
Applications of Mathematics

Yasunori Futamura; Takahiro Yano; Akira Imakura; Tetsuya Sakurai
A real-valued block conjugate gradient type method for solving complex symmetric
linear systems with multiple right-hand sides

Applications of Mathematics, Vol. 62 (2017), No. 4, 333–355

Persistent URL: http://dml.cz/dmlcz/146833

Terms of use:
© Institute of Mathematics AS CR, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/146833
http://dml.cz

62 (2017) APPLICATIONS OF MATHEMATICS No. 4, 333–355

A REAL-VALUED BLOCK CONJUGATE GRADIENT TYPE

METHOD FOR SOLVING COMPLEX SYMMETRIC LINEAR

SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES

Yasunori Futamura, Takahiro Yano, Akira Imakura,

Tetsuya Sakurai, Tsukuba

Received January 31, 2017. First published July 7, 2017.

Abstract. We consider solving complex symmetric linear systems with multiple right-hand
sides. We assume that the coefficient matrix has indefinite real part and positive definite
imaginary part. We propose a new block conjugate gradient type method based on the Schur
complement of a certain 2-by-2 real block form. The algorithm of the proposed method
consists of building blocks that involve only real arithmetic with real symmetric matrices of
the original size. We also present the convergence property of the proposed method and an
efficient algorithmic implementation. In numerical experiments, we compare our method to
a complex-valued direct solver, and a preconditioned and nonpreconditioned block Krylov
method that uses complex arithmetic.

Keywords: linear system with multiple right-hand sides; complex symmetric matrices;
block Krylov subspace methods

MSC 2010 : 65F10, 65F50

1. Introduction

In this paper we consider solving large sparse complex symmetric linear systems

with multiple right-hand sides of the form

(1.1) (AR + iAI)(X + iY) = BR + iBI,

where AR, AI ∈ R
n×n are real symmetric matrices, in addition, AR is indefinite and

AI is positive definite. Here i is the imaginary unit and BR, BI ∈ R
n×s are the real

This work was supported in part by JST/CREST, JST/ACT-I (Grant No. JPMJPR16U6),
MEXT KAKENHI (Grant Nos. 25286097, 17K12690), and University of Tsukuba Basic
Research Support Program Type A.

DOI: 10.21136/AM.2017.0023-17 333

http://dx.doi.org/10.21136/AM.2017.0023-17

and imaginary parts of the right-hand side. The matrices X,Y ∈ R
n×s are the real

part and imaginary part of the unknown. We assume that s ≪ n, and AR + iAI is

nonsingular.

This typical kind of linear systems arises in several application areas such as com-

putation of Green’s function in electronic structure calculations and spectral filtering

in the algorithms of contour integral eigenvalue solvers such as the Sakurai-Sugiura

method [26] and its variants [18], [19], [20], [27], and the FEAST algorithm [24].

It also needs to be solved in the algorithm of a stochastic estimation method for

eigenvalue distribution [17].

There are many methods for solving (1.1). One of the most robust methods is

a direct solver using complex symmetric LDLT (modified Cholesky) factorization.

One can utilize the preconditioned Krylov subspace methods which take advan-

tage of the complex symmetry such as the conjugate orthogonal conjugate gradi-

ent (COCG) method [31], the conjugate orthogonal conjugate residual (COCR)

method [28], and the quasi-minimal residual method for complex symmetric sys-

tems [16]. These methods iterate with short-term recurrences. Thus computational

cost for every iteration is constant. However, they have no optimal characteristic.

If one can accept long-term recurrences, optimal Krylov subspace methods such as

the generalized minimal residual method (GMRES) [25] and the generalized conju-

gate residual method (GCR) [14] can be used. While these methods have optimality,

their computational complexities for one iteration are more expensive than the meth-

ods above that exploit the complex symmetry and employ short-term recurrences.

The (preconditioned) Hermitian and skew-Hermitian splitting iteration method

(HSS) [6], [7] and its variants specialized for complex symmetric systems [3], [4], [5]

were proposed. The variants for complex symmetric systems consider the case where

both the real and imaginary parts of the coefficient matrix are positive semi-definite

with at least one of them being positive definite, however, this is not the case for our

study.

For the case where multiple right-hand sides are given simultaneously, we can

utilize block Krylov subspace methods. The block Krylov subspace methods are

extensions of Krylov subspace methods for systems of multiple right-hand sides.

For complex symmetric systems, the block COCG method [29] was proposed. It is

empirically shown that block Krylov subspace methods can be faster than a standard

Krylov subspace method sequentially applied to each right-hand side.

There are several ways to convert the complex problem (1.1) to an equivalent

2-by-2 real block form. For example, one can convert (1.1) to

(1.2)

(
AR −AI

AI AR

)(
X

Y

)
=

(
BR

BI

)
.

334

If one needs a symmetric system,

(1.3)

(
AR AI

AI −AR

)(
X

−Y

)
=

(
BR

BI

)

can be used. Spectral characteristics of (1.2), (1.3), and other formulations and

analysis of preconditioners for the systems were studied in [10].

Axelsson et al. [1] proposed a real-valued method based on the Schur complement

of the typical 2-by-2 real block form. The method involves only real arithmetic with

matrices and vectors of order n. However, in [1] it is assumed that AR is positive

definite and AI is positive semi-definite. This is not the case for our study. In [2],

an extension and analysis of the method for the general nonsymmetric case were

investigated, however, the study did not consider taking advantage of the symmetry

and/or positive definiteness of the matrices. In this paper we propose a new method

for solving (1.1), where AR is indefinite and AI is positive definite. Our method

is derived by extending the work in [1] and combining it with the block conjugate

gradient method for dealing with multiple right-hand sides simultaneously.

The paper is organized as follows. In Section 2, we describe real-valued formu-

lation and the base algorithm for our method. Characteristics of the matrices that

play an important role in this study are presented. In Section 4, we present a new

block conjugate gradient type method that involves only real arithmetic. A bound

on a certain error norm of the method is also described to analyze the convergence

rate. In Section 5, an efficient and stable algorithmic implementation of our method

is presented. In Section 6, we show numerical experiments to investigate the perfor-

mance of our method by comparing with the complex LDLT factorization and the

(preconditioned) block COCG method. In Section 7, the conclusion and future work

are shown.

2. Real-valued formulation

In this section we describe the real-valued formulation and the base algorithm.

We now recall the real-valued base algorithm [1] for solving the complex symmetric

linear system. Here we consider a 2-by-2 real block form (1.3) which is equivalent

to (1.1). The equation (1.3) can be converted to

(
Cγ 0√

1 + γ2AI −(AR + γAI)

)(
X

1√
1+γ2

(γX − Y)

)
=

(
F

γ√
1+γ2

(BI − γBR)

)
,

where

(2.1) Cγ := AR − γAI + (1 + γ2)AI(AR + γAI)
−1AI

335

and

F := BR −AI(AR + γAI)
−1(BI − γBR).

Here γ ∈ R is such that det(AR + γAI) 6= 0. See [1] for the details.

Using the above relations, we can form the base algorithm which is described in

Algorithm 1.

Algorithm 1. Base algorithm of real-valued method.

