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Abstract. We consider a nonlinear fractional differential inclusion with nonlocal fractional
integro-differential boundary conditions in a Banach space. The existence of at least one
solution is proved by using the set-valued analog of Moénch fixed point theorem associated
with the technique of measures of noncompactness.
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1. INTRODUCTION

The literature on fractional calculus is now vast and a variety of new results
have been found. In the past several years, fractional differential and integral equa-
tions and inclusions and applications have been addressed extensively by several
researchers. For example, we refer the reader to [1], [6], [7], [8], [11], [24] and the
references cited therein.

Boundary value problems constitute a very interesting and important class of
problems since they have applications in various disciplines of science and engineering
such as mechanics, electricity, chemistry, biology, economics, control theory, signal
and image processing, polymer rheology, biophysics, aerodynamics, viscoelasticity
and damping, wave propagation, see [17], [18], [25], [26]. Many researchers have
studied the existence theory for nonlinear fractional differential equations with a
variety of boundary conditions, for instance, see the papers by Ahmad et al. [4], Cui
et al. [13], Han et al. [15], Ntouyas et al. [21], [22], Xu et al. [28] and the references
therein.
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In this paper, we consider the following problem of fractional differential inclusion
with nonlocal fractional integro-differential boundary conditions of the form

cDrx(t) € F(z,z(t)), teJ=10,1], 1 <r<2,

a0 meDra) =y [T

r—2

z(s)ds, 0<r<l,

aox(1) + B2(°D"x (1)) = 72 /U %x(s) ds, 0<mn, o<1,

o I(r—1)
where D" is the Caputo fractional derivative of order v, F': J x E — P(E) is a
multivalued map, P(E) is the family of all subsets of E, «;, S5, 7i, ¢ = 1,2 are
suitably chosen constants in R, and E is a Banach space with norm |-|.

The present work is motivated by a recent paper of Ahmad et al. [3] where prob-
lem (1.1) was considered for a single-valued case, and the existence of solutions was
shown by means of a variety of fixed point theorems such as Banach’s contraction
principle, Krasnoselskii’s fixed point theorem, and Leray-Schauder nonlinear alter-
native.

The existence of solutions for the given multivalued problem is established by
using the set-valued analog of the fixed point theorem of Ménch associated with
the technique of measure of noncompactness. This last has proved to be one of the
most powerful tool in studying the existence of solutions for differential and integral
equations and inclusions, see Bana$ and Goebel [9], Agarwal et al. [2], Akhmerov et
al. [5], Benchohra et al. [10], [12], Guo et al. [14], Ménch [20], and Szufla [27] and

the references cited therein.

2. PRELIMINARIES

We use the following notations: 2% is the collection of all subsets of E and

P(E) =2\ 0.

P.(E)={A C E: A is nonempty, convex},
Pre(E) ={A C E: A is nonempty, compact, convex}.

Let X, Y be two sets, &: X — 2Y a set-valued map, and A C Y. We define
graph(®) = {(z,y): € X, y € 8(X)} (the graph of &).

Let R > 0 and let
B={ze€E: |z| <R}
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and
U={uelC(J,E): ||lu|lc < R}.
Clearly U = C(J, B).
Definition 2.1. A multivalued map F': J x E — P(FE) is said to be Carathéo-
dory if
(i) t = F(t,u) is measurable for each u € F,
(if) w — F(t,u) is upper semicontinuous for almost all ¢ € J.

For each y € C(J, E) define the set of selections of F' by
Spy={f€L'Y(J,E): f(t) € F(t,y(t)) for a.e. t € J}.

Theorem 2.2 ([16]). Let E be a Banach space and C C L'(J, E) countable with
lu(t)| < h(t) for a.e. t € J, and every u € C where h € L'(J,R,). Then the function
o(t) = a(C(t)) belongs to L'(J, R;) and satisfies

a({/olu(s)ds: uEC’}) <2/01a(0(s))d5.

Recall the set-valued analog of Ménch fixed point theorem.

Theorem 2.3 ([23]). Let K be a closed, convex subset of a Banach space E, U a
relatively open subset of K, and &: U — P.(K). Assume that graph(®) is closed,
® maps compact sets into relatively compact sets, and that for some xoy € U the
following two conditions are satisfied:

(2.1)

M c U, M C conv(zoU®&(M)) _
M compact,

and M = C with C C M countable
r¢ (1—Nwg+2&(z) YzeU\U, e (0,1).

