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Abstract. We investigate the Bergman kernel function for the intersection of two complex
ellipsoids {(z, w1, ws) € C"F2: |21 2 +. . .+ |zn 2+ |wi1]? < 1, |212+.. . +|zn)? +|wa|" < 1}.
We also compute the kernel function for {(z1,w1,ws) € c3: |z1|2/" +wr]|? < 1, |z1|2/” +
|wa|" < 1} and show deflation type identity between these two domains. Moreover in the
case that ¢ = r = 2 we express the Bergman kernel in terms of the Jacobi polynomials. The
explicit formulas of the Bergman kernel function for these domains enables us to investigate
whether the Bergman kernel has zeros or not. This kind of problem is called a Lu Qi-Keng
problem.

Keywords: Lu Qi-Keng problem; Bergman kernel; Routh-Hurwitz theorem; Jacobi poly-
nomial
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1. INTRODUCTION

Let D be a bounded domain in C". The Bergman space L2(D) is the space of all
square integrable holomorphic functions on D. Then the Bergman kernel Kp(z, w)
is defined in [2] by

KD(Zaw):Zq)j(z)q)j(w)a (va) €D xD,
7=0

where {®;(-): j =0,1,2,...} is a complete orthonormal basis for LZ(D). It is defined
for arbitrary bounded domains, but it is hard to obtain concrete representations for
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the Bergman kernel except for special cases like a Hermitian ball or polydisk. Refer
to [6] for more on this topic.

In 2015 in [1] the author of this paper computed the Bergman kernel for DY" =
{(z1,w1,ws) € C3: |21|2 + Jw1]? < 1, |21]2 + |wz|" < 1} explicitly. The goal of this
paper is to extend the result in [1] to higher dimensional case, namely to D%" =
{(zyw1,w2) € C"2: |42+ 4 |z P+ |lun |7 < 1, 212 + .o+ |20 + lwo|” < 1}

This paper is organlzed as follows. In Section 2, we compute an explicit for-
mula of the Bergman kernel for D?" and show the deflation identity between do-
mains D" and Df’/n {z = (z1,w1,w2) € C*: |z1|™ + |un|? < 1, |5|¥" +
|wa|" < 1}. In Section 3, we show some relation between the Bergman kernel for D22
and the Jacobi polynomials. In Section 4, we investigate the Lu Qi-Keng prob-
lem for D22, In the final section, we consider the Bergman kernel for Q! :=
{(z,w) e CxC™: |z]* + |w1]" < 1,..., ][22 + Jwy|" < 1}.

2. BERGMAN KERNEL

Let ¢ = (z,w1,wq) € C"F2. Put ®,(¢) = ¢* = z%w]*wy?* for each multi-index
k = (o, 71,72). Since D27 is a complete Reinhardt domain, the collection of {®,}
such that each a; > 0 and ; > 0 is a complete orthogonal set for L?(D%7).

Proposition 1. Let a; € Z4 fori=1,...,n and y1 > 0, v > 0. Then we have

T ((291 + 2)/g + (292 + 2)/r + 1) [T Tas +1)

(v2 + (2 + DT((271 +2)/q + (272 + 2); + ol +n+1)

2
[[2%wy* wy? ||L2(D;17;"') =

where |a| = a1 + ... + .
Proof.

2w w3 |22 pyry = / |22 [72 w27 AV (2) AV (w).

DE"

i0

Introducing polar coordinates z = re'’, w; = 516, wy = s9€*2 and integrating out

the angular variables we have

(2m)"+? / petl gt 4V (r) dV (s),
Re(DE™

where Re(D47) = {(r,s) € RT x RZ: |[r||* 4+ s] <1, |[r[|* + s < 1}. Converting
to spherical coordinates in the r variable we obtain

(2n)n+2/5 Re(DE7) /S"—l 92‘a|+2n71°’2a+1S?MHSgWH do(w)dV (s)do,
*Re(Dnp, .
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where S x Re(D%7) = {(0,s) € Ry x RE: 0? +s] <1, 0* + s§ < 1}. Using a result
of D’Angelo (see Lemma 1 in [4]), we get