1: Compute F = BR −AI(AR + γAI)
−1(BI − γBR)

2: Solve CγX = F

3: Compute Y = γX − (AR + γAI)
−1(γBR −BI + (1 + γ2)AIX)

The linear system

(2.2) CγX = F

in the second line is solved with some iterative method. In practice, Cγ is never

formed explicitly. To compute the product of Cγ with an n × s matrix (which is

necessary for block Krylov methods), the procedure shown in Algorithm 2 can be

used.

Algorithm 2. Procedure for computing W = CγV , where V,W ∈ R
n×s.

1: Compute T1 = AIV

2: Compute T2 = (AR + γAI)
−1T1

3: Compute W = ARV − γT1 + (1 + γ2)AIT2

In Algorithm 1, the matrix inverse (AR + γAI)
−1 appears in lines 1 and 3, and

also in Cγ . Thus an inner solver needs to be employed for a linear system involving

(AR + γAI), where (AR + γAI) is real symmetric and generally, indefinite. For the

inner solver, a direct solver using the real symmetric LDLT factorization can be an

option. Preconditioned Krylov subspace methods can also be used.

In [1], it is described that when AR is real symmetric positive definite (s.p.d.)

and AI is real symmetric positive semi-definite (s.p.s.d.), (AR + γAI)
−1 is a good

preconditioner for the linear system (2.2) with a proper choice of γ. If the maximal

eigenvalue ofA−1
R AI is known, then we can use optimal γ to obtain the preconditioned

matrix with small spectral condition number κ. Even if the maximal eigenvalue is

not known, γ = 1 can be a reasonable choice, since we have κ = 2 in that case.

However, in this study, we assume that AR is indefinite and AI is positive defi-

nite. Therefore, in our case, the promising theorems presented in [1] do not hold.

Moreover, the (preconditioned) CG method (which is the best known method for

s.p.d. matrices) cannot be used straightforwardly because in our case, neither Cγ

336

nor (AI + γAI) are positive definite. Since the coefficient matrix Cγ is symmetric

indefinite, one can consider using the MINRES method [23] which is optimal with re-

spect to the residual norm and employs preferable short-term recurrences. However,

for MINRES, the preconditioning matrix needs to be s.p.d. To find good s.p.d. pre-

conditioner is not an easy task. Instead of an optimal method with short-term

recurrences, one can consider utilizing optimal Krylov methods using long-term re-

currences such as GMRES, or nonoptimal methods using short-term recurrence such

as BiCGSTAB [30].

Here, to show that we can utilize optimal Krylov methods with short-term recur-

rences for solving the linear system (2.2), we present the following proposition.

Proposition 2.1. Consider Gγ := (AR + γAI)
−1Cγ . AIGγ is real symmetric

positive definite and Gγ is self-adjoint w.r.t. the AI-inner product.

P r o o f. Since AR is real symmetric and AI is s.p.d., there exist nonsingular

U ∈ R
n×n and diagonal Λ ∈ R

n×n that satisfy ARU = AIUΛ and U−1 = UTAI.

Using them, we have

Gγ = (AR + γAI)
−1[AR − γAI + (1 + γ2)AI(AR + αAI)

−1AI]

= [AI(A
−1
I AR + γI)]−1AI[A

−1
I AR − γI + (1 + γ2)(A−1

I AR + γI)−1]

= (A−1
I AR + γI)−1[A−1

I AR − γI + (1 + γ2)(A−1
I AR + γI)−1]

= U(Λ + γI)−1[Λ− γI + (1 + γ2)(Λ + γI)−1]U−1

= UΘU−1,

where Θ := (Λ + γI)−1[Λ− γI + (1 + γ2)(Λ + γI)−1]. Since Θ is a diagonal matrix,

an eigenvalue θ of Gγ is written as

θ =
λ− γ + (1 + γ2)/(λ+ γ)

λ+ γ
=

1 + λ2

(λ+ γ)2
,

where λ is a diagonal element of Λ. Therefore, all eigenvalues of Gγ are real pos-

itive (but Gγ is not symmetric). Consider AIGγ . Since U−1 = UTAI, we have

AIGγ = AIUΘ(AIU)T. By virtue of this relation, we notice that AIGγ is s.p.d. and

(Gγx,y)AI
= (x, Gγy)AI

, where x,y ∈ R
n and (x,y)AI

= xTAIy. Proposition 2.1

is proved. �

Consequently, if we choose Gγ := (AR+γAI)
−1Cγ as the coefficient matrix rather

than Cγ when considering the linear system

(2.3) GγX = F̂ := (AR + γAI)
−1F

337

which is equivalent to (2.2), and employ a matrix-weighted inner product, we can

utilize optimal Krylov subspace methods such as CG and MINRES.

3. Real-valued block conjugate gradient method

with a matrix-weighted inner product

In this section we propose a new real-valued block conjugate gradient method for

solving complex symmetric systems (1.1).

With a nonzero matrix V = [v(1),v(2), . . . ,v(s)], we define

Km(A;v(i)) := span{v(i), Av(i), . . . , Am−1v(i)},

Bm(A;V) :=

{ s∑

i=1

m−1∑

j=0

ηj,iA
jv(i) ; ηj,i ∈ C ∀ j, i)

}

= Km(A;v(1)) +Km(A;v(2)) + . . .+Km(A;v(s)).

Block Krylov subspace methods are projection methods which find the solution

vectors as

x
(i)
k ∈ x

(i)
0 + Bk(A;R0),

where X0 = [x
(1)
0 ,x

(2)
0 , . . . ,x

(s)
0] is the initial guess and R0 = B − AX0 (B is here

the right-hand side matrix).

The block CGmethod [22] is an extension of the CGmethod for linear systems with

multiple right-hand sides. The method can be utilized for real-symmetric/complex-

Hermitian positive definite systems.

The residual vector r
(i)
k of the ith right-hand side at the kth iteration of the block

CG method satisfies the condition

r
(i)
k ⊥ Bk(A;R0).

In the block CG method, the search space is extended by s bases per iteration. The

block CG method often requires fewer iteration counts than the CG method.

The naive formulation of the block CG method is instable because n× s matrices

in the algorithm tend to be nearly linearly dependent. There are several treatments

for this problem [22], [21], [12].

It is known that, the approximate solution x
(i)
k of the kth iteration of the block

CG method minimizes

‖x− x∗

i ‖A
over all x such that x ∈ x

(i)
0 + Bk(A;R0), where x

∗

i is the true solution for the ith

right-hand side (see Theorem 2 of [22]). In [22], O’Leary presented a bound on the

error norm of the block CG method.

338

Now we consider the block CG method with the AI-inner product for solving (2.3).

Since Gγ is self-adjoint w.r.t. the AI-inner product, we can form a block Lanczos basis

Vm ∈ C
n×sm such that

V T
mAIVm = I

and

V T
mAIGγVm = Tm.

Here Tm ∈ C
sm×sm is a symmetric block tridiagonal matrix with block size s.

Therefore, the algorithm of the block CG method can be derived analogously by

referencing [22] and replacing the standard inner product by the AI-inner product.

The pseudo-code of the method is shown in Algorithm 3. This is a naive imple-

mentation. We present an efficient algorithmic implementation of the method in

Section 5.

In [22], O’Leary also proposed the block BiCG method for solving non-Hermitian

systems with multiple right-hand sides. Du et al. [11] presented a stabilized formula-

tion which is called the block BiCGrQ method using Dubrulle’s idea [12] developed

for the block CG method. The block BiCGrQ method can be specialized for solving

complex symmetric linear systems. This specialization leads to the block COCGrQ

method.