Then there exists v € U with x € ().

Lemma 2.4 ([14]). Let V' C C(J,E) be bounded and the elements of V' be
equicontinuous on each Ji, k = 1,...,m. Then the map t — «(V (t)) is continuous

a</J V(t)dt> </Ja(V(t))dt,

where V (t) = {u(t): ve V}.

onJg, k=1,...,m and
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Lemma 2.5 ([3]). For any y € C|0, 1] the unique solution of the linear fractional
boundary value problem

Drz(t) =y(t), teJ=10,1], 1<r<2,

7 — 5 r—2
a1z(0) + B1(“D9z(0)) = 'yl/o (n— )

—_ 1
T —1) xz(s)ds, 0<g<1,

c g _ 7 (U - 5)7"_2
| asz(1) + f2(“Dix(1)) = ’)/2/0 mm(s) ds, 0<mn, o<1,
t — s r—1 — s 2r—2
a(t) = /O %y(S)derul(t)/on%y(S)ds

7 (0 —s)?r2 S ds — 1(1—5)7"_‘1_1 ) ds
wian [T e s [ Uy
s)r—l

o | e

where

/.Ll(t)z’}/l(Al—Agf,) EE, Mg(t):71A3+A4tEE,

1 720-7. 52 1 "}/20'7/‘_1
A = — — A = — PR
! A(O‘Q T(r+1) +r(2_q))’ 2 A(O‘Q T(r) )
B 777“ B i B ,)/1777“—1
&= ATy MT A (0‘1 T(r) )

1

A= (o= W’?: ) (a2~ F(Z“Qj‘rrl) i r(zﬂi q)) * F(Z}Zrl) (02 72F0(7”§ )#9

Now we recall the definition of the Kuratowski measure of noncompactness. Let
M C E be bounded. Then

n
a(M) = inf {5 >0: MC U M; and diam(M;) < 5},
i=1
Properties: The Kuratowski measure of noncompactness satisfies some properties

(for more details see [9]):

(a) a(B) =0+« B is compact (B is relatively compact),
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3. MAIN RESULTS

Let us list the following hypotheses:
(H1) F: J x E — Pi.(E) is a Carathéodory multi-valued map.
(H2) For each R > 0 there exists a function p € L'(J,R) such that
IE®y)llp = supflo]: v(t) € F(t,y)} < p(t)

for each (t,y) € J x E with |y| < R, and

1
lim inf ﬁ/ p(s)ds < oo,
R Jo

R—o0

where

B t" g (8) [ Y2l ! | B2] oo |
w‘féﬁ’i{r(rﬂﬁ T(2r) +|“2(t)|( T(2r) +I‘(r—q+1)+I‘(r+1))}'

(H3) There exists a Carathéodory function ¢: J x [0,2R] — Ry such that
a(F(t,M(t))) < ¥(t,a(M(t))), ae.teJ, and each M C B,

and the unique solution ¢ € C(J,[0,2R]) of the inequality

1 ! r—1
o0 < 755 / (t— 57 V(s (M (5))) ds
[ .
+ s [ =Rt a(u(s) ds

|’72|

)| gy [ o9 uts.aliu () ds

0
|52

1 —s5)" 1 (s, a S s
S LS RO

|aa|

1
—|——/ 1—s)""Y(s,a(M(s ds]7 teJ,

o [ = tutsa0ie)

is p=0.

Lemma 3.1 ([19]). Let J be a compact real interval. Let ' be a multivalued
map satisfying (H1) and let © be a linear continuous map from L'(J, E) — C(J, E).
Then the operator

©0Sry: C(J,E) = Pre(C(J, E)), y = (O 0 8ry)(y) = O(Sry)

is a closed graph operator in C(J, E) x C(J, E).
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Theorem 3.2. Suppose that (H1)-(H3) are satisfied. Then problem (1.1) has at
least one solution on C(J, B), provided that

(3.1) %/0 p(s)ds < 1.

Proof. Consider the multi-valued map &: C(J, E) — P(C(J, E)) defined by
t— S)T’fl

o) = ety - { [ K sl as

n —s 2r—2
+nt) [ s (o) ds

wialt) e [ E S el s

— 17(1_5)7"_(1_1 s,x(s))ds
b | S f(sa(e)d

o 1 Co2 nteass £ e e}

The fixed points of & are solutions to (1.1). We show that & satisfies the assump-
tions of Theorem 2.3. This is achieved in several steps.