YT

1/q
( n+25 Oé+1 //(1 0%) / 2\a|+2n 1 271+1 2’Y2+1d81d82dg,

where f(a) = H I'(a;)/T(0q + ...+ o). The next step is integrating out s; and

s9 variables. As a result, we have

n 1
(21) +2/3(04 +1) / 92|a\+2n71(1 N 92)(271+2)/q+(272+2)/r do.
20 (v + 1)(y2 + 1)

After a little calculation using the well-known fact

! a _ ,.p\b T = P((a’+1)/p)r(b+1)
/0“1 o) @ Dt b 1)

we obtain the desired result. O

Now we discuss the Bergman kernel for D"

Theorem 1. The Bergman kernel for D¥" is given by

L% (a,b)

KD.?L’T((Z7U}1) w2)) ("77&‘1)52)) = nn+2(1 - Zlﬁl T e e e T Znﬁn)2/q+2/r+n+17

where

w@l b— w252
(1= 21Ty = .o = 207,20 (1 =217y = o= 27,27
20 8
q,r _ q,r Y rar i an"
2 —2)(y+1) +r(=+ 1)(1 )
gr(l —z)3(1 —y)? '

a =

and LT"(x,y) =

Proof. By Proposition 1, we have

1
KD?L'T((Za wlva)v (77;£17£2)) = 2

y i i (1 + D + D0 +2)/a+ @ra +D/r ol 41+ 1) 0 o0
a=071,72=0 D(2n+2)/qg+ (272 +2)/r+1) .]jll“(ai +1)
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where u® = (217;)% ... (2,7,))%" and v; = w1&;, Vo = wa€,. Summing out each «;,
we have

1
TEnJrZ(]_ _ 7—)2/q+2/r+n+1

y Z 71 + D02 + D00 +2)/g+ 20 +2)/rtntl) 5 o,
T((271 +2)/q + (272 +2)/r + 1)(1 — 7)2n/a+2y2/r 71 727

Y1,72=0

where 7 = 217, + ... + 2,7,,. Now we will consider the sequence of functions L%"
defined as

- i (1 + D02 + DI +2)/g+ 22 +2)/ront1) o 5

L2 (z,y) = D@0 +2)/q+ e +2)/r+1)

Y1,72=0

Using the identity I'(t + 1) = tI'(¢) we easily obtain the recursion formula

20 20
Ly (w,y) = (n+ DL (2,y) + — o2 Ly (2, y) + =5~y L (2, ).

q Ox r dy
Moreover,
. = 271 4+2 2y +2 ,
L@y = 3 (n+ D+ 1T+ T )y,
q r
Y1,72=0

Hence

2(q(1 — 1 1)(1 —

L9 (,y) = (¢ —=z)(y + );rf($+3)( v)
gr(l —z)3(1—y)

which completes the proof. O

2.1. Deflation. Now we will consider the domains

D‘ll/’;l = {(z,w1,wa) € C: |2)>™ 4 |wr|? < 1, |2*/™ + |wa|" < 1}.

Similarly to Section 2, we have
Proposition 2. Let « > 0, v; > 0 and y2 > 0. Then we have

o, M, 72 n®T((271 +2)/q+ (272 +2)/r + DI (na + n)
[l Wy~ Wy ||L2(Dq y = .
n) (2 + D2 + DI(@n +2)/¢+ (272 +2)/r +na+n + 1)
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Therefore,

KD(II’/:L ((Oa W1, w2)7 (Oa 517 52))

o)

-y (m+ D+ D@21 +2)/g+ (292 +2)/r+n+1)
eIl (271 +2) /g + (292 +2)/r + 1)

(71)151)71 (w252)72

Y1,72=0

Hence

1 _ _
KD?’/T" ((Oa W1, w2)7 (Oa 517 52)) = 3n Lfr]zyr(wlgla w2£2)'
Comparing the formulas for K Dy and Kpar, we obtain the following deflation
identity.
Proposition 3. For every n € N and every positive numbers q and r, we have

n!

- K par ((0,w1,w2),(0,81,82)) = Kpar((0,...,0,wi,w2), (0,...,0,81,82)).

e 1/m

Note that we have some kind of deflation result similar to that obtained in [3].