In the numerical experiments, we compare our method to the (preconditioned)

block COCGrQ method. We show the pseudo-code of the preconditioned block

COCGrQ method in the appendix.

Algorithm 3. Real-valued block CG algorithm for solving complex symmetric

linear systems with multiple right-hand sides (naive version). The definition of Cγ

is given in (2.1). Cγ is never formed explicitly. The products of Cγ by matrices are

computed by the procedure in Algorithm 2. If the LDLT factorization of (AR+γAI)

is given, the multiplication by Cγ can be computed using only triangular solves and

matrix-matrix products.

Input: AR = AT
R ∈ R

n×n; AI = AT
I ∈ R

n×n; BR, BI, X0 ∈ R
n×s; γ ∈ R

Output: X,Y ∈ R
n×s

1: F = BR −AI(AR + γAI)
−1(BI − γBR)

2: R̂0 = (AR + γAI)
−1(F − CγX0)

3: P0 = R̂0; Z0 = AIR̂0

4: for k = 0, 1, . . . until solution converges do

5: Śk = (AR + γAI)
−1CγPk

6: Ẃk = AIŚk

7: αk = (PT
k Ẃk)

−1(R̂T
kZk)

8: Xk+1 = Xk + Pkαk

339

9: R̂k+1 = R̂k − Śkαk

10: Zk+1 = AIR̂k+1

11: βk = (R̂T
k Zk)

−1(R̂T
k+1Zk+1)

12: Pk+1 = R̂k+1 + Pkβk

13: end for

14: X = Xk

15: Y = γXk − (AR + γAI)
−1(γBR −BI + (1 + γ2)AIXk)

4. Convergence of the block CG method in AI-inner product

In this section we derive a theorem on convergence of the error norm of the block

CG method with the matrix-weighted inner product.

Here we order the eigenvalues of Gγ as 0 < θ1 6 θ2 6 . . . 6 θn. Let ui be

the eigenvector of Gγ corresponding to θi and U := [u1,u2, . . . ,un]. We extend

O’Leary’s results [22] to the block CG method in the general inner product with AI.

Let Ck(θ) := cos(k arccos(θ)) for −1 6 θ 6 1 be the kth Chebyshev polynomial of

the first kind. We have the following identities.

Lemma 4.1 (Lemma 4 of [22]). For θ > 1,

Ck(θ)

Ck−1(θ)
6 2θ.

Lemma 4.2 (Lemma 3 of [22]). Let

Ĉk(θ) := Ck

(d2 + d1 − 2θ

d2 − d1

)/
Ck

(d2 + d1
d2 − d1

)
,

Ĉ′

k(θ) := Ck−1

(d2 + d1 − 2θ

d2 − d1

)/
Ck

(d2 + d1
d2 − d1

)
,

where 0 < d1 < d2. Then, for d1 6 θ 6 d2,

|Ĉk(θ)| 6 2

(√
κ− 1√
κ+ 1

)k
, |Ĉ′

k(θ)| 6 2

(√
κ− 1√
κ+ 1

)k
,

where κ = d2/d1.

340

Using the Chebyshev polynomial, we analyze the convergence of the block CG

method in AI inner product for solving (2.3).

Lemma 4.3. Let E := [e
(1)
0 , e

(2)
0 , . . . , e

(s)
0] := X0 −X∗ be an initial error matrix,

where X∗ := G−1
γ F̂ . Define Ẽ := [e

(1)
0 , e

(2)
0 , . . . , e

(s−1)
0] to be E with the sth column

omitted. Assume that the top (s−1)× (s−1) submatrix of U−1GγẼ is nonsingular.

Define

Φ =

[
Φ1

Φ2

]
∈ R

n×(s−1), Φ1: nonsingular

to be an n× (s− 1) matrix such that the columns of UΦ form a basis of span{GγẼ}
and

R̃ = [r̃(1), r̃(2), . . . , r̃(s−1)] = UΦΦ−1
1 = U

[
I

Φ2Φ
−1
1

]
.

Now, define g
(j)
k ∈ Bk(Gγ ;GγẼ) = span{GγẼ, G2

γẼ, . . . , Gk
γẼ} for j = 1, 2, . . . , s− 1

by

g
(j)
k = P(j)

k (Gγ)r̃
(j)

with a (k − 1)st degree polynomial

P(j)
k (θ) = Ck−1

(θn + θs − 2θ

θn − θs

)/
Ck−1

(θn + θs − 2θj
θn − θs

)
.

Then g
(j)
k can be written as

(4.1) g
(j)
k = uj +

n∑

i=s

σ
(j)
ik ui

with

σ
(j)
ik = ũT

i r̃
(j)Ck−1

(θn + θs − 2θi
θn − θs

)/
Ck−1

(θn − θs − 2θj
θn − θs

)

for i = s, s+ 1, . . . , n, where U−1 = [ũ1, ũ2, . . . , ũn]
T.

P r o o f. From the definition of r̃(j) we have

r̃(j) = uj +

n∑

i=s

ϕijui,

where ϕij is the (i, j) element of ΦΦ−1
1 . Notice that ϕij = ũT

i r̃
(j). Then, using

Gγ = UΘU−1 and P(j)
k (θj) = 1,

g
(j)
k =

(n∑

i=1

uiP(j)
k (θi)ũ

T
i

)(
uj +

n∑

i=s

(ũT
i r̃

(j))ui

)

= uj +
n∑

i=s

(ũT
i r̃

(j))P(j)
k (θi)ui,

which proves Lemma 4.3. �

341

Theorem 4.1. Suppose that dim(Bk(Gγ ;GγẼ)) = k(s− 1). Define the kth error

vector of the block CG method as

e
(s)
k = x

(s)
k − x∗

s = e
(s)
0 +

s∑

j=1

P∗

kj(Gγ)Gγe
(j)
0 ,

e
(s)
0 = x

(s)
0 − x∗

s = Uy,

where each P∗

kj(Gγ) is a (k − 1)-degree polynomial and y = [y1, y2, . . . , yn]
T.

Then, for convergence of the block CG method, we have

‖e(s)k ‖2AIGγ
= (e

(s)
k)TAIGγe

(s)
k 6

(√
κs − 1√
κs + 1

)2k
c

with some constant c, where κs = θn/θs.

P r o o f. Since the block CG method constructs the optimal polynomials in terms

of ‖e(s)k ‖2AIGγ
, we can bound it with specific polynomials, i.e.,

‖e(s)k ‖2AIGγ
6 ‖ẽ(s)k ‖2AIGγ

, ẽ
(s)
k = e

(s)
0 +

s∑

j=1

Pkj(Gγ)Gγe
(j)
0 .

Here, we define the polynomial Pks(θ) as

1 + Pks(θ)θ = Ĉk(θ) := Ck

(θn + θs − 2θ

θn − θs

)/
Ck

(θn + θs
θn − θs

)
.

Because Ĉk(θ) is a kth degree polynomial with Ĉk(0) = 1, it can be written as

1 + Pks(θ)θ with the (k − 1)st degree of the polynomial Pks(θ). We also define

Pkj(θ) (j = 1, 2, . . . , s− 1) as

s−1∑

j=1

Pkj(Gγ)Gγe
(j)
0 = −

s−1∑

j=1

Ĉk(θj)yjg
(j)
k , j = 1, 2, . . . , s− 1.