First we show that &(y) is convex for each y € C(J, E). If hy, ha belong to G(y),
then there exist fi, fo € Spy such that for a.e. t € J we have

t _ s r—1 n _ s 2r—2
hi(t) = /0 %ﬂ(s) ds—f—ul(t)/o uﬁ(s) ds

(r) r(2r—1)

o — g)2r—2 1 —g)r—a—1
a0 [ G S fas - [ CE g as
-« 17(1_5)7"_1 i(s)ds 1=

2/0 ) fi(s)d ], 1,2.

Let 0 < A < 1, for each t € J we have
t—s)rt

(A1 + (1 = XNho)(t) = /0 ( e

+m() [ ' %(Aﬁ (1= N)f2)(5) ds

(Afi+ (1 =N f2)(s)ds

+ralt) e [ G 0+ (1= N o) ds

B 1 (1 o S)r—q—l B ) ds
b [ S O+ (1= V()

1(1—s)r B ) ds
S A e RSO
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Since SF,y is convex (because F' has convex values), we have
A + (1 — )\)hg S ®(y)

As the second step we show that & (M) is relatively compact for each compact
M Cc U. Let M C U be a compact set and let (h,,) be any sequence of elements of
&(M). We show that (h,) has a convergent subsequence by using the Arzela-Ascoli
criterion of noncompactness in C(J, E). Since (hy) € &(M), there exist (y,) € M
and (f,) € Sy, such that

mo = [ S ne s mo [T

+u2(t){72/0” %fn(s)ds_/gQ/o %fn(s)ds

Using Theorem 2.2 and the properties of the measure of Kuratowski «, we obtain
that

)27“—2

fn(s)ds

1 ! r—1
(3:2) a({hn(t)}KW/o a({(t—s)"""fu(s)})ds

s [t - s op s

sl [% / " a({(0 — )72 fu(s)}) ds

2r —
| B2
L(r—q)
|

1 / (- s)”h(s)})ds]

+

/0 a({(1 - 81 () ds

On the other hand, since M (s) is compact in E, the set {f,(s): n > 1} is compact.
Consequently, a({f.(s): n > 1}) =0 for a.e. s € J. Furthermore,

a({(t = )" fuls): n=1}) = (t =) al{fals): n>1}) =0,
a({(k =)' fuls): n=1}) = (k= s) " a({fals): n>1})=0; k=n,0,
a{(1 =) fu(s): n=1}) = (1 =) a({fals): n=1}) =0; j=14q+]1

for a.e. t,s € J. Now (3.2) implies that {h,(¢t): n > 1} is relatively compact in F
for each t € J.
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In addition, for each t; and to from J, t; < t2 we have

(3:3)  |ha(tz) = hn(t1)|

oy
+ﬁ/2(t2—s)r Lt (s)ds

n — s 2r—2
+nte) - me) [ S g ds

() = ot [T g s

[ U e [ U

[(t2 = 5)" 7" = (t1 = 5)" " 'p(s) ds

(r)
t2 r—1
+m/tl (t2 —s)" " "p(s)ds

" (g — 5)2r=2
NAol(ty — t ———d
+ [71Q2|(t2 1)/0 T@r—1) s

N

2
—_
- h

o—5§ 2r—2
+ [Ag|(t2 — t1) [|72|/ 7)1)17(8)(15

+|/32|/ 1_8 - ds+|a2|/ 0 }

As t;1 — to, the right hand side of the above inequality tends to zero. This
shows that {h,: n > 1} is equicontinuous. Consequently, {h,: n > 1} is relatively
compact in C(J, E). O

Now we show that & has a closed graph. Let (yn,h,) € graph(®), n > 1, with
lyn — yllcs |hn — Rllc — 0 as n — co. We must show that (y, h) € graph(®).

The fact that (yn,hn) € graph(®) means that h, € ®(y,), which means that
there exists f, € Sp,y,, such that for each t € J

mo = [ GI—neaseme [T as

(r) r'(2r—1)
% (g —3 2r—2 1 — 5 r—q—1
+ pa(t) [’72/0 %fn(s)d5_62/o %fn(s)ds
B ! (1—s)rt ) ds
o ) S
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Consider the continuous linear operator

0: L'(J,E) = C(J,E)

t _ s r—1 n — s 2r—2
/ (=9 o) ds + u(t) / =577 () s
0

T'(r) o I'(2r—1)
s(t) [72 | s

[ O()(1) = o

Clearly

o) [T o) - ) ds

7 (g —s 2r—2
+ralt) e [ G Unls) - Fe as

- [ S o)~ ) ds

r—q)

—0 asn— oo.

o | 1 %m(s) - 10| s

Consequently, from Lemma 3.1 it follows that © o Sr is a closed graph operator.