3. SOME REPRESENTATIONS OF BERGMAN KERNEL FOR D?%?

Jacobi polynomials are a class of classical orthogonal polynomials. They are or-
thogonal with respect to the weight (1 — 2)¥(1 + x) on the interval [—1,1]. For
k,l > —1 the Jacobi polynomials are given by the formula

P (z) = —(_1).(1 (1= 2) 51+ 2L (1= 2)F (1 + 21— 22)9),

244! 0z
The Jacobi polynomials are defined via the hypergeometric function as
k+1)q 1—
(3.1) PP () = %Fl( d1+k+1+dk+1, 23),

where (k + 1)4 is Pochhammer’s symbol and 2 F; is the Gaussian or ordinary hyper-
geometric function defined for |z| < 1 by the power series

oFy (a,b;¢;2) = Za)(b)n"

n=0
The Appell series F defined by
/ m+n b b)m n, m
Fi(a;b,b; ¢,2,y) ZZ —x v el <1yl <1

nlm!(c)n
n=0m=0

is one of the natural two-variable extensions of the hypergeometric series o F7.
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The following reduction formulas can be proved (for details see [5], pages 238-239):

(32)  Fi(a;b,b;5b+b5m,y) = (1—y) “2Fi(a,b;b+ b5 (z —y) /(1 —y)),
(3.3) Fi(a;b,b;c;x, ) = o F1(a, b+ V5 c; ).

Comparing the functions F; and L2? it is easy to see that

I'3+n)
2

The following is the main theorem of this section.

Fi(3+n;2,2;3;2,y) = L22(z,y).

Theorem 2. The Bergman kernel for D?? can be expressed in the following ways:

0 Kp22((0, wr, w2), (0,&1,€2))

T(34n) o~ ! n—1 (2):(2)k(w1&))* (w2y)*
2ﬂn+2 Z Z ( ) ( ) (3)igr(1 — w151)2”(1 - w222)2+k.

i=0 k=0

(it) For every m € NU {0}, we have

Cn(2+m)(2— 11 — ) PS> (@ +1)/(1 = 2"))

KDng_l((O; wi, w2)’ (0751752)) = 7[2m+3(1 — U — Uy — Vlyg)m’+3

Cr(2m + 1)PEA7 (2 +1)/(1 - 2'))
TE2m+3(1 — V1 — UV — V1V2)m+2 ’

where v1 = wi&, vy = Wiy, ¥ = (1 —10)?/(2—v1 —)? and C,, =
L4+ 2m)m!/(6(2)m).
(iii) For every m € N, we have

K p22((0,wi,w2), (0,61, 62)) = T(3 +2m)m
2PV (@ 4 1)/ 2) = 2= — ) PRI (@ + 1)/ - a)

X
ﬂ2m+26(g)m_1(1 — V1 — Vg — 1/11/2)m+2

(iv) If wi&; = we€, then

r'3+n)(3+ nwlfl)
6m+2(1 —wi &)

Kpz2((0, w1, w2), (0,1,&2)) =

Proof. For the proof of (i), if we apply the recursion formula (see [8])

Fi(a+n;b,bsc;2,y) ii( )(”_1>M

i=0 k=0 ()i+h

Xt y*Fi(a+i+Ekb4a,b +kie+i+kix,y),
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then using the formula

1
(=27 (1 - )%

FB+i+k2+4,2+k3+i+kx,y) =

we obtain (i).
In order to prove the second statement we need the well-known contiguous relation

cFi(a;b,b';c;2,y) — (c — a)Fi(a; b,b'5¢ + 152, y)
—aFy(a+1;b,0;¢+ 1;2,y) = 0.

It follows that

2 1
Fi(442m;2,2;3;2,y) = — m3—|—

+4+2m
3

Fi(2m +4;2,2;4; 2, y)

Fi(2m+5;2,2;4;x,y).

By (3.2), we have

2m+1
4+ 2m

Fi(442m;2,2;3;2,y) = — o Fy (2m+4,2,4,u)

1-y
2Fl(zm+5,2;4;ﬂ).
I-y

Then by (for details see [5], page 66)

Btz = (1-2) R (5 e L (2 )),

we have

Fi(4+42m;2,2;3;2,y)
(2m + 1)24+2m 5
T3z g MMy
(4 + 2m)25+2m
32—z —y)rrom

(@)?)
(@)

5

72
5 5

F( 2
2 1m—|—2m+32

where 2/ = (z — y)?/(2 — z — y)?. Next by (for details see [5], page 64)
. _ _ —a __ he - i
oFi(a,bye;2) = (1 —2) gFl(a,c b; c; ] 1)
—(1— )b Ca b 2
*(1 Z) ZFI(C a;bvcaz_1>7
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we can easily get