From the assumption, k(s−1) basis vectors of Bk(Gγ ;GγẼ) are independent. There-

fore, the polynomials Pkj(θ) (j = 1, 2, . . . , s− 1) are determined uniquely.

Then we have

ẽ
(s)
k = Ĉk(Gγ)e

(s)
0 −

s−1∑

j=1

Ĉk(θj)yjg
(j)
k = Ĉk(Gγ)Uy −

s−1∑

j=1

Ĉk(θj)yjg
(j)
k .

342

Using (4.1), we conclude that

ẽ
(s)
k =

n∑

i=1

Ĉk(θi)yiui−
s−1∑

j=1

Ĉk(θj)yj

(
uj +

n∑

i=s

σijui

)

=

n∑

i=s

Ĉk(θi)yiui−
s−1∑

j=1

Ĉk(θj)yj

n∑

i=s

σijui =

n∑

i=s

(
Ĉk(θi)yi−

s−1∑

j=1

Ĉk(θj)yjσij

)
ui.

Therefore,

‖ẽ(s)k ‖2AIGγ
=

(n∑

i=s

Ĉk(θi)yiui

)T
AIGγ

(n∑

l=s

Ĉk(θl)ylul

)
(4.2)

+

(n∑

i=s

s−1∑

j=1

Ĉk(θj)yjσijui

)T
AIGγ

(n∑

l=s

s−1∑

m=1

Ĉk(θm)ymσlmul

)
(4.3)

− 2

(n∑

i=s

Ĉk(θi)yiui

)T
AIGγ

(n∑

l=s

s−1∑

m=1

Ĉk(θm)ymσlmul

)
.(4.4)

Next, we consider the bound of each term using Lemmas 4.1 and 4.2 and

max
j=1,2,...,s−1

θn + θs − 2θj
θn − θs

=
θn + θs − 2θ1

θn − θs
.

The 1st term (4.2) is bounded as

∣∣∣∣
(n∑

i=s

Ĉk(θi)yiui

)T
AIGγ

(n∑

l=s

Ĉk(θl)ylul

)∣∣∣∣

=

∣∣∣∣
n∑

i=s

(Ĉk(θi))
2θiy

2
i

∣∣∣∣ 6 4

(√
κs − 1√
κs + 1

)2k∣∣∣∣
n∑

i=s

θiy
2
i

∣∣∣∣ =
(√

κs − 1√
κs + 1

)2k
c1.

The 2nd term (4.3) is bounded as

∣∣∣∣
(n∑

i=s

s−1∑

j=1

Ĉk(θj)yjσijui

)T
AIGγ

(n∑

l=s

s−1∑

m=1

Ĉk(θm)ymσlmul

)∣∣∣∣

=

∣∣∣∣
n∑

i=s

(s−1∑

j=1

Ck

(θn+θs−2θj
θn−θs

)

Ck

(
θn+θs
θn−θs

) yjũ
T
i r̃j

Ck−1

(
θn+θs−2θi

θn−θs

)

Ck−1

(θn+θs−2θj
θn−θs

)
)2
θi

∣∣∣∣

6 4
(θn + θs − 2θ1

θn − θs

)2
4

(√
κs − 1√
κs + 1

)2k∣∣∣∣
n∑

i=s

(s−1∑

j=1

yjũ
T
i r̃

(j)

)2
θi

∣∣∣∣

= 4
(θn + θs − 2θ1

θn − θs

)2(√
κs − 1√
κs + 1

)2k
c2.

343

The 3rd term (4.4) is bounded as

∣∣∣∣2
(n∑

i=s

Ĉk(θi)yiui

)T
AIGγ

(n∑

l=s

s−1∑

m=1

Ĉk(θm)ymσlmul

)∣∣∣∣

=

∣∣∣∣2
n∑

i=s

Ĉk(θi)yiθi

(s−1∑

j=1

Ck

(θn+θs−2θj
θn−θs

)

Ck

(
θn+θs
θn−θs

) yjũ
T
i r̃j

Ck−1

(
θn+θs−2θi

θn−θs

)

Ck−1

(θn+θs−2θj
θn−θs

)
)∣∣∣∣

6 4
(θn + θs − 2θ1

θn − θs

)
4

(√
κs − 1√
κs + 1

)2k∣∣∣∣
n∑

i=s

(s−1∑

j=1

yjũ
T
i r̃

(j)

)
θi

∣∣∣∣

= 4
(θn + θs − 2θ1

θn − θs

)(√
κs − 1√
κs + 1

)2k
c3.

Therefore, we have

‖ẽ(k)s ‖AIGγ
6

(√
κs − 1√
κs + 1

)2k[
c1 + 4

(θn + θs − 2θ1
θn − θs

)2
c2 + 4

(θn + θs − 2θ1
θn − θs

)
c3

]

=

(√
κs − 1√
κs + 1

)2k
c.

Here we note that the constant c does not depend on k. �

Notice that Lemma 4.3 and Theorem 4.1 are valid for any component p using the

definition E(p) = [e
(1)
0 , . . . , e

(p−1)
0 , e

(p+1)
0 , . . . , e

(s)
0].

In Theorem 4.1, when s = 1, we have κs = θn/θ1, and the theorem is reduced to

the theorem for the convergence of the error norm of the single-vector CG method

(with AI-inner product). Note here that θn/θ1 is the spectral condition number

of Gγ . Therefore, when compared with the single-vector CG method, we can see

that for the block CG method with s right-hand sides, in terms of the convergence,

the s− 1 smallest eigenvalues can be ignored when computing the spectral condition

number of Gγ . In other words, we can say that the block CG method deflates the

s− 1 smallest eigenvalues of Gγ .

5. Efficient algorithmic implementation

In this section we describe the efficient implementation of our method. In Algo-

rithm 3, at a first glance, we can see that we need to multiply AI to multi-vectors

(n × s matrices) four times per iteration (twice in Cγ and twice for computations

of Ẃk and Ẑk+1). Let us now consider keeping intermediate multi-vectors used for

computing

CγPk = ARPk − γAIPk + (1 + γ2)AI(AR + γAI)
−1AIPk.

344

Here we define Sk := AIPk, Tk := (AR + γAI)
−1Sk, and Wk := CγPk. Using them,

we can compute αk without Ẃk = AIŚk, since

PT
k Ẃk = PT

k AIŚk = ST
k Śk = ST

k (AR + γAI)
−1CγPk

= ((AR + γAI)
−1Sk)

TCγPk = TT
k Wk.

In addition, Wk can be computed as Wk = ARPk − γSk + (1 + γ)2AITk and Sk can

be updated by a recurrence Sk+1 = Zk+1 + Skβk. Therefore, we can reduce the

multiplication of AI from four times to twice.

The linear system we originally solve is CγX = F (see Algorithm 1). To compute

the residual R := F − CγX cheaply, we introduce a recurrence Rk+1 = Rk −Wkαk.

Provided that the initial guesses X0 and Y0 satisfy

(5.1) Y0 = γX0 − (AR + γAI)
−1(γBR −BI + (1 + γ2)AIX0),

Yk can be updated by the recurrences

(5.2) Yk+1 = Yk + γPkαk − (1 + γ2)(AR + γAI)
−1AIPkαk

= Yk + (γPk − (1 + γ2)Tk)αk,

since Xk+1 = Xk + Pkαk, and the real part X
∗ and the imaginary part Y ∗ of the

true solution of (1.1) satisfy

Y ∗ = γX∗ − (AR + γAI)
−1(γBR −BI + (1 + γ2)AIX

∗)

(see [1] for the derivation).

