the numbers λ0m and the functions ̺0m taking

in (21) and (22) v = 0 and replacing ψv and θ by ψ0 and θ0, respectively. Let us now

check that such ̺vm are atoms in the sense of Definition 4. Note that the support
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and the moment conditions are clear by (18) and (19), respectively. It thus remains

to check (16) in Definition 4. If λvm 6= 0, we have

|Dα̺vm(x)| 6
2v(n+|α|)

Cθ

∫

Qvm

|Dαθ(2v(x− y))||ψv ∗ f(y)| dy
(

sup
y∈Qvm

|ψv ∗ f(y)|
)−1

6
2v(n+|α|)

Cθ

∫

Qvm

|Dαθ(2v(x− y))| dy

6 2v(n+|α|)|Qvm| 6 2v|α|.

The modifications for the terms with v = 0 are obvious.

Step 2. Next, we show that there is a constant C > 0 such that

‖λ | f s,q
p,∞‖ 6 C‖f‖F s,q

p,∞
.

For that reason, we exploit the equivalent quasi-norms given in Theorem 1 involving

Peetre’s maximal function. For any x, y ∈ Qvm and any v > 0 we have

(20)
∑

m∈Zn

λvmχvm(x) = Cθ

∑

m∈Zn

sup
y∈Qvm

|ψv ∗ f(y)|χvm(x)

6 C
∑

m∈Zn

sup
|z|6C2−v

|ψv ∗ f(x− z)|

(1 + 2v|z|)a
(1 + 2v|z|)aχvm(x)

6 C(ψ∗
v)af(x)

∑

m∈Zn

χvm(x)

= C(ψ∗
v)af(x),

where we have used
∑

m∈Zn

χvm(x) = 1. This estimate and its counterpart for v = 0

(which can be obtained by a similar calculation) give

‖λ | f s,q
p,∞‖ 6 C

∥∥∥∥
( ∞∑

v=0

[2ksq(ψ∗
v)af ]

q

)1/q∥∥∥∥
Lp,∞

6 C‖f‖F s,q
p,∞

,

by Theorem 1 (by taking a > n/min{p, q}).

Step 3. Assume that f ∈ S ′(Rn) can be represented by (20), with K and L

satisfying K > s and L+ s+ 1 > 0. We now show that f ∈ F s,q
p,∞ and that for some

c > 0, ‖f | F s,q
p,∞‖ 6 c‖λ | f s,q

p,∞‖.We divide the summation (20) depending on j ∈ N0

into two parts,

f =

∞∑

v=0

∑

m∈Zn

λvm̺vm =

j∑

v=0

∑

m∈Zn

λvm̺vm +

∞∑

v=j+1

∑

m∈Zn

λvm̺vm.
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We have

(21)

∥∥∥∥
( ∞∑

j=0

(2js|ϕ∨
j ∗ f |)q

)1/q∥∥∥∥
Lp,∞

=

∥∥∥∥
( ∞∑

j=0

∣∣∣∣
∞∑

v=0

∑

m∈Zn

2jsλvmϕ
∨
j ∗ ̺vm

∣∣∣∣
q)1/q∥∥∥∥

Lp,∞

6 C

∥∥∥∥
( ∞∑

j=0

∣∣∣∣
j∑

v=0

∑

m∈Zn

2jsλvmϕ
∨
j ∗ ̺vm

∣∣∣∣
q)1/q∥∥∥∥

Lp,∞

+ C

∥∥∥∥
( ∞∑

j=0

∣∣∣∣
∞∑

v=j+1

∑

m∈Zn

2jsλvmϕ
∨
j ∗ ̺vm

∣∣∣∣
q)1/q∥∥∥∥

Lp,∞

=: σ1 + σ2

Estimation of σ1. From Lemmas 7 and 8 we obtain

( ∞∑

j=0

∣∣∣∣
j∑

v=0

∑

m∈Zn

2jsλvmϕ
∨
j ∗ ̺vm

∣∣∣∣
q)1/q

(22)

.

( ∞∑

j=0

( j∑

v=0

∑

m∈Zn

2(v−j)(K−s)
∑

m∈Zn

2vs|λvm|(1 + 2v|x− 2−vm|)−M

)q)1/q

.

( ∞∑

j=0

( j∑

v=0

2(v−j)(K−s)
∞∑

k=0

2(n/t−M)kMt

( ∑

m∈Zn

2vs|λvm|χvm(x)

))q)1/q

.

( ∞∑

j=0

( j∑

v=0

2(v−j)(K−s)Mt

∑

m∈Zn

2vs|λvm|χvm(x)

)q)1/q
(23)

where the last estimate follows by taking M sufficiently large such that M > n/t;

from Lemma 7 we get

(22) .

( ∞∑

j=0

(
Mt

( ∑

m∈Zn

2js|λjm|χjm(x)

))q)1/q
.

It follows that

(24) σ1 .

∥∥∥∥
( ∞∑

j=0

(
Mt

( ∑

m∈Zn

2js|λjm|χjm(·)

))q)1/q∥∥∥∥
Lp,∞

.

∥∥∥∥
( ∞∑

j=0

( ∑

m∈Zn

2js|λjm|χjm(·)

)q)1/q∥∥∥∥
Lp,∞

∼ ‖λ|f s,q
p,∞‖
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where we used in the last inequality the boundedness of Mt on Lp(lq) for 0 < t <

min(1, p, q).

Estimation of σ2. Again using Lemma 7 and Lemma 9 we obtain

( ∞∑

j=0

∣∣∣∣
∞∑

v=j+1

∑

m∈Zn

2jsλvmϕ
∨
j ∗ ̺vm(x)

∣∣∣∣
q)1/q

(25)

.

( ∞∑

j=0

( ∞∑

v=j+1

2(j−v)(L+n+1+s)
∑

m∈Zn

2vs|λvm|(1 + 2v|x− 2−vm|)−M

)q)1/q

.

( ∞∑

j=0

( ∞∑

v=j+1

2(j−v)(L+n+1+s)2(v−j)n/t
∞∑

k=0

2(n/t−M)kMt

×

( ∑

m∈Zn

2vs|λvm|χvm(x)

))q)1/q

.

( ∞∑

j=0

( ∞∑

v=j+1

2(j−v)(L+n+1+s−n/t)Mt

( ∑

m∈Zn

2vs|λvm|χvm(x)

))q)1/q
(26)

where the last estimate follows by taking M sufficiently large such that M > n/t,

by choosing t satisfying 0 < t < min(p, q, 1) and L+ n+1+ s− n/t > 0. Then from

Lemma 7 we get

(25) .

( ∞∑

j=0

(
Mt

( ∑

m∈Zn

2js|λjm|χjm(x)

))q)1/q
.

It follows that

(27) σ2 .

∥∥∥∥
( ∞∑

j=0

(
Mt

( ∑

m∈Zn

2js|λjm|χjm(·)

))q)1/q∥∥∥∥
Lp,∞

.

∥∥∥∥
( ∞∑

j=0

( ∑

m∈Zn

2js|λjm|χjm(·)

)q)1/q∥∥∥∥
Lp,∞

∼ ‖λ | f s,q
p,∞‖

where we used in the last inequality the boundedness of Mt on Lp(lq) for 0 < t <

min(1, p, q). Now, by (21), (24), (27) we get

‖f‖F s,q
p,∞

6 C‖λ | f s,q
p,∞‖.

The proof is completed. �
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