Fi(442m;2,2;3;2,y)
2m+1 5 a2
oo ()
31—z —y—ay)mt2> ! mt "\
24+m)(2—2x—y) 5 5 ' \?
A (=)

f 5 3ol
31—z —y—ay)mts” m—|—2m—|— 2’ \z’ =1

Finally, by (3.1) we obtain (ii). The formula (iii) can be obtained by the same method
and we omit the details. Now we will prove (iv). This is a formal exercise but we
include it for completeness: From (3.3)

Fi(3+1n;2,2;3;2,y) = 2F1(3 + n, 4;3; ).

Now it is relatively easy to compute the following result:

34+ nx

Fi(3 4;3;0) = —————.
2 1( +n7 ) ,.13) 3(1-1’)4+n

Thus we have proved (iv). O

4. Lu QI-KENG PROBLEM

The explicit formula of the Bergman kernel function for the domains DZ" enables
us to investigate whether the Bergman kernel has zeros in D" x DZ" or not. We will
call this kind of problem a Lu Qi-Keng problem. If the Bergman kernel for a bounded
domain has no zeros, then the domain will be called a Lu Qi-Keng domain.

By Theorem 1.2 from [1] if n = 1, then DZ" is a Lu Qi-Keng domain for all
positive real numbers g and r. Combining the deflation identity (Proposition 3) and
Proposition 4.4 from [1], if n = 2 and ¢ = r, then Dy" is not a Lu Qi-Keng domain.
Using the same method as in [1] we will prove that it is also true for n = 3.

Denote

G(z,y) =3r3(1 —2)*(1 —y)® +22r*(1 — 2)?(1 —y)*(1 — xy)
+24r(1 —2)(1 —y)(z(2x + V)y* + (2 — 8)zy + = +y + 2)
+8(1 —ay)(z®y(4y + 7) + 2° + y* + 2y (Ty — 38) + Tx + Ty + 4).

Since )
r3(1—z)%(1 —

Gla,y) = W 117 (),
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the Bergman kernel Kpr.r has a zero inside Dy" x Dy if the polynomial G(ex, ey)
does not satisfy the stability property (see [1], for details) for some 0 < ¢ < 1.
Following Siljak and Stipanovié, see [7], we consider the polynomial

. ] .
z‘3G(e”7, —) =d(z) = dsz® + doz® + diz + do,
z

where

do = 3r3 (=1 + )% — 2202 (=1 + )%t 4+ 24rt(—1 — t + 2t?) — 8t(1 + 7t + 4t?),
dy =8 —9r3(—1 +t)® + 336t% — 56t + 22 (—1 + )% (1 + 2t)
— 24r(1 — 10t + 8t + 13),
dy = 93 (=1 4+ )% — 22r%(2 — 3t + %) — 8(—7 + 42t + t*)
— 24r(1 + 8t — 1012 + t3),
ds = 22r3 (=1 + 1) = 3r® (=1 +1)® — 24r(—2 4+t + 1?) + 8(4 + Tt + 1?)

and t=e".

With the polynomial d(z) we associate the Schur-Cohn 3 x 3 matrix

. dii diz dis
ME") = | dai doa dos |,
d31 dsz ds3

J _ _ .

djk = Y (dm—jt+1dm—k+1—dj—1dx—1), where 1 < j < k. The matrix M (') is defined
I=1

when j > k to become Hermitian. After some calculation (with help of a computer

program Maple or Mathematica), we have

3
det M (e') = —1304596316167° sin'2 (g) <Z gn(r) Cos(m))),
n=0

where
go(r) = 26624 — 2467212 + 15724r* — 243075,
g1(r) = 12288 + 224961 — 20822r* + 364515,
g2(r) = —512 + 220872 + 5012r* — 14587,
g3(r) = r%(—32 4 8672 + 243r%).

Since

3
> gn(r) = 38400,
n=0
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it is easy to see that for every r > 0 there exists 7 such that det M (e'”) < 0. Hence
there exists 1 > & > 0 such that the polynomial G(ez,ey) does not satisfy the
stability property (see [7]). As a consequence of the above consideration, we have
the following corollary

Corollary 1. For any r > 0, the domains D3" and DI’/TB are not Lu Qi-Keng.