As seen in other Krylov methods, the residual Rk computed by the recurrence

formula could be different from the true residual F−CγXk due to the rounding error.

Thus the true residual has to be computed (at least) at the end of the algorithm to

assess the accuracy of the approximate solution.

Fortunately, the true residual can be computed cheaply with BR − ARX + AIY ,

since

(5.3) R = F − CγX

= BR −AI(AR + γAI)
−1(BI − γBR)

− (AR − γAI + (1 + γ2)AI(AR + γAI)
−1AI)X

= BR −ARX +AI(γX − (AR + γAI)
−1(γBR −BI + (1 + γ2)AIX))

= BR −ARX +AIY.

345

We can use this equation to avoid the expensive multiplication of Cγ for computing

the true residual. Using the relation, we can also compute the initial residual R0

cheaply. This idea is not new (see [1]).

Utilizing the relations (5.3) and (5.2), we can reduce (AR + γAI)
−1 in the initial-

ization and finalization phase (lines 1–2 and 15) from four times to twice.

Similar to other block Krylov subspace methods, our method shows instability

since column vectors n × s matrices tend to be nearly linearly dependent. As pre-

sented in [12] for the standard block CG method, one can orthogonalize the columns

of Rk by the (thin) QR factorization (qr(·)) for stabilizing the method.
In the stabilized formulation, we introduce a column orthonormal matrix Qk ∈

R
n×s such that Qk∆k = Rk, where ∆k ∈ R

s×s. The matrix Qk is used for the

iteration instead of Rk for numerical stability and Rk is not orthonormalized explic-

itly. The matrix Qk and upper triangular ̺k ∈ R
s×s are recurrently computed as

Qk̺k = qr(Qk−1 − W̃k−1α̃k−1), where α̃k := ∆kαk∆
−1
k , W̃k := Wk∆

−1
k , and ∆k

is updated as ∆k = ̺k∆k−1. Note that the Frobenius norm of the residual can be

computed via ‖∆k‖F, since ‖Rk‖F = ‖Qk∆k‖F = ‖∆k‖F.
In Algorithm 4, we show the resulting efficient algorithmic implementation with

both the original formulation and the stabilized formulation with residual orthog-

onalization. If one chooses the stabilized formulation, the steps in bracket labeled

with “rQ“ need to be performed. Note that the symbols αk, βk, Pk, Sk, Tk, Wk,

and Zk in the “rQ” formulation are not mathematically equivalent to those of the

original formulation. In this study, we refer to Algorithm 4 as the proposed method.

Note that it is possible to compute Q̂k such that Q̂
T
kZk = Is, where Is is the

identity matrix of order s. This enables one to avoid matrix inverses of small s× s

matrices. It is also noted that ̺k do not have to be upper triangular. Thus any

orthogonalization algorithms can be used.

Algorithm 4. Real-valued block CG algorithm for solving the complex symmetric

linear system with multiple right-hand sides (Efficient version). qr(·) indicates the
thin QR decomposition.

Input: AR = AT
R ∈ R

n×n; AI = AT
I ∈ R

n×n; BR, BI, X0, Y0 ∈ R
n×s; γ ∈ R

Output: X,Y ∈ R
n×s

1: if there is no initial guess then

2: X0 = O; Y0 = (AR + γAI)
−1(BI − γBR)

3: else

4: ((5.1) must hold)

5: end if

6: R0 = BR −ARX0 +AIY0

7: {rQ: Q0∆0 = qr(R0)}

346

8: R̂0 = (AR + γAI)
−1R0 {rQ: Q̂0 = (AR + γAI)

−1Q0}
9: P0 = R̂0; S0 = Z0 = AIR̂0 {rQ: P0 = Q̂0; S0 = Z0 = AIQ̂0}

10: for k = 0, 1, . . . until solution converges do

11: Tk = (AR + γAI)
−1Sk

12: Wk = ARPk − γSk + (1 + γ2)AITk

13: αk = (TT
k Wk)

−1(R̂T
kZk) {rQ: αk = (TT

k Wk)
−1(Q̂T

kZk)}
14: Xk+1 = Xk + Pkαk {rQ: Xk+1 = Xk + Pkαk∆k}
15: Yk+1 = Yk + (γPk − (1 + γ2)Tk)αk

{rQ: Yk+1 = Yk + (γPk − (1 + γ2)Tk)αk∆k}
16: Rk+1 = Rk −Wkαk {rQ: Qk+1̺k+1 = qr(Qk −Wkαk)}
17: {rQ: ∆k+1 = ̺k+1∆k}
18: R̂k+1 = (AR + γAI)

−1Rk+1 {rQ: Q̂k+1 = (AR + γAI)
−1Qk+1}

19: Zk+1 = AIR̂k+1 {rQ: Zk+1 = AIQ̂k+1}
20: βk = (R̂T

k Zk)
−1(R̂T

k+1Zk+1) {rQ: βk = (Q̂T
kZk)

−1̺Tk+1(Q̂
T
k+1Zk+1)}

21: Pk+1 = R̂k+1 + Pkβk {rQ: Pk+1 = Q̂k+1 + Pkβk}
22: Sk+1 = Zk+1 + Skβk

23: end for

24: X = Xk; Y = Yk

6. Numerical experiments

In this section we show numerical experiments to evaluate the performance of our

method by using problems from real applications.

We test our method for the complex symmetric linear systems which need to be

solved in the algorithm of a contour integral eigensolver for solving symmetric definite

generalized eigenvalue problem Kt = µMt. Here K is real symmetric indefinite,

M is real s.p.d, and (µ, t) is an eigenpair. In the algorithm of a contour integral

eigensolver, one needs to solve linear systems with a complex symmetric coefficient

matrix (zjM −K) and with multiple right-hand sides, where zj are complex scalars

that are quadrature points of numerical contour integration. Since K is indefinite

and M is positive definite, the linear system is of the type (1.1).

Table 1 shows the test matrices used for the experiments. The symbol nnz(·)
indicates the number of nonzero elements of the matrix. BCSST25 is derived from a

matrix pair (BCSSTK25 and BCSSTM25) obtained from the university of Florida

sparse matrix collection [9]. For this problem, AI is diagonal. Ge87H76 is also

obtained from [9]. For this matrix AI is the identity matrix. VCNT22500 is derived

from a matrix pair with the same name which was obtained from ELSES matrix

library [15]. CQSZ20 is derived from a matrix pair obtained by the linear scaling

347

density functional theory code CONQUEST [8]. The symbol z indicates the complex

scalar value used for computing AR = real(zM −K) and AI = imag(zM −K).

Name Size nnz(AR) nnz(AI) z

BCSST25 15 439 252 241 15 439 100+i

Ge87H76 112 985 7 892 195 112 985 0+440.01i

VCNT22500 22 500 8 737 290 8 737 290 −0.55+0.01i

CQSZ20 94 948 13 247 276 9 730 976 0.015+(4.9e−5)i
Table 1. Properties of the matrices used in the numerical examples and the complex scalar z

used to make AR and AI.