Moreover, we have

hn(t) € ©(SFy,.)-
Since y,, — y, we get

t — s r—1 n _ s 2r—2
w0 = [ e as ) [ U ) as

w0 [T O s as - [ U

_ 052/01 (1 ;;))T_lf(s)ds]

for some f € Sg,.
In our next step we show that (2.1) is satisfied. Suppose M C U, M C
conv({0} UB(M)), and M = C for some countable set C' C M. Using an estimation
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of type (3.3), we see that &(M) is equicontinuous. Then from M C conv({0}US(M))
we deduce that M is equicontinuous too. In order to apply the Arzela-Ascoli the-

orem, it remains to show that M(¢) is relatively compact in E for each ¢t € J.
Since

C C M Cconv({0} U&(M)) and C is countable,

we can find a countable set H = {h,: n > 1} C &(M) with C C conv({0} U H).
Then there exist y, € M and f, € Sp,, such that

) = [ L s 4o [T L s as

% (g —3 2r—2 1 — 5 r—q—1
)| [ Gor ne s s [ S s
1 (1—s)rt
— ag/o T?")fn(S) ds} .

From M C C C conv({0} U H) and the properties of the measure of noncompact-
ness we have

a(M()) < (a(C(1) < a(H(Y) = al{ha(t): n > 1}).

Using Theorem 2.2 and inequality (3.2), we obtain

o(M(0) < 55 [ ol =5 uls)s n > 1)) ds

|1 (1))

+ m/@ al{(n—=25)*"2fu(s): n>1})ds

a0 s [ ettt -2 h(s)s > 1)) as

|2

! —g—1
+ Tl —q) /0 al{(1-ys) fa(s): n=1})ds

o

+m/o al{(1—=8)"""fu(s): n>1})ds]|.

Now, since fn(s) € F(s,yn(s)) and y,, € M, (H3) guarantees

a({(t =) fuls): n=>1}) < (t =) a(F (s, M(s)))
< (t =) (s, a(M(5)));
a({(k = 9)* 72 fuls): n = 1}) < (k = ) "2a(F(s, M(s)))
< (k=) 2(s,a(M(s)); k=m0
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and

a({(1 =) fals): n>1}) < (1= s) " a(F(s, M(s)))

(1 =9)"7(s,a(M(s))); j=1,q+1.

NN

It follows that

o)< ﬁ/o (= 5)" (s, (M (s)) ds
" rlgi(fﬂn /On(” =) (s, a(M(s))) ds

a0l r2ls [0 = 92 uts.atare)) a

|B2]

! —g—1

=3 (1 (s, a(M(s)) ds].

Also, the function ¢ given by ¢(t) = a(M(t)) belongs to C(J,[0,2R]). Consequently,
by (H3), ¢ =0, that is a(M(¢)) =0 for all ¢ € J.

Now, by the Arzeéla-Ascoli theorem, M is relatively compact in C(J, E).

Finally, let h € &(y) with y € U. Since |y(s)| < R and (H2) holds, we have
®(U) C U. If it was not true, there would exist a function y € U, but |&(y)||p > R
and

t — s r—1 n _ s 2r—2
b = [ s [T s

A e e L

for some f € Sg,. On the other hand we have

R< 6]
< [ renas+ O s o210
)| g [ o= 0P e as
|62| ! _s r—q—1 s s M ! _ 5 r—1 s s
s [ @l s+ 7 [ a—ar s
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i ' =1l g2r—1 1
< ot [ s PO [ s st P [ as

+$/Olp(s)ds+%/olp(s)ds}
<w/01p(8)d8-

Dividing both sides by R and taking the lower limit as R — oo, we conclude that

whi

1
lim inf % /0 p(s)ds > 1

R—o0

ch contradicts (3.1). Hence &(U) C U.

As a consequence of all steps above together with Theorem 2.3, we can conclude

that & has a fixed point y € C(J, B), which is a solution of problem (1.1). O
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