Now we will study the Lu Qi-Keng problem for D%2 in the case when n > 3. By
representation (iv) from Theorem 2

'3+ n)(3+ nwlzl)
6m2(1 — wi &y )4tn

For brevity, we shall summarize these last statements by

KD,%’Q((O’ w1, w1)7 (05517§1)) =

Hence

Proposition 4. The domain D2? is Lu Qi-Keng if and only if n = 1.

At the end of this section we would like to present the following relations between
zeros of the Bergman kernel for the domains D" and DYy .

Proposition 5. For any positive real numbers q and r

if Kpar has zeros, then Kpar also has zeros,
DY D?
@ ) if Dq’ is a Lu Qi-Keng domam then D3" is a Lu Qi-Keng domain.

Proof. Note that the zero set is a bi-holomorphic invariant object. Hence any
point (z,wq,ws) € D" can be mapped equivalently onto the form (0, wy, w3) by the
automorphism of the D"

(1= [laf?)"/a wy, 4 la[)*/"
T = (za)e (1= (z,a))%"

D" 5 (z,wy,we) — (\I/a(z) wg) e Cnt2?,

where

1— [la]?
1—(z,a)

(HL—l)a—sz

U.(z) =

Therefore, we need only to consider the zeroes restricted to {0} x D x D, where
D:= {z € C: |z] < 1}. The results now follow from Proposition 3. O
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5. ADDITIONAL RESULTS

Our purpose in this section is to consider domains 2] defined for every positive

real number r by

Q= {(z,w) €CxC": [2*+|wi|" <1,...,|2)* + |w,|" < 1}.

The reader can see that the following proposition is completely analogous to the

results presented earlier.

Proposition 6. For j =1,2,...,n let 3; > 0. Then for o > 0 we have

”“T<(ZﬂrHQ+QFW+U
F(%(Z 8 +n) +a+2>]ﬁ1(5j+1)'

=1

2
”ZQWBHH(Q;) =

Now we will give an explicit formula for the kernel Kq- of €27 .

Theorem 3. If w,( € D", then the Bergman kernel for )] is

n n ]_
TEnJrlKQ;'L((Oa w)a (07 C)) = H 1 - Vk - + Z 7’ ]_ — 1/1 (:_—Vklj) ) (]_ — l/]g)7
k=1 k=1 "

where v, = wkzk for k =1,...,n. Moreover, if vy =vy =...= vy, then
2n —rjvy +2n+r
’nJrlK N 0 0 — (
s Q,,L(( 7'U1)7 ( a(:)) 7“(]_ — V1)2"+1

Proof. As a consequence of Proposition 6, we have

. I‘(%(élﬂj—i—n)—FQ)j]jl(ﬂj—kl)

"HEK, 2((07 )7(0a(:)) = : n
S e r(2($540) 1)

B

)

where v# = v]* ... v, Then, using the fact that al'(a) = T'(a + 1),

P Ko (0,0),0,0) = Y 2(Bit ot Bu o) TI + 0
B1,..,8n 20 j=1
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Hence, the kernel is

DD DI ICER

k=0 B1,...,6n20

where 5y = r/2 — 1. After some calculation using the formulas

> 1+2x
—2 _
Zm—l—l =(1-2) and Zm—l—l B
m=0 m=0
we obtain the desired formula. O

5.1. Zeros of Bergman kernels on (2],. In this subsection, we will prove that
the Bergman kernel function of €27, for any natural number n and positive real number
r is zero-free.

Proposition 7. For any positive integer n, the domain €2 is a Lu Qi-Keng do-

main.

Proof. Itisobvious that the Bergman kernel for 2] has no zeros. The Bergman
kernel function of 2] has zeros if and only if

n

n
r 14 r 2
— — — :0
2+;1—yk n+2+;1—yk

for some vy, ...,v, such that |v;| < 1 for each k =1,...,n. Since |v;| < 1 we have

2
Re( Uk )>—17
].—I/k

where Re(€) is the real part of the complex number £. Thus

- 21/k
(TL-l— +Zl—l/k)

Hence, we see that
r " 14 Vg
-+
2 1-— Vi
k=1

#0,

if (1,...,v,) € D™. The proof is therefore complete. O
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