We performed the experiments on a workstation which is equipped with two pro-

cessors Intel Xeon E5-2667v3 (2.67GHz, 8 cores/16 thread, Haswells) with 512 GB

main memory (DDR4 ECC REG 32GB×16). To implement the methods, we used
the C++ language, C++ linear algebra library Eigen version 3.3.1 [13], and Intel

Math Kernel Library (MKL). The real/complex symmetric LDLT factorization and

their triangular solves were performed using PARDISO of MKL. In our method,

we solved linear systems with (AR + γAI) using the PARDISO direct solver. ILU0

preconditioner was implemented using Eigen’s sparse matrix interface.

The real part BR of the right-hand sides of linear systems were generated with

random numbers. The imaginary part BI was set as zero. Stopping criterion for

iterative methods is max
i

‖Rk(:, i)‖2/‖R0(:, i)‖2 < 1e − 15, where Rk(:, i) is the ith

column vector of Rk. The initial guess is set to zero for all examples. For our method,

we let γ = 0 since AR are nonsingular for all matrices.

6.1. Experiment I. In this example, we see how the number of iterations and

the computation time are affected by the number of right-hand sides simultane-

ously solved by our real-valued block CG method (with residual orthogonalization).

Tables 2, 3, 4, and 5 show the result for BCSST25, Ge87H76, VCNT22500, and

CQSZ20, respectively. In the tables, # iter indicates the number of iteration and

tfact, ttsol, tR, tI, and tqr indicate computation time (in seconds) for the real LDL
T

factorization, the triangular solve using the factorization, the multiplication of AR,

the multiplication of AI, and the QR factorization, respectively. The quantity ttotal
is the total computation time and true res indicates the true residual norm.

The tables indicate that for all test matrices, as the number of right-hand sides s

is increased, the number of iterations decreases. This indicates that the increase of

the number of smallest eigenvalues of Gγ deflated may contribute to the reduction

of the number of iterations needed to converge.

For all cases, the true relative residual norm is larger than 1e−15 although the
stopping criterion is satisfied. This is a common situation in (block) Krylov subspace

348

methods and is caused by the rounding error. For all cases, we observe that as s

increases, the true residual norm increases. Therefore we need to take care of the

true residual norm.

s 1 2 4 8 16 32 64

iter 23 18 14 12 10 8 7

ttotal 1.0 0.8 1.0 1.4 2.1 3.3 5.8

tfact 0.3 0.2 0.2 0.2 0.2 0.2 0.2

ttsol 0.6 0.7 0.8 1.1 1.7 2.7 4.9

tR 0.0 0.0 0.0 0.0 0.1 0.1 0.1

tI 0.0 0.0 0.0 0.0 0.0 0.0 0.1

tqr 0.0 0.0 0.0 0.0 0.1 0.2 0.3

true res 1.4e−12 1.9e−12 1.9e−12 3.3e−12 3.4e−12 7.1e−12 9.0e−12

Table 2. Result of Experiment I for BCSST25.

s 1 2 4 8 16 32 64

iter 37 28 22 16 13 10 8

ttotal 443.4 467.6 524.9 560.2 639.8 789.5 1038.1

tfact 276.4 282.6 276.3 282.3 276.5 282.1 276.4

ttsol 166.5 184.2 247.3 275.9 359.6 499.8 750.0

tR 0.3 0.5 0.8 1.1 1.8 2.8 4.4

tI 0.0 0.1 0.1 0.1 0.2 0.3 0.5

tqr 0.0 0.1 0.2 0.3 0.7 2.6 3.4

true res 1.2e−14 2.0e−14 3.2e−13 1.1e−12 1.7e−12 3.1e−12 4.3e−12

Table 3. Result of Experiment I for Ge87H76.

s 1 2 4 8 16 32 64

iter 116 76 48 32 22 17 14

ttotal 22.7 24.3 26.1 28.8 34.3 50.0 78.9

tfact 1.9 2.0 1.9 2.0 2.0 2.0 1.9

ttsol 17.6 18.2 19.0 19.7 22.5 32.3 51.1

tR 1.0 1.3 1.7 2.2 3.0 4.7 7.7

tI 2.0 2.6 3.2 4.4 5.9 9.2 14.7

tqr 0.0 0.0 0.1 0.1 0.2 0.6 0.8

true res 7.0e−15 1.5e−14 1.9e−14 1.6e−13 9.2e−13 2.3e−12 4.8e−12

Table 4. Result of Experiment I for VCNT22500.

6.2. Experiment II. In this example we compare our method with complex sym-

metric LDLT factorization, and ILU0-preconditiond and nonpreconditioned block

349

s 1 2 4 8 16 32 64

iter 56 38 26 19 14 11 9

ttotal 101.7 90.6 104.1 108.1 120.1 162.3 232.8

tfact 24.3 23.9 23.9 24.3 23.9 24.3 23.9

ttsol 75.3 63.7 76.2 77.7 86.8 121.3 182.0

tR 0.8 1.0 1.4 2.1 3.1 4.9 7.8

tI 1.2 1.5 2.1 3.0 4.4 6.9 11.1

tqr 0.1 0.1 0.1 0.3 0.6 2.3 3.1

true res 1.2e−13 1.5e−12 2.5e−12 4.8e−12 5.0e−11 6.4e−11 1.0e−10

Table 5. Result of Experiment I for CQSZ20.

COCGrQ method in terms of computation time. Tables 6, 7, 8, and 9 show the

result for BCSST25, Ge87H76, VCNT22500, and CQSZ20, respectively.

In the tables, Proposed, C-LDLT, BlockCOCG(I), and BlockCOCG(ILU0) indicate

our method with residual orthogonalization, a direct solver using complex symmet-

ric LDLT factorization, nonpreconditioned block COCGrQ, and ILU-preconditioned

block COCGrQ, respectively.

For the block COCGrQ method, the computation time for mat-vec with complex

symmetric matrix is shown in the row of tR.

For iterative methods the maximum number of iterations is set tomin(⌈n/s⌉, 3000).
In this experiment, the number of right-hand sides s is fixed to 16.

For BCSST25, the proposed method is approximately three times slower than

C-LDLT because the triangular solve is relatively expensive as compared to the fac-

torization. For BlockCOCG(I) and BlockCOCG(ILU0), the residual norm did not

converge for this matrix.

For Ge87H76, the proposed method is faster than C-LDLT because, in contrast to

the previous example, the triangular solve is relatively inexpensive as compared to the

factorization. Both BlockCOCG(I) and BlockCOCG(ILU0) needed a lot of iterations,

and are far slower than Proposed and C-LDLT. Though the ILU0 preconditioning

successfully reduces the number of iterations, the total computational time is larger

than in the nonpreconditioned case due to the computational cost of the (ILU0)

triangular solve. Also we note that for the block COCG method, the relative true

residual norm is quite larger (around 1e−11) than the stopping criterion 1e−15.

For VCNT22500, the proposed method is approximately eight times slower than

C-LDLT because the triangular solve is relatively expensive as is also seen in the case

of BCSST25. For BlockCOCG(I), the norm of the residual computed by recurrences

was smaller than tolerance. However, it is far slower than Proposed and C-LDLT.

BlockCOCG(ILU0) failed because the (ILU0) triangular solve broke down.

350

For CQSZ20, the proposed method is slower than C-LDLT. While the computational

cost of the triangular solve is considerably smaller than the LDLT factorization, the

number of iterations is not small enough to make our method faster than C-LDLT. In

BlockCOCG(I) and BlockCOCG(ILU0), the residual norm did not converge for this

matrix.

In Figure 1, we show the histories of the residual norms of the proposed method

(when s = 16) for different matrices. The figure indicates that for all cases, the

residual norms decrease smoothly. In such cases, if one can accept the solution with

low accuracy, the proposed method can be faster than C-LDLT. The case of CQSZ20

is an example for such situation.

0 5 10 15 20 25

Number of iterations

10−15

10−10

10−5

100

R
el
a
ti
v
e
re
si
d
u
a
l
n
o
rm

BCSST25

Ge87H76

VCNT22500

CQSZ20

Figure 1. Residual norm histories of the proposed method for different matrices.

Method Proposed C-LDLT BlockCOCG(I) BlockCOCG(ILU0)

iter 10 – 965(max) 965(max)

ttotal 2.1 0.6 44.8 68.3

tfact 0.2 0.3 – 0.0

ttsol 1.7 0.2 – 23.9

tR 0.1 – 19.8 20.0

tI 0.0 – – –

tqr 0.1 – 16.0 15.8

true res 3.4e−12 7.9e−13 2.4e+03 8.0e−01

Table 6. Result of Experiment II for BCSST25.

351

Method Proposed C-LDLT BlockCOCG(I) BlockCOCG(ILU0)

iter 13 – 2106 1469

ttotal 639.8 819.1 1759.7 2383.1

tfact 276.5 788.3 – 3.2

ttsol 359.6 30.8 – 1177.5

tR 1.8 – 1212.3 843.6

tI 0.2 – – –

tqr 0.7 – 343.0 238.8

true res 1.7e−12 5.5e−15 4.1e−11 5.6e−11

Table 7. Result of Experiment II for Ge87H76.

Method Proposed C-LDLT BlockCOCG(I) BlockCOCG(ILU0)

iter 22 – 1407 Fail

ttotal 34.3 4.4 860.4 –

tfact 2.0 3.3 – –

ttsol 22.5 1.1 – –

tR 3.0 – 807.4 –

tI 5.9 – – –

tqr 0.2 – 34.9 –

true res 9.2e−13 1.4e−15 2.3e−11 –

Table 8. Result of Experiment II for VCNT22500.

Method Proposed C-LDLT BlockCOCG(I) BlockCOCG(ILU0)

iter 14 – 3000(max) 3000(max)

ttotal 120.1 75.4 3404.5 7490.4

tfact 23.9 67.9 – 4.2

ttsol 86.8 7.5 – 4096.4

tR 3.1 – 2774.0 2752.4

tI 4.4 – – –

tqr 0.6 – 383.6 391.9

true res 5.0e−11 2.1e−14 4.5e+01 1.8e+04

Table 9. Result of Experiment II for CQSZ20.

Finally, we note that the memory requirements of our method with real LDLT

factorization is a half of the direct solver using the complex symmetric LDLT fac-

torization. For large-scale problems, the memory requirement of the algorithm is an

important characteristic as well as computational cost. Our method is useful when

the shortage of memory is an issue.

352

7. Conclusions

In this study we proposed a new block Krylov type method for solving a specific

type of complex symmetric system with multiple right-hand sides. We assume that

the coefficient matrix has indefinite real part and positive definite imaginary part.

We also investigate the convergence property of our method. It is shown that the s−1

smallest eigenvalues of the matrix are removed from the spectral condition number

of the coefficient matrix. This indicates the possibility of having faster convergence

rate than in the nonblocked version.

We also presented an efficient algorithmic implementation of our method. Namely,

we show that expensive triangular solves and matrix-vector multiplications of the

imaginary part are reduced by this efficient implementation.

In the numerical experiments, we observe that, for four matrices from different

kinds of applications, the number of iterations decreases as the number of right-hand

sides increases. We experimentally compare our method with the direct solver using

complex symmetric LDLT factorization, the nonpreconditioned ILU0-preconditioned

block COCG method. As a result, our method always turns out to be faster than the

(ILU0-preconditioned) block COCGmethod. In some cases, our method is also faster

than the direct solver. However, when the triangular solve is relatively expensive or

number of iteration is not small enough, our method failed to outperform the direct

solver.

The proposed method is a conjugate gradient type method that minimizes a norm

of the error. Another optimal real-valued method which minimizes a norm of the

residual can be derived analogously. Therefore, in our future work, we will investigate

such minimal residual type method.

Appendix

In Algorithm 5 we show the pseudo-code of the preconditioned block COCGrQ

method for solving the complex symmetric linear system with multiple right-hand

sides

AX = B,

where A = AT 6= AH ∈ C
n×n and X,B ∈ C

n×s. M = MT 6= MH ∈ C
n×n in the

pseudo-code is the preconditioning matrix.

Algorithm 5. Preconditioned block COCGrQ method. M is the preconditioning

matrix and qr(·) indicates the thin QR decomposition.
Input: A = AT ∈ C

n×n; B,X0 ∈ C
n×s; M ∈ C

n×n

353

Output: X ∈ C
n×s

1: R0 = B −AX0; Q0∆0 = R0

2: P0 = Q0; Z0 = MP0

3: for k = 0, 1, . . . until solution converges do

4: αk = (PT
k APk)

−1(QT
kZk)

5: Xk+1 = Xk + Pkαk∆k

6: Qk+1̺k+1 = qr(Qk − Pkαk)

7: ∆k+1 = ̺k+1∆k

8: Zk+1 = MQk+1

9: βk = (QT
kZk)

−1̺Tk+1(Q
T
k+1Zk+1)

10: Pk+1 = Zk+1 + Pkβk

11: end for

12: X = Xk

A c k n ow l e d g em e n t. The authors would like to thank Dr. Tsuyoshi Miyazaki

and Dr. Ayako Nakata for giving us a matrix from the linear scaling density functional

theory code CONQUEST.

References

[1] O.Axelsson, A.Kucherov: Real valued iterative methods for solving complex symmetric
linear systems. Numer. Linear Algebra Appl. 7 (2000), 197–218. zbl MR doi

[2] O.Axelsson, M.Neytcheva, B.Ahmad: A comparison of iterative methods to solve com-
plex valued linear algebraic systems. Numer. Algorithms 66 (2014), 811–841. zbl MR doi

[3] Z.-Z.Bai, M.Benzi, F.Chen: Modified HSS iteration methods for a class of complex
symmetric linear systems. Computing 87 (2010), 93–111. zbl MR doi

[4] Z.-Z.Bai, M.Benzi, F.Chen: On preconditioned MHSS iteration methods for complex
symmetric linear systems. Numer. Algorithms 56 (2011), 297–317. zbl MR doi

[5] Z.-Z.Bai, M.Benzi, F. Chen, Z.-Q.Wang: Preconditioned MHSS iteration methods for
a class of block two-by-two linear systems with applications to distributed control prob-
lems. IMA J. Numer. Anal. 33 (2013), 343–369. zbl MR doi

[6] Z.-Z.Bai, G.H.Golub, M.K.Ng: Hermitian and Skew-Hermitian splitting methods for
non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24 (2003),
603–626. zbl MR doi

[7] Z.-Z.Bai, G.H.Golub, M.K.Ng: On successive-overrelaxation acceleration of the Her-
mitian and skew-Hermitian splitting iterations. Numer. Linear Algebra Appl. 14 (2007),
319–335; erratum ibid. 19 (2012), 891. zbl MR doi

[8] CONQUEST: Linear Scaling DFT. http://www.order-n.org/.
[9] T.A.Davis, Y.Hu: The university of Florida sparse matrix collection. ACM Trans.
Math. Softw. 38 (2011), Paper No. 1, 25 pages. zbl MR doi

[10] D.Day, M.A.Heroux: Solving complex-valued linear systems via equivalent real formu-
lations. SIAM J. Sci. Comput. 23 (2001), 480–498. zbl MR doi

[11] L.Du, Y. Futamura, T. Sakurai: Block conjugate gradient type methods for the approx-

imation of bilinear form C
H
A
−1

B. Comput. Math. Appl. 66 (2014), 2446–2455. MR doi

354

https://zbmath.org/?q=an:1051.65025
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1762967
http://dx.doi.org/10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S
https://zbmath.org/?q=an:1307.65034
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3240302
http://dx.doi.org/10.1007/s11075-013-9764-1
https://zbmath.org/?q=an:1210.65074
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2640009
http://dx.doi.org/10.1007/s00607-010-0077-0
https://zbmath.org/?q=an:1209.65037
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2755673
http://dx.doi.org/10.1007/s11075-010-9441-6
https://zbmath.org/?q=an:1271.65100
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3020961
http://dx.doi.org/10.1093/imanum/drs001
https://zbmath.org/?q=an:1036.65032
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1972670
http://dx.doi.org/10.1137/S0895479801395458
https://zbmath.org/?q=an:1199.65097
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2310394
http://dx.doi.org/10.1002/nla.517
https://zbmath.org/?q=an:06721804
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2865011
http://dx.doi.org/10.1145/2049662.2049663
https://zbmath.org/?q=an:0992.65020
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1861261
http://dx.doi.org/10.1137/S1064827500372262
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3128571
http://dx.doi.org/10.1016/j.camwa.2013.09.023

[12] A.A.Dubrulle: Retooling the method of block conjugate gradients. ETNA, Electron.
Trans. Numer. Anal. 12 (2001), 216–233. zbl MR

[13] Eigen. http://eigen.tuxfamily.org/.
[14] S.C. Eisenstat, H.C. Elman, M.H. Schultz: Variational iterative methods for nonsym-

metric systems of linear equations. SIAM J. Numer. Anal. 20 (1983), 345–357. zbl MR doi
[15] ELSES matrix library. http://www.elses.jp/matrix/.
[16] R.W.Freund: Conjugate gradient-type methods for linear systems with complex sym-

metric coefficient matrices. SIAM J. Sci. Stat. Comput. 13 (1992), 425–448. zbl MR doi
[17] Y.Futamura, H.Tadano, T. Sakurai: Parallel stochastic estimation method of eigenvalue

distribution. JSIAM Lett. 2 (2010), 127–130. zbl MR doi
[18] T. Ikegami, T. Sakurai: Contour integral eigensolver for non-Hermitian systems:

a Rayleigh-Ritz-type approach. Taiwanese J. Math. 14 (2010), 825–837. zbl MR
[19] T. Ikegami, T. Sakurai, U.Nagashima: A filter diagonalization for generalized eigenvalue

problems based on the Sakurai-Sugiura projection method. J. Comput. Appl. Math. 233
(2010), 1927–1936. zbl MR doi

[20] A. Imakura, L. Du, T. Sakurai: A block Arnoldi-type contour integral spectral projection
method for solving generalized eigenvalue problems. Appl. Math. Lett. 32 (2014), 22–27. zbl MR doi

[21] A.A.Nikishin, A.Y.Yeremin: Variable block CG algorithms for solving large sparse
symmetric positive definite linear systems on parallel computers. I. General iterative
scheme. SIAM J. Matrix Anal. Appl. 16 (1995), 1135–1153. zbl MR doi

[22] D.P.O’Leary: The block conjugate gradient algorithm and related methods. Linear
Algebra Appl. 29 (1980), 293–322. zbl MR doi

[23] C.C.Paige, M.A. Saunders: Solutions of sparse indefinite systems of linear equations.
SIAM J. Numer. Anal. 12 (1975), 617–629. zbl MR doi

[24] E.Polizzi: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev.
B 79 (2009), 115112. doi

[25] Y.Saad, M.H. Schultz: GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986), 856–869. zbl MR doi

[26] T. Sakurai, H. Sugiura: A projection method for generalized eigenvalue problems using
numerical integration. J. Comput. Appl. Math. 159 (2003), 119–128. zbl MR doi

[27] T. Sakurai, H. Tadano: CIRR: a Rayleigh-Ritz type method with contour integral for
generalized eigenvalue problems. Hokkaido Math. J. 36 (2007), 745–757. zbl MR doi

[28] T. Sogabe, S.-L. Zhang: A COCR method for solving complex symmetric linear systems.
J. Comput. Appl. Math. 199 (2007), 297–303. zbl MR doi

[29] H.Tadano, T. Sakurai: A block Krylov subspace method for the contour integral method
and its application to molecular orbital computations. IPSJ Trans. Adv. Comput. Syst.
2 (2009), 10–18. (In Japanese.)

[30] H.A. van der Vorst: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the Solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (1992),
631–644. zbl MR doi

[31] H.A. van der Vorst, J. B.M.Melissen: A Petrov-Galerkin type method for solving
Axk = b, where A is symmetric complex. IEEE Transactions on Magnetics 26 (1990),
706–708. doi

Authors’ address: Yasunori Futamura, Takahiro Yano, Akira Imakura, Tetsuya Sakurai,
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan, e-mail: futamura
@cs.tsukuba.ac.jp.

355

https://zbmath.org/?q=an:0985.65021
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1847919
https://zbmath.org/?q=an:0524.65019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0694523
http://dx.doi.org/10.1137/0720023
https://zbmath.org/?q=an:0761.65018
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1145195
http://dx.doi.org/10.1137/0913023
https://zbmath.org/?q=an:1271.65063
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3009397
http://dx.doi.org/10.14495/jsiaml.2.127
https://zbmath.org/?q=an:1198.65071
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2667719
https://zbmath.org/?q=an:1185.65061
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2564028
http://dx.doi.org/10.1016/j.cam.2009.09.029
https://zbmath.org/?q=an:1311.65037
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3182841
http://dx.doi.org/10.1016/j.aml.2014.02.007
https://zbmath.org/?q=an:0837.65029
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1351461
http://dx.doi.org/10.1137/S0895479893247679
https://zbmath.org/?q=an:0426.65011
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0562766
http://dx.doi.org/10.1016/0024-3795(80)90247-5
https://zbmath.org/?q=an:0319.65025
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0383715
http://dx.doi.org/10.1137/0712047
http://dx.doi.org/10.1103/physrevb.79.115112
https://zbmath.org/?q=an:0599.65018
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0848568
http://dx.doi.org/10.1137/0907058
https://zbmath.org/?q=an:1037.65040
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2022322
http://dx.doi.org/10.1016/S0377-0427(03)00565-X
https://zbmath.org/?q=an:1156.65035
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2378289
http://dx.doi.org/10.14492/hokmj/1272848031
https://zbmath.org/?q=an:1108.65028
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2269511
http://dx.doi.org/10.1016/j.cam.2005.07.032
https://zbmath.org/?q=an:0761.65023
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1149111
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1109/20.106415

		webmaster@dml.cz
	2020-07-02T14:48:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

